Nanocellulose-Based Biomedical Scaffolds in Future Bioeconomy: A Techno-Legal Assessment of the State-of-the-Art
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35223812
PubMed Central
PMC8873513
DOI
10.3389/fbioe.2021.789603
PII: 789603
Knihovny.cz E-zdroje
- Klíčová slova
- Bioeconomy, Biomedicine, Cellulose, EMA, Nanocellulose, REACh regulation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanocellulose is a broader term used for nano-scaled cellulosic crystal and/or fibrils of plant or animal origin. Where bacterial nanocellulose was immediately accepted in biomedicine due to its "cleaner" nature, the plant-based nanocellulose has seen several roadblocks. This manuscript assesses the technological aspects (chemistry of cellulose, nanocellulose producing methods, its purity, and biological properties including toxicity and suggested applications in final drug formulation) along with legal aspects in REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) regulation by the European Union, EMA (European Medicine Agency). The botanical biomass processing methods leading to the nanoscale impurity (lignin and others) on nanocellulose surface, along with surface modification with harsh acid treatments are found to be two major sources of "impurity" in botanical biomass derived nanocellulose. The status of nanocellulose under the light of REACH regulation along with EMA has been covered. The provided information can be directly used by material and biomedical scientists while developing new nanocellulose production strategies as well as formulation design for European markets.
Department of Production Engineering Warsaw University Of Life Sciences Warsaw Poland
Faculty of Business and Economics Mendel University in Brno Brno Czechia
Smart Society Research Team Faculty of Business and Economics Mendel University in Brno Brno Czechia
Zobrazit více v PubMed
Abdul Khalil H. P. S., Davoudpour Y., Islam M. N., Mustapha A., Sudesh K., Dungani R., et al. (2014). Production and Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review. Carbohydr. Polym. 99, 649–665. 10.1016/j.carbpol.2013.08.069 PubMed DOI
Abitbol T., Rivkin A., Cao Y., Nevo Y., Abraham E., Ben-Shalom T., et al. (2016). Nanocellulose, a Tiny Fiber with Huge Applications. Curr. Opin. Biotechnol. 39, 76–88. 10.1016/j.copbio.2016.01.002 PubMed DOI
Akhlaghi S. P., Berry R. C., Tam K. C. (2013). Surface Modification of Cellulose Nanocrystal with Chitosan Oligosaccharide for Drug Delivery Applications. Cellulose 20, 1747–1764. 10.1007/s10570-013-9954-y DOI
Almeida I. F., Pereira T., Silva N. H. C. S., Gomes F. P., Silvestre A. J. D., Freire C. S. R., et al. (2014). Bacterial Cellulose Membranes as Drug Delivery Systems: an In Vivo Skin Compatibility Study. Eur. J. Pharmaceutics Biopharmaceutics 86, 332–336. 10.1016/j.ejpb.2013.08.008 PubMed DOI
Anderson R. L., Owens J. W., Timms C. W. (1992). The Toxicity of Purified Cellulose in Studies with Laboratory Animals. Cancer Lett. 63, 83–92. 10.1016/0304-3835(92)90057-3 PubMed DOI
Asabuwa Ngwabebhoh F., Ilkar Erdagi S., Yildiz U. (2018). Pickering Emulsions Stabilized Nanocellulosic-Based Nanoparticles for Coumarin and Curcumin Nanoencapsulations: In Vitro Release, Anticancer and Antimicrobial Activities. Carbohydr. Polym. 201, 317–328. 10.1016/j.carbpol.2018.08.079 PubMed DOI
Basu A., Lindh J., Ålander E., Strømme M., Ferraz N. (2017). On the Use of Ion-Crosslinked Nanocellulose Hydrogels for Wound Healing Solutions: Physicochemical Properties and Application-Oriented Biocompatibility Studies. Carbohydr. Polym. 174, 299–308. 10.1016/j.carbpol.2017.06.073 PubMed DOI
Bhandari J., Mishra H., Mishra P. K., Wimmer R., Ahmad F. J., Talegaonkar S. (2017). Cellulose Nanofiber Aerogel as a Promising Biomaterial for Customized Oral Drug Delivery. Ijn Vol. 12, 2021–2031. 10.2147/IJN.S124318 PubMed DOI PMC
Burt H. M., Jackson J. K., Hamad W. Y. (2014). Binding Drugs with Nanocrystalline Cellulose (Ncc). Available at: https://patents.google.com/patent/US20140335132A1/en (Accessed January 18, 2022).
Chawla P. R., Bajaj I. B., Survase S. A., Singhal R. S. (2009). Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol. 47, 107–124.
Chen P., Yu H., Liu Y., Chen W., Wang X., Ouyang M. (2013). Concentration Effects on the Isolation and Dynamic Rheological Behavior of Cellulose Nanofibers via Ultrasonic Processing. Cellulose 20, 149–157. 10.1007/s10570-012-9829-7 DOI
Colombo L., Zoia L., Violatto M. B., Previdi S., Talamini L., Sitia L., et al. (2015). Organ Distribution and Bone Tropism of Cellulose Nanocrystals in Living Mice. Biomacromolecules 16, 2862–2871. 10.1021/acs.biomac.5b00805 PubMed DOI
Committee for Medicinal Products for human Use (2018). Excipients in the Dossier for Application Marketing Authorisation of a Medicinal Product. Eur. Med. Agency. Available at: https://www.ema.europa.eu/en/excipients-dossier-application-marketing-authorisation-medicinal-product (Accessed October 5, 2021).
Cullen R. T., Miller B. G., Jones A. D., Davis J. M. G. (2002). Toxicity of Cellulose Fibres. Ann. Occup. Hyg. 46, 81–84. 10.1093/annhyg/46.suppl_1.81 DOI
Curvello R., Raghuwanshi V. S., Garnier G. (2019). Engineering Nanocellulose Hydrogels for Biomedical Applications. Adv. Colloid Interf. Sci. 267, 47–61. 10.1016/j.cis.2019.03.002 PubMed DOI
de la Motte H., Hasani M., Brelid H., Westman G. (2011). Molecular Characterization of Hydrolyzed Cationized Nanocrystalline Cellulose, Cotton Cellulose and Softwood Kraft Pulp Using High Resolution 1D and 2D NMR. Carbohydr. Polym. 85, 738–746. 10.1016/j.carbpol.2011.03.038 DOI
Devarayan K., Kim B.-S. (2015). Reversible and Universal pH Sensing Cellulose Nanofibers for Health Monitor. Sensors Actuators B: Chem. 209, 281–286. 10.1016/j.snb.2014.11.120 DOI
Díez I., Eronen P., Österberg M., Linder M. B., Ikkala O., Ras R. H. A. (2011). Functionalization of Nanofibrillated Cellulose with Silver Nanoclusters: Fluorescence and Antibacterial Activity. Macromol. Biosci. 11, 1185–1191. 10.1002/mabi.201100099 PubMed DOI
Dong L., Zhang X., Ren S., Lei T., Sun X., Qi Y., et al. (2016). Poly(diallyldimethylammonium Chloride)-Cellulose Nanocrystals Supported Au Nanoparticles for Nonenzymatic Glucose Sensing. RSC Adv. 6, 6436–6442. 10.1039/C5RA23935D DOI
Dong S., Cho H. J., Lee Y. W., Roman M. (2014). Synthesis and Cellular Uptake of Folic Acid-Conjugated Cellulose Nanocrystals for Cancer Targeting. Biomacromolecules 15, 1560–1567. 10.1021/bm401593n PubMed DOI
Drury J. L., Mooney D. J. (2003). Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomaterials 24, 4337–4351. 10.1016/s0142-9612(03)00340-5 PubMed DOI
Edwards J. V., Prevost N., Sethumadhavan K., Ullah A., Condon B. (2013). Peptide Conjugated Cellulose Nanocrystals with Sensitive Human Neutrophil Elastase Sensor Activity. Cellulose 20, 1223–1235. 10.1007/s10570-013-9901-y DOI
Emara L., El-Ashmawy A., Taha N., El-Shaffei K., Mahdey E.-S., El-kholly H. (2016). Nano-crystalline Cellulose as a Novel Tablet Excipient for Improving Solubility and Dissolution of Meloxicam. J. App Pharm. Sci. 6, 032–043. 10.7324/japs.2016.60205 DOI
Esmaeili C., Abdi M., Mathew A., Jonoobi M., Oksman K., Rezayi M. (2015). Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose. Sensors 15, 24681–24697. 10.3390/s151024681 PubMed DOI PMC
European Commission (2012). COMMUNICATION from the COMMISSION to the EUROPEAN PARLIAMENT, the COUNCIL and the EUROPEAN ECONOMIC and SOCIAL COMMITTEE Second Regulatory Review on Nanomaterials. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?_csrf=5bd9bd61-f83a-418b-8f7a-7426953419a4&lang1=EN&lang2=choose&lang3=choose&uri=CELEX%3A52012DC0572 (Accessed September 24, 2021).
Eyholzer C., Borges de Couraça A., Duc F., Bourban P. E., Tingaut P., Zimmermann T., et al. (2011). Biocomposite Hydrogels with Carboxymethylated, Nanofibrillated Cellulose Powder for Replacement of the Nucleus Pulposus. Biomacromolecules 12, 1419–1427. 10.1021/bm101131b PubMed DOI
Ferrer A., Quintana E., Filpponen I., Solala I., Vidal T., Rodríguez A., et al. (2012). Effect of Residual Lignin and Heteropolysaccharides in Nanofibrillar Cellulose and Nanopaper from wood Fibers. Cellulose 19, 2179–2193. 10.1007/s10570-012-9788-z DOI
Fink H.-P., Philipp B., Paul D., Serimaa R., Paakkari T. (1987). The Structure of Amorphous Cellulose as Revealed by Wide-Angle X-ray Scattering. Polymer 28, 1265–1270. 10.1016/0032-3861(87)90435-6 DOI
Fink H., Hong J., Drotz K., Risberg B., Sanchez J., Sellborn A. (2011). An In Vitro Study of Blood Compatibility of Vascular Grafts Made of Bacterial Cellulose in Comparison with Conventionally-Used Graft Materials. J. Biomed. Mater. Res. 97A, 52–58. 10.1002/jbm.a.33031 PubMed DOI
Foth H., Hayes A. (2008). Background of REACH in EU Regulations on Evaluation of Chemicals. Hum. Exp. Toxicol. 27, 443–461. 10.1177/0960327108092296 PubMed DOI
Galkina O. L., Ivanov V. K., Agafonov A. V., Seisenbaeva G. A., Kessler V. G. (2015). Cellulose Nanofiber-Titania Nanocomposites as Potential Drug Delivery Systems for Dermal Applications. J. Mater. Chem. B 3, 1688–1698. 10.1039/c4tb01823k PubMed DOI
Gardiner E. S., Sarko A. (1985). Packing Analysis of Carbohydrates and Polysaccharides. 16. The crystal Structures of Celluloses IVI and IVII. Can. J. Chem. 63, 173–180. 10.1139/v85-027 DOI
Gardner K. H., Blackwell J. (1974). The Structure of Native Cellulose. Biopolymers 13, 1975–2001. 10.1002/bip.1974.360131005 DOI
Garvey C. J., Parker I. H., Simon G. P. (2005). On the Interpretation of X-Ray Diffraction Powder Patterns in Terms of the Nanostructure of Cellulose I Fibres. Macromol. Chem. Phys. 206, 1568–1575. 10.1002/macp.200500008 DOI
Gautam S., Bundela P., Pandey A., Awasthi M., Sarsaiya S. (2010). A Review on Systematic Study of Cellulose. Appl. Nat. Sci. Found. 2, 333–343. 10.31018/jans.v2i2.143 DOI
Guo T., Pei Y., Tang K., He X., Huang J., Wang F. (2017). Mechanical and Drug Release Properties of Alginate Beads Reinforced with Cellulose. J. Appl. Polym. Sci. 134 (44495), 1–9. 10.1002/app.44495 DOI
Habibi Y., Lucia L. A., Rojas O. J. (2010). Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 110, 3479–3500. 10.1021/cr900339w PubMed DOI
Hakkarainen T., Koivuniemi R., Kosonen M., Escobedo-Lucea C., Sanz-Garcia A., Vuola J., et al. (2016). Nanofibrillar Cellulose Wound Dressing in Skin Graft Donor Site Treatment. J. Controlled Release 244, 292–301. 10.1016/j.jconrel.2016.07.053 PubMed DOI
He J., Cui S., Wang S.-y. (2008). Preparation and Crystalline Analysis of High-Grade Bamboo Dissolving Pulp for Cellulose Acetate. J. Appl. Polym. Sci. 107, 1029–1038. 10.1002/app.27061 DOI
He X., Xiao Q., Lu C., Wang Y., Zhang X., Zhao J., et al. (2014). Uniaxially Aligned Electrospun All-Cellulose Nanocomposite Nanofibers Reinforced with Cellulose Nanocrystals: Scaffold for Tissue Engineering. Biomacromolecules 15, 618–627. 10.1021/bm401656a PubMed DOI
Herrick F. W., Casebier R. L., Hamilton J. K., Sandberg K. R. (1983). Microfibrillated Cellulose: Morphology and Accessibility. Shelton, WA: ITT Rayonier Inc.
Horii F., Hirai A., Kitamaru R. (1982). Solid-state High-Resolution 13 C-NMR Studies of Regenerated Cellulose Samples with Different Crystallinities. Polym. Bull. 8, 163–170. 10.1007/bf00263023 DOI
Hult E.-L., Iversen T., Sugiyama J. (2003). Characterization of the Supermolecular Structure of Cellulose in wood Pulp Fibres. Cellulose 10, 103–110. 10.1023/a:1024080700873 DOI
Jack A. A., Nordli H. R., Powell L. C., Powell K. A., Kishnani H., Johnsen P. O., et al. (2017). The Interaction of wood Nanocellulose Dressings and the Wound Pathogen P. aeruginosa . Carbohydr. Polym. 157, 1955–1962. 10.1016/j.carbpol.2016.11.080 PubMed DOI
Jeong S. I., Lee S. E., Yang H., Jin Y.-H., Park C.-S., Park Y. S. (2010). Toxicologic Evaluation of Bacterial Synthesized Cellulose in Endothelial Cells and Animals. Mol. Cell. Toxicol. 6, 370–377. 10.1007/s13273-010-0049-7 DOI
Jorfi M., Foster E. J. (2015). Recent Advances in Nanocellulose for Biomedical Applications. J. Appl. Polym. Sci. 132, a–n. 10.1002/app.41719 DOI
Jozala A. F., de Lencastre-Novaes L. C., Lopes A. M., de Carvalho Santos-Ebinuma V., Mazzola P. G., Pessoa-Jr A., Jr, et al. (2016). Bacterial Nanocellulose Production and Application: a 10-year Overview. Appl. Microbiol. Biotechnol. 100, 2063–2072. 10.1007/s00253-015-7243-4 PubMed DOI
Kautto P., Valve H. (2019). Cosmopolitics of a Regulatory Fit: The Case of Nanocellulose. Sci. as Cult. 28, 25–45. 10.1080/09505431.2018.1533935 DOI
Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., et al. (2011). Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. 50, 5438–5466. 10.1002/anie.201001273 PubMed DOI
Kolakovic R., Peltonen L., Laukkanen A., Hirvonen J., Laaksonen T. (2012). Nanofibrillar Cellulose Films for Controlled Drug Delivery. Eur. J. Pharmaceutics Biopharmaceutics 82, 308–315. 10.1016/j.ejpb.2012.06.011 PubMed DOI
Kupnik K., Primožič M., Kokol V., Leitgeb M. (2020). Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers 12, 2825. 10.3390/polym12122825 PubMed DOI PMC
Kurosumi A., Sasaki C., Yamashita Y., Nakamura Y. (2009). Utilization of Various Fruit Juices as Carbon Source for Production of Bacterial Cellulose by Acetobacter Xylinum NBRC 13693. Carbohydr. Polym. 76, 333–335. 10.1016/j.carbpol.2008.11.009 DOI
Laurén P., Lou Y. R., Raki M., Urtti A., Bergström K., Yliperttula M. (2014). Technetium-99m-labeled Nanofibrillar Cellulose Hydrogel for In Vivo Drug Release. Eur. J. Pharm. Sci. 65, 79–88. 10.1016/j.ejps.2014.09.013 PubMed DOI
Laurén P., Paukkonen H., Lipiäinen T., Dong Y., Oksanen T., Räikkönen H., et al. (2018). Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Films. Pharm. Res. 35, 1–14. 10.1007/s11095-018-2428-z PubMed DOI
Lin N., Dufresne A. (2014). Nanocellulose in Biomedicine: Current Status and Future prospect. Eur. Polym. J. 59, 302–325. 10.1016/j.eurpolymj.2014.07.025 DOI
Liu J., Chinga-Carrasco G., Cheng F., Xu W., Willför S., Syverud K., et al. (2016). Hemicellulose-reinforced Nanocellulose Hydrogels for Wound Healing Application. Cellulose 23, 3129–3143. 10.1007/s10570-016-1038-3 DOI
Mandrycky C., Wang Z., Kim K., Kim D.-H. (2016). 3D Bioprinting for Engineering Complex Tissues. Biotechnol. Adv. 34, 422–434. 10.1016/j.biotechadv.2015.12.011 PubMed DOI PMC
Markstedt K., Mantas A., Tournier I., Martínez Ávila H., Hägg D., Gatenholm P. (2015). 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules 16, 1489–1496. 10.1021/acs.biomac.5b00188 PubMed DOI
Martínez Ávila H., Schwarz S., Rotter N., Gatenholm P. (2016). 3D Bioprinting of Human Chondrocyte-Laden Nanocellulose Hydrogels for Patient-specific Auricular Cartilage Regeneration. Bioprinting 1-2, 22–35. 10.1016/j.bprint.2016.08.003 DOI
Mishra P. K., Ekielski A., Mukherjee S., Sahu S., Chowdhury S., Mishra M., et al. (2019). Wood-based Cellulose Nanofibrils: Haemocompatibility and Impact on the Development and Behaviour of Drosophila melanogaster . Biomolecules 9, 363. 10.3390/biom9080363 PubMed DOI PMC
Mishra P. K., Gregor T., Wimmer R. (2017). Utilising brewer’s Spent Grain as a Source of Cellulose Nanofibres Following Separation of Protein-Based Biomass. BioResources 12, 107–116. 10.15376/biores.12.1.107-116 DOI
Mishra P. K., Wimmer R. (2017). Aerosol Assisted Self-Assembly as a Route to Synthesize Solid and Hollow Spherical Lignin Colloids and its Utilization in Layer by Layer Deposition. Ultrason. Sonochem. 35, 45–50. 10.1016/j.ultsonch.2016.09.001 PubMed DOI
Mohammadkazemi F., Azin M., Ashori A. (2015). Production of Bacterial Cellulose Using Different Carbon Sources and Culture media. Carbohydr. Polym. 117, 518–523. 10.1016/j.carbpol.2014.10.008 PubMed DOI
Mohanta V., Madras G., Patil S. (2014). Layer-by-layer Assembled Thin Films and Microcapsules of Nanocrystalline Cellulose for Hydrophobic Drug Delivery. ACS Appl. Mater. Inter. 6, 20093–20101. 10.1021/am505681e PubMed DOI
Moroni L., Schrooten J., Truckenmüller R., Rouwkema J., Sohier J., van Blitterswijk C. A. (2014). Tissue Engineering. London: Elsevier, 1–21. 10.1016/b978-0-12-420145-3.00001-8 DOI
Müller M., Öztürk E., Arlov Ø., Gatenholm P., Zenobi-Wong M. (2017). Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications. Ann. Biomed. Eng. 45, 210–223. 10.1007/s10439-016-1704-5 PubMed DOI
Navarro J. R. G., Wennmalm S., Godfrey J., Breitholtz M., Edlund U. (2016). Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing. Biomacromolecules 17, 1101–1109. 10.1021/acs.biomac.5b01716 PubMed DOI
Nelson K., Retsina T., Pylkkanen V., O’Connor R. (2014). Processes and Apparatus for Producing Nanocellulose, and Compositions and Products Produced Therefrom. Available at: https://www.google.com/patents/US20140154757.
Nguyen D., Hägg D. A., Forsman A., Ekholm J., Nimkingratana P., Brantsing C., et al. (2017). Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. Sci. Rep. 7, 658. 10.1038/s41598-017-00690-y PubMed DOI PMC
Olkowski A. A., Laarveld B. (2013). Catalytic Biomass Conversion. Available at: https://www.google.com/patents/WO2013000074A1?cl=en.
Paakkari T., Serimaa R., Fink H.-P. (1989). Structure of Amorphous Cellulose. Acta Polym. 40, 731–734. 10.1002/actp.1989.010401205 DOI
Park S., Baker J. O., Himmel M. E., Parilla P. A., Johnson D. K. (2010). Cellulose Crystallinity index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 3, 10. 10.1186/1754-6834-3-10 PubMed DOI PMC
Patil M. D., Patil V. D., Sapre A. A., Ambone T. S., Torris A. T. A., Shukla P. G., et al. (2018). Tuning Controlled Release Behavior of Starch Granules Using Nanofibrillated Cellulose Derived from Waste Sugarcane Bagasse. ACS Sustainable Chem. Eng. 6, 9208–9217. 10.1021/acssuschemeng.8b01545 DOI
Pérez J., Muñoz-Dorado J., de la Rubia T., Martínez J. (2002). Biodegradation and Biological Treatments of Cellulose, Hemicellulose and Lignin: an Overview. Int. Microbiol. 5, 53–63. 10.1007/s10123-002-0062-3 PubMed DOI
Petersen N., Gatenholm P. (2011). Bacterial Cellulose-Based Materials and Medical Devices: Current State and Perspectives. Appl. Microbiol. Biotechnol. 91, 1277–1286. 10.1007/s00253-011-3432-y PubMed DOI
Rauscher H., Rasmussen K., Sokull-Klüttgen B. (2017). Regulatory Aspects of Nanomaterials in the EU. Chem. Ingenieur Technik 89, 224–231. 10.1002/cite.201600076 DOI
Ruland W. (1961). X-ray Determination of Crystallinity and Diffuse Disorder Scattering. Acta Crystallogr. 14, 1180–1185. 10.1107/s0365110x61003429 DOI
Salimi S., Sotudeh-Gharebagh R., Zarghami R., Chan S. Y., Yuen K. H. (2019). Production of Nanocellulose and its Applications in Drug Delivery: A Critical Review. ACS Sustainable Chem. Eng. 7, 15800–15827. 10.1021/acssuschemeng.9b02744 DOI
Sarkar G., Orasugh J. T., Saha N. R., Roy I., Bhattacharyya A., Chattopadhyay A. K., et al. (2017). Cellulose Nanofibrils/chitosan Based Transdermal Drug Delivery Vehicle for Controlled Release of Ketorolac Tromethamine. New J. Chem. 41, 15312–15319. 10.1039/c7nj02539d DOI
Segal L., Creely J. J., Martin A. E., Conrad C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Res. J. 29, 786–794. 10.1177/004051755902901003 DOI
Shahrokhian S., Naderi L., Ghalkhani M. (2015). Nanocellulose/Carbon Nanoparticles Nanocomposite Film Modified Electrode for Durable and Sensitive Electrochemical Determination of Metoclopramide. Electroanalysis 27, 2637–2644. 10.1002/elan.201500266 DOI
Siqueira P., Siqueira É., De Lima A. E., Siqueira G., Pinzón-Garcia A. D., Lopes A. P., et al. (2019). Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. Nanomaterials 9, 78. 10.3390/nano9010078 PubMed DOI PMC
Siró I., Plackett D. (2010). Microfibrillated Cellulose and New Nanocomposite Materials: a Review. Cellulose 17, 459–494. 10.1007/s10570-010-9405-y DOI
Staudinger H. (1933). Viscosity Investigations for the Examination of the Constitution of Natural Products of High Molecular Weight and of Rubber and Cellulose. Trans. Faraday Soc. 29, 18–32. 10.1039/tf9332900018 DOI
Supramaniam J., Adnan R., Mohd Kaus N. H., Bushra R. (2018). Magnetic Nanocellulose Alginate Hydrogel Beads as Potential Drug Delivery System. Int. J. Biol. Macromolecules 118, 640–648. 10.1016/j.ijbiomac.2018.06.043 PubMed DOI
Tanskul S., Amornthatree K., Jaturonlak N. (2013). A New Cellulose-Producing Bacterium, Rhodococcus Sp. MI 2: Screening and Optimization of Culture Conditions. Carbohydr. Polym. 92, 421–428. 10.1016/j.carbpol.2012.09.017 PubMed DOI
Ullah H., Wahid F., Santos H. A., Khan T. (2016). Advances in Biomedical and Pharmaceutical Applications of Functional Bacterial Cellulose-Based Nanocomposites. Carbohydr. Polym. 150, 330–352. 10.1016/j.carbpol.2016.05.029 PubMed DOI
Valo H., Kovalainen M., Laaksonen P., Häkkinen M., Auriola S., Peltonen L., et al. (2011). Immobilization of Protein-Coated Drug Nanoparticles in Nanofibrillar Cellulose Matrices-Enhanced Stability and Release. J. Controlled Release 156, 390–397. 10.1016/j.jconrel.2011.07.016 PubMed DOI
Wada M., Heux L., Sugiyama J. (2004). Polymorphism of Cellulose I Family: Reinvestigation of Cellulose IVI. Biomacromolecules 5, 1385–1391. 10.1021/bm0345357 PubMed DOI
Wang Q. Q., Zhu J. Y., Gleisner R., Kuster T. A., Baxa U., McNeil S. E. (2012). Morphological Development of Cellulose Fibrils of a Bleached eucalyptus Pulp by Mechanical Fibrillation. Cellulose 19, 1631–1643. 10.1007/s10570-012-9745-x DOI
Zhong S. P., Zhang Y. Z., Lim C. T. (2010). Tissue Scaffolds for Skin Wound Healing and Dermal Reconstruction. WIREs Nanomed Nanobiotechnol 2, 510–525. 10.1002/wnan.100 PubMed DOI
Zhou J., Butchosa N., Jayawardena H. S. N., Park J., Zhou Q., Yan M., et al. (2015). Synthesis of Multifunctional Cellulose Nanocrystals for Lectin Recognition and Bacterial Imaging. Biomacromolecules 16, 1426–1432. 10.1021/acs.biomac.5b00227 PubMed DOI PMC