Nanotechnology in Cosmetics and Cosmeceuticals-A Review of Latest Advancements

. 2022 Mar 10 ; 8 (3) : . [epub] 20220310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35323286

Nanotechnology has the potential to generate advancements and innovations in formulations and delivery systems. This fast-developing technology has been widely exploited for diagnostic and therapeutic purposes. Today, cosmetic formulations incorporating nanotechnology are a relatively new yet very promising and highly researched area. The application of nanotechnology in cosmetics has been shown to overcome the drawbacks associated with traditional cosmetics and also to add more useful features to a formulation. Nanocosmetics and nanocosmeceuticals have been extensively explored for skin, hair, nails, lips, and teeth, and the inclusion of nanomaterials has been found to improve product efficacy and consumer satisfaction. This is leading to the replacement of many traditional cosmeceuticals with nanocosmeceuticals. However, nanotoxicological studies on nanocosmeceuticals have raised concerns in terms of health hazards due to their potential skin penetration, resulting in toxic effects. This review summarizes various nanotechnology-based approaches being utilized in the delivery of cosmetics as well as cosmeceutical products, along with relevant patents. It outlines their benefits, as well as potential health and environmental risks. Further, it highlights the regulatory status of cosmeceuticals and analyzes the different regulatory guidelines in India, Europe, and the USA and discusses the different guidelines and recommendations issued by various regulatory authorities. Finally, this article seeks to provide an overview of nanocosmetics and nanocosmeceuticals and their applications in cosmetic industries, which may help consumers and regulators to gain awareness about the benefits as well as the toxicity related to the continuous and long-term uses of these products, thus encouraging their judicious use.

Zobrazit více v PubMed

Raj S., Jose S., Sumod U.S., Sabitha M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied Sci. 2012;4:186–193. doi: 10.4103/0975-7406.99016. PubMed DOI PMC

Kaul S., Gulati N., Verma D., Mukherjee S., Nagaich U. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances. J. Pharm. 2018;2018:3420204. doi: 10.1155/2018/3420204. PubMed DOI PMC

Ajazzuddin M., Jeswani G., Jha A. Nanocosmetics: Past, Present and Future Trends. Recent Patents Nanomed. 2015;5:3–11. doi: 10.2174/1877912305666150417232826. DOI

Size L.B.M., Report S., Size L.B.M., Application B., Region B., Forecasts S. Get Free, Instant, and Unlimited Access to a PDF Sample Report & Personalized Online Dashboard. [(accessed on 15 January 2022)];2021 :2021–2028. Available online: https://main.mohfw.gov.in/sites/default/files/Annual%20Report%202020-21%20English.pdf.

Schneider G., Gohla S., Schreiber J., Kaden W., Schönrock U., Schmidt-lewerkühne H., Kuschel A., Petsitis X., Pape W., Ippen H., et al. Connect with Wiley. The Wiley Network. 2021. [(accessed on 15 January 2022)]. pp. 2–3. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/14356007.a24_219. DOI

Cosmetics—Overview. [(accessed on 15 January 2022)]; Available online: https://www.fda.gov/industry/regulated-products/cosmetics-overview.

Tripathy S., Dureja H. Cosmetics: Regulatory Scenario in USA, EU and India. J. Pharm. Technol. Res. Manag. 2015;3:127–139. doi: 10.15415/jptrm.2015.32010. DOI

Kumar N., Kanchan T., Unnikrishnan B., Thapar R., Mithra P., Kulkarni V., Holla R., Bhagwan D., Radhakrishnan Y. Characterization of Rubia cordifolia L. root extract and its evaluation of cardioprotective effect in Wistar rat model. Indian J. Pharmacol. 2018;49:344–347. doi: 10.4103/ijp.IJP. PubMed DOI

Haryanti R. Krim Pemutih Wajah dan Keamanannya. Majalah Farmasetika. 2017;2:5–9. doi: 10.24198/farmasetika.v2i3.15888. DOI

Search Worldwide, Life-Sciences Literature. 2021. [(accessed on 15 January 2022)]. pp. 1–2. Available online: https://www.cosmeticsandtoiletries.com/regulations/regional/article/21834383/comparatively-speaking-cosmetic-vs-cosmeceutical-vs-drug.

Fatima M., Monawwar S., Mohapatra S., Alex T.S., Ahmed A., Taleuzzaman M., Ali A., Ansari M.J., Mirza M.A., Iqbal Z. In silico drug screening based development of novel formulations for onychomycosis management. Gels. 2021;7:221. doi: 10.3390/gels7040221. PubMed DOI PMC

Santos A.C., Morais F., Simões A., Pereira I., Sequeira J.A.D., Pereira-Silva M., Veiga F., Ribeiro A. Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv. 2019;16:313–330. doi: 10.1080/17425247.2019.1585426. PubMed DOI

Dhawan S., Sharma P., Nanda S. Nanocosmetics. Elsevier; Amsterdam, The Netherlands: 2020. Cosmetic nanoformulations and their intended use.

Hoag S.W., Hussain A.S. The impact of formulation on bioavailability: Summary of workshop discussion. J. Nutr. 2001;131:1389S–1391S. doi: 10.1093/jn/131.4.1389S. PubMed DOI

Souto E.B., Fernandes A.R., Martins-Gomes C., Coutinho T.E., Durazzo A., Lucarini M., Souto S.B., Silva A.M., Santini A. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl. Sci. 2020;10:1594. doi: 10.3390/app10051594. DOI

Fytianos G., Rahdar A., Kyzas G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials. 2020;10:979. doi: 10.3390/nano10050979. PubMed DOI PMC

Pandey P., Dahiya M. A Brief Review on Inorganic Nanoparticles. J. Crit. Rev. 2016;3:18–26.

Saxena P., Chandra A. Black carbon. Pollut. Eng. 2011;43:1–11. doi: 10.1002/9783527809080.cataz02167. DOI

Mohapatra S., Mirza M.A., Hilles A.R., Zakir F., Gomes A.C., Ansari M.J., Iqbal Z., Mahmood S. Biomedical application, patent repository, clinical trial and regulatory updates on hydrogel: An extensive review. Gels. 2021;7:207. doi: 10.3390/gels7040207. PubMed DOI PMC

Lee H.S., Byun S.H., Cho S.W., Yang B.E. Past, present, and future of regeneration therapy in oral and periodontal tissue: A review. Appl. Sci. 2019;9:1046. doi: 10.3390/app9061046. DOI

Nguyen T.A., Rajendran S. Current Commercial Nanocosmetic Products. Elsevier; Amsterdam, The Netherlands: 2020.

Alaqad K., Saleh T.A. Gold and Silver Nanoparticles: Synthesis Methods, Characterization Routes and Applications towards Drugs. J. Environ. Anal. Toxicol. 2016;6:4. doi: 10.4172/2161-0525.1000384. DOI

Lamberti M., Zappavigna S., Sannolo N., Porto S., Caraglia M. Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers. Expert Opin. Drug Deliv. 2014;11:1087–1101. doi: 10.1517/17425247.2014.913568. PubMed DOI

Metrics P. Fullerene is effective against wrinkles. J. Am. Acad. Dermatol. 2010;62:AB22. doi: 10.1016/j.jaad.2009.11.127. DOI

Bakry R., Vallant R.M., Najam-ul-Haq M., Rainer M., Szabo Z., Huck C.W., Bonn G.K. Medicinal applications of fullerenes. Int. J. Nanomed. 2007;2:639–649. PubMed PMC

Wong-Ekkabut J., Baoukina S., Triampo W., Tang I.M., Tieleman D.P., Monticelli L. Computer simulation study of fullerene translocation through lipid membranes. Nat. Nanotechnol. 2008;3:363–368. doi: 10.1038/nnano.2008.130. PubMed DOI

Polderman M.C.A. Ph.D. Thesis. Leiden University; Leiden, The Netherlands: 2006. New Applications of UVA-1 Cold Light Therapy.

Norval M., Lucas R.M., Cullen A.P., De Gruijl F.R., Longstreth J., Takizawa Y., Van Der Leun J.C. The human health effects of ozone depletion and interactions with climate change. Photochem. Photobiol. Sci. 2011;10:199–225. doi: 10.1039/c0pp90044c. PubMed DOI

Smijs T.G., Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011;4:95–112. doi: 10.2147/NSA.S19419. PubMed DOI PMC

Banerjee A.N. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: Focus on TiO2-based nanostructures. Nanotechnol. Sci. Appl. 2011;4:35–65. doi: 10.2147/NSA.S9040. PubMed DOI PMC

Meinke M.C., Lademann J., Knorr F., Patzelt A., Lohan S.B. Nanocosmetics—From Ideas to Products. Springer; Cham, Switzerland: 2018. pp. 101–116.

Canadian Centre for Occupational Health & Safety Titanium Dioxide Classified as Possibly Carcinogenic to Humans. [(accessed on 15 January 2022)]. Available online: www.ccohs.ca.

Monsé C. Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part. Fibre Toxicol. 2021;15:8. doi: 10.1186/s12989-018-0246-4. PubMed DOI PMC

Mohammed Y.H., Holmes A., Haridass I.N., Sanchez W.Y., Studier H., Grice J.E., Benson H.A.E., Roberts M.S. Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers. J. Investig. Dermatol. 2019;139:308–315. doi: 10.1016/j.jid.2018.08.024. PubMed DOI

Huang Y., Lenaghan S.C., Xia L., Burris J.N., Stewart C.N., Zhang M. Characterization of physicochemical properties of ivy nanoparticles for cosmetic application. J. Nanobiotechnol. 2013;11:3. doi: 10.1186/1477-3155-11-3. PubMed DOI PMC

Lohani A., Verma A., Joshi H., Yadav N., Karki N. Nanotechnology-Based Cosmeceuticals. Int. Sch. Res. Not. 2014;2014:843687. doi: 10.1155/2014/843687. PubMed DOI PMC

Irshad A., Zahid M., Husnain T., Rao A.Q., Sarwar N., Hussain I. A proactive model on innovative biomedical applications of gold nanoparticles. Appl. Nanosci. 2020;10:2453–2465. doi: 10.1007/s13204-019-01165-4. DOI

Akturk O., Kismet K., Yasti A.C., Kuru S., Duymus M.E., Kaya F., Caydere M., Hucumenoglu S., Keskin D. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J. Biomater. Appl. 2016;31:283–301. doi: 10.1177/0885328216644536. PubMed DOI

Simonetti N., Simonetti G., Bougnol F., Scalzo M. Electrochemical Ag+ for preservative use. Appl. Environ. Microbiol. 1992;58:3834–3836. doi: 10.1128/aem.58.12.3834-3836.1992. PubMed DOI PMC

Scientific Committee on Consumer Safety . Scientific Committee on Consumer Safety Melatonin. Scientific Committee on Consumer Safety; Brussels, Belgium: 2019.

Katz L.M., Dewan K., Bronaugh R.L. Nanotechnology in cosmetics. Food Chem. Toxicol. 2015;85:127–137. doi: 10.1016/j.fct.2015.06.020. PubMed DOI

Kokura S., Handa O., Takagi T., Ishikawa T., Naito Y., Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 2010;6:570–574. doi: 10.1016/j.nano.2009.12.002. PubMed DOI

European Commission . Is it Safe to Use Cosmetics Containing Silica in Nanoform? European Commission; Brussels, Belgium: Luxembourg: 2015.

Ministry of Environment and Food of Denmark . Environmental Protection Agency. Assessment of Nano-Enabled Technologies in Cosmetics. Part of the “Better Control of Nano” Initiative 2012–2015. The Danish Environmental Protection Agency; Copenhagen, Denmark: 2016.

Mebert A.M., Baglole C.J., Desimone M.F., Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food Chem. Toxicol. 2017;109:753–770. doi: 10.1016/j.fct.2017.05.054. PubMed DOI

Park Y.H., Kim J.N., Jeong S.H., Choi J.E., Lee S.H., Choi B.H., Lee J.P., Sohn K.H., Park K.L., Kim M.K., et al. Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology. 2010;267:178–181. doi: 10.1016/j.tox.2009.10.011. PubMed DOI

Sahu D., Kannan G.M., Vijayaraghavan R. Carbon black particle exhibits size dependent toxicity in human monocytes. Int. J. Inflam. 2014;2014:827019. doi: 10.1155/2014/827019. PubMed DOI PMC

Coelho C.C., Grenho L., Gomes P.S., Quadros P.A., Fernandes M.H. Nano-hydroxyapatite in oral care cosmetics: Characterization and cytotoxicity assessment. Sci. Rep. 2019;9:11050. doi: 10.1038/s41598-019-47491-z. PubMed DOI PMC

Bernauer U. Opinion of the Scientific Committee on Consumer Safety (SCCS)—Revision of the Opinion on hydroxyapatite (nano) in cosmetic products. Regul. Toxicol. Pharmacol. 2018;98:274–275. doi: 10.1016/j.yrtph.2018.07.018. PubMed DOI

Couteau C., Paparis E., Chauvet C., Coiffard L. Tris-biphenyl triazine, a new ultraviolet filter studied in terms of photoprotective efficacy. Int. J. Pharm. 2015;487:120–123. doi: 10.1016/j.ijpharm.2015.03.077. PubMed DOI

Lens M. Use of Fullerenes in Cosmetics. Recent Pat. Biotechnol. 2009;3:118–123. doi: 10.2174/187220809788700166. PubMed DOI

Kroto H.W., Heath J.R., Curl R.F., Smalley R.E. C60: Buckminsterfullerene. Nature. 1985;318:162–163. doi: 10.1038/318162a0. DOI

Janot J., Seta P., Larroque C., Tomasini C. A New Multi—Charged C60 Derivative: Synthesis and Biological Properties. Eur. J. Org. Chem. 2002;2002:2928–2934.

Singh T.G., Sharma N. Nanobiomaterials in Galenic Formulations and Cosmetics. William Andrew; Norwich, NY, USA: 2016. Nanobiomaterials in cosmetics: Current status and future prospects; pp. 149–174. DOI

Aranaz I., Acosta N., Civera C., Elorza B., Mingo J., Castro C., Gandía M., Gandía M.D.l.L., Heras Caballero A. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers. 2018;10:213. doi: 10.3390/polym10020213. PubMed DOI PMC

Morganti P., Morganti G. Chitin nanofibrils for advanced cosmeceuticals. Clin. Dermatol. 2008;26:334–340. doi: 10.1016/j.clindermatol.2008.01.003. PubMed DOI

Fakhravar Z., Ebrahimnejad P., Daraee H., Akbarzadeh A. Nanoliposomes: Synthesis methods and applications in cosmetics. J. Cosmet. Laser. Ther. 2016;18:174–181. doi: 10.3109/14764172.2015.1039040. PubMed DOI

Kusuma Priya M.D., Kumar V., Damini V.K., Eswar K., Reddy K.R., Brito Raj S., Sucharitha P. Somes: A review on composition, formulation methods and evaluations of different types of “somes” drug delivery system. Int. J. Appl. Pharm. 2020;12:7–18. doi: 10.22159/ijap.2020v12i6.38996. DOI

Sudhakar C.K., Upadhyay N., Jain S., Charyulu R.N. Nanomedicine and Drug Delivery. Apple Academic Press; Point Pleasant, NJ, USA: 2012. Ethosomes as non-invasive loom for transdermal drug delivery system.

Verma S., Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J. Pharm. Sci. 2019;14:117–129. doi: 10.1016/j.ajps.2018.05.007. PubMed DOI PMC

Jain S., Jain V., Mahajan S.C. Lipid Based Vesicular Drug Delivery Systems. Adv. Pharm. 2014;2014:574673. doi: 10.1155/2014/574673. DOI

Poonia N., Kharb R., Lather V., Pandita D. Nanostructured lipid carriers: Versatile oral delivery vehicle. Future Sci. 2016;2:FSO135. doi: 10.4155/fsoa-2016-0030. PubMed DOI PMC

Hooda A., Sradhanjali M., Popsy Formulation and Evaluation of Novel Solid Lipid Microparticles for the Sustained Release of Ofloxacin. Pharm. Nanotechnol. 2017;4:329–341. doi: 10.2174/2211738506666171226121720. PubMed DOI

Blanco-Padilla A., Soto K.M., Hernández Iturriaga M., Mendoza S. Food antimicrobials nanocarriers. Sci. World J. 2014;2014:837215. doi: 10.1155/2014/837215. PubMed DOI PMC

Gigliobianco M.R., Casadidio C., Censi R., Di Martino P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics. 2018;10:134. doi: 10.3390/pharmaceutics10030134. PubMed DOI PMC

Ghasemiyeh P., Mohammadi-Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Des. Devel. Ther. 2020;14:3271–3289. doi: 10.2147/DDDT.S264648. PubMed DOI PMC

Kumar N., Kumar R. Nanotechnology and Nanomaterials in the Treatment of Life-Threatening Diseases. William Andrew; Norwich, NY, USA: 2014. Nano-based Drug Delivery and Diagnostic Systems BT; pp. 53–107.

Rigano L., Lionetti N. Nanobiomaterials in Galenic Formulations and Cosmetics. William Andrew; Norwich, NY, USA: 2021. pp. 1–2.

Xu X., Costa A.P., Khan M.A., Burgess D.J. Application of quality by design to formulation and processing of protein liposomes. Int. J. Pharm. 2012;434:349–359. doi: 10.1016/j.ijpharm.2012.06.002. PubMed DOI

Joseph J., Vedha Hari B.N., Ramya Devi D. Experimental optimization of Lornoxicam liposomes for sustained topical delivery. Eur. J. Pharm. Sci. 2018;112:38–51. doi: 10.1016/j.ejps.2017.10.032. PubMed DOI

Han S.B., Won B., Yang S.C., Kim D.H. Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application. J. Ind. Eng. Chem. 2021;98:289–297. doi: 10.1016/j.jiec.2021.03.039. DOI

Kocic H., Stankovic M., Tirant M., Lotti T., Arsic I. Favorable effect of creams with skimmed donkey milk encapsulated in nanoliposomes on skin physiology. Dermatol. Ther. 2020;33:e13511. doi: 10.1111/dth.13511. PubMed DOI

Sankar V., Wilson V., Siram K., Karuppaiah A., Hariharan S., Justin A. Topical delivery of drugs using ethosomes: A review. Indian Drugs. 2019;56:7–20. doi: 10.53879/id.56.08.11504. DOI

Verma P., Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res. 2010;1:274–282. doi: 10.4103/0110-5558.72415. PubMed DOI PMC

Limsuwan T., Boonme P., Khongkow P., Amnuaikit T. Ethosomes of Phenylethyl Resorcinol as Vesicular Delivery System for Skin Lightening Applications. Biomed Res. Int. 2017;2017:8310979. doi: 10.1155/2017/8310979. PubMed DOI PMC

Yang J., Kim B. Synthesis and characterization of ethosomal carriers containing cosmetic ingredients for enhanced transdermal delivery of cosmetic ingredients. Korean J. Chem. Eng. 2018;35:792–797. doi: 10.1007/s11814-017-0344-2. DOI

Shukla R., Tiwari G., Tiwari R., Rai A.K. Formulation and evaluation of the topical ethosomal gel of melatonin to prevent UV radiation. J. Cosmet. Dermatol. 2020;19:2093–2104. doi: 10.1111/jocd.13251. PubMed DOI

Yücel Ç., Şeker Karatoprak G., Değim İ.T. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. J. Microencapsul. 2019;36:180–191. doi: 10.1080/02652048.2019.1617363. PubMed DOI

Pravalika G., Chandhana P., Chiranjitha I., Dhurke R. Minoxidil Ethosomes for Treatment of Alopecia. Int. J. Recent Sci. Res. 2020;11:37112–37117.

Montenegro L., Lai F., Offerta A., Sarpietro M.G., Micicchè L., Maccioni A.M., Valenti D., Fadda A.M. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J. Drug Deliv. Sci. Technol. 2016;32:100–112. doi: 10.1016/j.jddst.2015.10.003. DOI

Pardeike J., Hommoss A., Müller R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009;366:170–184. doi: 10.1016/j.ijpharm.2008.10.003. PubMed DOI

Singh M., Mohapatra S., Sanskriti , Kaur N., Mushtaq A., Zahid S., Pandith A.A., Mansoor S., Iqbal Z. Harnessing the Potential of Phytochemicals for Breast Cancer Treatment. In: Egbuna C., Hassan S., editors. Dietary Phytochemicals. Springer; Cham, Switzerland: 2021. pp. 223–251. DOI

Wissing S.A., Müller R.H. Cosmetic applications for solid lipid nanoparticles (SLN) Int. J. Pharm. 2003;254:65–68. doi: 10.1016/S0378-5173(02)00684-1. PubMed DOI

Lee Y.J., Nam G.W. Sunscreen boosting effect by solid lipid nanoparticles-loaded fucoxanthin formulation. Cosmetics. 2020;7:14. doi: 10.3390/cosmetics7010014. DOI

Wissing S.A., Müller R.H. A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int. J. Cosmet. Sci. 2001;23:233–243. doi: 10.1046/j.1467-2494.2001.00087.x. PubMed DOI

Song C., Liu S. A new healthy sunscreen system for human: Solid lipid nannoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding Vitamin E. Int. J. Biol. Macromol. 2005;36:116–119. doi: 10.1016/j.ijbiomac.2005.05.003. PubMed DOI

Netto M.G., Jose J. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin. J. Cosmet Derm. 2018;17:1073–1083. doi: 10.1111/jocd.12470. PubMed DOI

Durán N., Costa A.F., Stanisic D., Bernardes J.S., Tasic L. Nanotoxicity and Dermal Application of Nanostructured Lipid Carrier Loaded with Hesperidin from Orange Residue. J. Phys. Conf. Ser. 2019;1323:012021. doi: 10.1088/1742-6596/1323/1/012021. DOI

Melorose J., Perroy R., Careas S. Nanocosmetics and Nanomedicines New Approaches for Skin Care. Volume 1. Springer; Berlin/Heidelberg, Germany: 2015.

Hosseinkhani B., Callewaert C., Vanbeveren N., Boon N. Novel biocompatible nanocapsules for slow release of fragrances on the human skin. New Biotechnol. 2015;32:40–46. doi: 10.1016/j.nbt.2014.09.001. PubMed DOI

Horizon. 2020. [(accessed on 15 January 2022)]. Available online: https://ec.europa.eu/programmes/horizon2020/en/home.

Svarc F.E., Ranocchia R.P., Perullini M., Jobbágy M., Aldabe S.A. A New Route to Obtain Perfluorodecalin Nanocapsules as An Oxygen Carrier in Cosmetic Formulations. J. Dermatol. Study Treat. 2018;1:1–10. doi: 10.33513/jdst/1801-01. DOI

Barbosa T.C., Nascimento L.É.D., Bani C., Almeida T., Nery M., Santos R.S., de Oliveira Menezes L.R., Zielinska A., Fernandes A.R., Cardoso J.C., et al. Development, cytotoxicity and eye irritation profile of a new sunscreen formulation based on benzophenone-3-poly(ε-caprolactone) nanocapsules. Toxics. 2019;7:51. doi: 10.3390/toxics7040051. PubMed DOI PMC

Pentek T., Newenhouse E., O’Brien B., Singh Chauhan A. Development of a Topical Resveratrol Formulation for Commercial Applications Using Dendrimer Nanotechnology. Molecules. 2017;22:137. doi: 10.3390/molecules22010137. PubMed DOI PMC

Keck C.M., Müller R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm. 2006;62:3–16. doi: 10.1016/j.ejpb.2005.05.009. PubMed DOI

Sakamoto J., Annapragada A., Decuzzi P., Ferrari M. Antibiological barrier nanovector technology for cancer applications. Expert Opin. Drug Deliv. 2007;4:359–369. doi: 10.1517/17425247.4.4.359. PubMed DOI

Petersen R. Nanocrystals for Use in Topical Cosmetc Formulations and Method of Production Thereof. US9114077B2. U.S. Patent. 2015 August 25;

Köpke D., Pyo S.M. Symurban nanocrystals for advanced anti-pollution skincare. Cosmetics. 2020;7:17. doi: 10.3390/cosmetics7010017. DOI

Feltin C., Brun G. Cosmetic Composition Based on Supramolecular Polymer and An Absorbent Filler. US9000051B2. U.S. Patent. 2015 April 7;

Simonnet J.-T., Sonneville O., Legret S. Nanoemulsion Based on Phosphoric Acid Fatty Acid Esters and Its Uses in the Cosmetics, Dermatological, Pharmaceutical, and/or Ophthalmological Fields. US6274150B1. U.S. Patent. 2001 August 14;

Khan S., Jain P., Jain S., Jain R., Bhargava S., Jain A. Topical Delivery of Erythromycin Through Cubosomes For Acne. Pharm. Nanotechnol. 2018;6:38–47. doi: 10.2174/2211738506666180209100222. PubMed DOI

El-Komy M., Shalaby S., Hegazy R., Abdel Hay R., Sherif S., Bendas E. Assessment of cubosomal alpha lipoic acid gel efficacy for the aging face: A single-blinded, placebo-controlled, right-left comparative clinical study. J. Cosmet. Dermatol. 2017;16:358–363. doi: 10.1111/jocd.12298. PubMed DOI

Tadros T., Izquierdo P., Esquena J., Solans C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004;108–109:303–318. doi: 10.1016/j.cis.2003.10.023. PubMed DOI

Sonneville-aubrun O., Yukuyama M.N., Pizzino A. Nanoemulsions. Academic Press; Cambridge, MA, USA: 2021. Chapter 14—Application of Nanoemulsions in Cosmetics; pp. 1–2.

De Azevedo Ribeiro R.C., Barreto S.M.A.G., Ostrosky E.A., Da Rocha-Filho P.A., Veríssimo L.M., Ferrari M. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) Mill extract as moisturizing agent. Molecules. 2015;20:2492–2509. doi: 10.3390/molecules20022492. PubMed DOI PMC

Musazzi U.M., Franzè S., Minghetti P., Casiraghi A. Emulsion versus nanoemulsion: How much is the formulative shift critical for a cosmetic product? Drug Deliv. Transl. Res. 2018;8:414–421. doi: 10.1007/s13346-017-0390-7. PubMed DOI

Van Tran V., Loi Nguyen T., Moon J.Y., Lee Y.C. Core-shell materials, lipid particles and nanoemulsions, for delivery of active anti-oxidants in cosmetics applications: Challenges and development strategies. Chem. Eng. J. 2019;368:88–114. doi: 10.1016/j.cej.2019.02.168. DOI

Zhang H., Zhao Y., Ying X., Peng Z., Guo Y.K., Yao X., Chen W. Ellagic Acid Nanoemulsion in Cosmetics. IEEE Nanotechnol. Mag. 2018;12:14–20. doi: 10.1109/MNANO.2017.2780859. DOI

Sonneville-Aubrun O., Simonnet J.T., L’Alloret F. Nanoemulsions: A new vehicle for skincare products. Adv. Colloid Interface Sci. 2004;108-109:145–149. doi: 10.1016/j.cis.2003.10.026. PubMed DOI

Lee R., Shenoy D., Sheel R. Handbook of Non-Invasive Drug Delivery Systems. William Andrew; Norwich, NY, USA: 2010. Micellar Nanoparticles: Applications for Topical and Passive Transdermal Drug Delivery.

Dhapte-Pawar V., Kadam S., Saptarsi S., Kenjale P.P. Nanocosmeceuticals: Facets and aspects. Futur. Sci. OA. 2020;6:FSO613. doi: 10.2144/fsoa-2019-0109. PubMed DOI PMC

Holsapple M.P., Farland W.H., Landry T.D., Monteiro-Riviere N.A., Carter J.M., Walker N.J., Thomas K.V. Research strategies for safety evaluation of nanomaterials, part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol. Sci. 2005;88:12–17. doi: 10.1093/toxsci/kfi293. PubMed DOI

Li N., Sioutas C., Cho A., Schmitz D., Misra C., Sempf J., Wang M., Oberley T., Froines J., Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 2003;111:455–460. doi: 10.1289/ehp.6000. PubMed DOI PMC

Malik M.A., Wani M.Y., Hashim M.A., Nabi F. Nanotoxicity: Dimensional and morphological concerns. Adv. Phys. Chem. 2011;2011:450912. doi: 10.1155/2011/450912. DOI

Brown J.S., Zeman K.L., Bennett W.D. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am. J. Respir. Crit. Care Med. 2002;166:1240–1247. doi: 10.1164/rccm.200205-399OC. PubMed DOI

Schulte P., Geraci C., Zumwalde R., Hoover M., Kuempe E. Occupational risk management of engineered nanoparticles. J. Occup. Environ. Hyg. 2008;5:239–249. doi: 10.1080/15459620801907840. PubMed DOI

Ostiguy C., Roberge B., Woods C., Soucy B. Engineered Nanoparticles: Current Knowledge about OHS Risks and Prevention Measures. 2nd ed. Robert-Sauvé Research Institute for Occupational Health and Safety (IRSST); Montréal, QC, Canada: 2010. Studies and Research Projects.

Ryman-Rasmussen J.P., Riviere J.E., Monteiro-Riviere N.A. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci. 2006;91:159–165. doi: 10.1093/toxsci/kfj122. PubMed DOI

Ahamed M.I.N. Innovare Academic Sciences ecotoxicity concert of nano zero-valent iron particles—A review. J. Crit. Rev. 2014;1:36–39.

Meeting A., Pacheco S. Nanoparticles Can Damage DNA, Increase Cancer Risk. 2007. [(accessed on 15 January 2022)]. pp. 1–2. Available online: sciencedaily.com/releases/2007/04/070417154357.htm.

Li Y., Zhang Y., Yan B. Nanotoxicity overview: Nano-threat to susceptible populations. Int. J. Mol. Sci. 2014;15:3671–3697. doi: 10.3390/ijms15033671. PubMed DOI PMC

Taghavi S.M., Momenpour M., Azarian M., Ahmadian M., Souri F., Taghavi S.A., Sadeghain M., Karchani M. Effects of Nanoparticles on the Environment and Outdoor Workplaces. Electron. Physician. 2013;5:706–712. doi: 10.14661/2013.706-712. PubMed DOI PMC

Joseph T.M. Toxic Effects of Nanoparticles from Environment and Indoor/Outdoor Workplaces. Int. J. Cur. Res. Rev. 2021;13:1–2. doi: 10.31782/IJCRR.2021.131633. DOI

Stern S.T., Adiseshaiah P.P., Crist R.M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol. 2012;9:20. doi: 10.1186/1743-8977-9-20. PubMed DOI PMC

Hund-Rinke K., Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ. Sci. Pollut. Res. 2006;13:225–232. doi: 10.1065/espr2006.06.311. PubMed DOI

Scientists find titanium dioxide from sunscreen is polluting beaches; Proceedings of the Goldschmidt Conference; Boston, MA, USA,. 12–17 August 2018.

Wang K., Ruan J., Song H., Zhang J., Wo Y., Guo S., Cui D. Biocompatibility of Graphene Oxide. Nanoscale Res. Lett. 2011;6:8. doi: 10.1007/s11671-010-9751-6. PubMed DOI PMC

Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2017;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI

Xia T., Kovochich M., Brant J., Hotze M., Sempf J., Oberley T., Sioutas C., Yeh J.I., Wiesner M.R., Nel A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–1807. doi: 10.1021/nl061025k. PubMed DOI

Hood E. Fullerenes and fish brains. Nanomaterials cause oxidative stress. Environ. Health Perspect. 2004;112:A568. doi: 10.1289/ehp.112-a568a. DOI

Brunet L., Lyon D.Y., Hotze E.M., Alvarez P.J.J., Wiesner M.R. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol. 2009;43:4355–4360. doi: 10.1021/es803093t. PubMed DOI

Rice University. ‘Nanorust’ Cleans Arsenic From Drinking Water. [(accessed on 15 January 2022)]. Available online: https://www.photonics.com/Articles/Nanorust_Cleans_Arsenic_From_Drinking_Water/p6/vo27/i198/a27388.

Smith J.L., Ahluwalia V., Hurtado J., Gore R.K. Abstract Connect with Wiley. [(accessed on 15 January 2022)];2021 Volume 84:1–3. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.2002. DOI

Guzmán K.A.D., Taylor M.R., Banfield J.F. Environmental risks of nanotechnology: National nanotechnology initiative funding, 2000–2004. Environ. Sci. Technol. 2006;40:1401–1407. doi: 10.1021/es0515708. PubMed DOI

Verma A., Gautam S., Bansal K., Prabhakar N., Rosenholm J. Green Nanotechnology: Advancement in Phytoformulation Research. Medicines. 2019;6:39. doi: 10.3390/medicines6010039. PubMed DOI PMC

Aithal S., Aithal P.S. Green and Eco-friendly Nanotechnology—Concepts and Industrial Prospects. Int. J. Manag. Technol. Soc. Sci. 2021;6:1–31. doi: 10.47992/IJMTS.2581.6012.0127. DOI

Bystrzejewska-Piotrowska G., Golimowski J., Urban P.L. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manag. 2009;29:2587–2595. doi: 10.1016/j.wasman.2009.04.001. PubMed DOI

Mishra P.K., Pavelek O., Rasticova M., Mishra H., Ekielski A. Nanocellulose-Based Biomedical Scaffolds in Future Bioeconomy: A Techno-Legal Assessment of the State-of-the-Art. Front. Bioeng. Biotechnol. 2022;9:789603. doi: 10.3389/fbioe.2021.789603. PubMed DOI PMC

Włodarczyk R., Kwarciak-Kozłowska A. Nanoparticles from the cosmetics and medical industries in legal and environmental aspects. Sustainability. 2021;13:5805. doi: 10.3390/su13115805. DOI

Food and Drug Administration . Guidance for Industry: Safety of Nanomaterials in Cosmetic Products. Food and Drug Administration; Silver Spring, MD, USA: 2014. [(accessed on 15 January 2022)]. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-safety-nanomaterials-cosmetic-products.

International Cooperation on Cosmetics Regulation ICCR Safety Approaches to Nanomaterials in Cosmetics. [(accessed on 15 January 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021DC0403&from=EN.

Opinion of the Scientific Committee on Consumer Safety on Basic Blue 99 (C59) Scientific Committee on Consumer Safety. [(accessed on 15 January 2022)]. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_161.pdf.

Zhang D., Arevalo-Gardini E., Mischke S., Zúñiga-Cernades L., Barreto-Chavez A., Aguila J.A. Del Try out PMC Labs and tell us what you think. Learn More. Ann. Bot. 2006;98:647–655. doi: 10.1093/aob/mcl146. PubMed DOI PMC

Kumud M., Sanju N. Nanotechnology Driven Cosmetic Products: Commercial and Regulatory Milestones. Appl. Clin. Res. Clin. Trials Regul. Aff. 2018;5:112–121. doi: 10.2174/2213476X05666180530093111. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...