Polyacrylic acid-based nanoplastics used in cosmetics: a study of biodegradability and effects on heterotrophic and nitrifying microorganisms in the activated sludge

. 2025 Mar ; 91 (5) : 626-638. [epub] 20250301

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40087970

Grantová podpora
P2-0191 Javna Agencija za Raziskovalno Dejavnost RS
N2-0298 Javna Agencija za Raziskovalno Dejavnost RS

Nanoplastics, commonly used in cosmetics, enter wastewater systems and interact with activated sludge, yet their effects on microorganisms, essential for wastewater treatment, remain poorly understood. The aim of this study was to investigate the effects of polyacrylic acid-based nanoplastics (PANPs) on microorganisms in activated sludge. The PANPs were characterized in terms of their material composition, size, zeta potential, and additive content. Acute (30 min) and prolonged (up to 6 h) toxicity tests were performed to evaluate negative effects on heterotrophic and nitrifying microorganisms in activated sludge. In addition, ready and inherent biodegradability tests were performed to assess their degradation in the environment and within wastewater treatment plants, respectively. The results showed a significant acute inhibition of heterotrophic and nitrifying activity (up to 55 and 72%, respectively) at the highest concentration tested (100 mg/L, 30 min), primarily attributed to the presence of 1-dodecanol detected in the PANPs. This effect decreased with prolonged exposure, likely due to the volatilization of 1-dodecanol. Nevertheless, the PANPs were found to be non-biodegradable in both the ready and inherent biodegradability tests. Although PANPs do not appear to pose a long-term threat to the activated sludge, their persistence in the environment raises concerns about possible accumulation.

Zobrazit více v PubMed

Al-Awady M. J., Fauchet A., Greenway G. M. & Paunov V. N. (2017) Enhanced antimicrobial effect of berberine in nanogel carriers with cationic surface functionality, Journal of Materials Chemistry B, 5, 7885–7897. https://doi.org/10.1039/C7TB02262J. PubMed

Ali I., Ding T., Peng C., Naz I., Sun H., Li J. & Liu J. (2021) Micro- and nanoplastics in wastewater treatment plants: occurrence, removal, fate, impacts and remediation technologies – a critical review, Chemical Engineering Journal, 423, 130205. https://doi.org/10.1016/j.cej.2021.130205.

Alvim C. B., Ferrer-Polonio E., Bes-Piá M. A., Mendoza-Roca J. A., Fernández-Navarro J., Alonso-Molina J. L. & Amorós-Muñoz I. (2023) Effect of polystyrene nanoplastics on the activated sludge process performance and biomass characteristics. A laboratory study with a sequencing batch reactor, Journal of Environmental Management, 329, 117131. https://doi.org/10.1016/j.jenvman.2022.117131. PubMed

Anagnosti L., Varvaresou A., Pavlou P., Protopapa E. & Carayanni V. (2021) Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Marine Pollution Bulletin, 162, 111883. https://doi.org/10.1016/j.marpolbul.2020.111883. PubMed

Arundel J. (2000) Sewage and Industrial Effluent Treatment, Vol. 2. Oxford, UK: Wiley-Blackwell.

Baird R., Rice E. & Eaton A. (2017) Standard Methods for the Examination of Water and Wastewaters. Washington, DC, USA: Water Environment Federation.

Cavazzoli S., Ferrentino R., Scopetani C., Monperrus M. & Andreottola G. (2023) Analysis of micro-and nanoplastics in wastewater treatment plants: key steps and environmental risk considerations, Environmental Monitoring and Assessment, 195, 1483. https://doi.org/10.1007/s10661-023-12030-x. PubMed PMC

Chakraborty S. S., Panja A., Dutta S. & Patra P. (2024) Advancements in nanoparticles for skin care: a comprehensive review of properties, applications, and future perspectives, Discover Materials, 4, 17. https://doi.org/10.1007/s43939-024-00088-4.

Chiari-Andréo B. G., de Almeida-Cincotto M. G. J., Oshiro J. A.Jr., Taniguchi C. Y. Y., Chiavacci L. A. & Isaac V. L. B. (2019) Nanoparticles for cosmetic use and its application, Nanoparticles in Pharmacotherapy, 113–146.

Dai S., Ye R., Huang J., Wang B., Xie Z., Ou X., Yu N., Huang C., Hua Y. & Zhou R. (2022) Distinct lipid membrane interaction and uptake of differentially charged nanoplastics in bacteria, Journal of Nanobiotechnology, 20, 191. https://doi.org/10.1186/s12951-022-01321-z. PubMed PMC

European Commission (2023) Amending Annex XVII to Regulation (EC).

Freeman M. B. & Bender T. M. (1993) An environmental fate and safety assessment for a low molecular weight polyacrylate detergent additive, Environmental Technology, 14, 101–112. https://doi.org/10.1080/09593339309385269.

Gaytán I., Burelo M. & Loza-Tavera H. (2021) Current status on the biodegradability of acrylic polymers: microorganisms, enzymes and metabolic pathways involved, Applied Microbiology and Biotechnology, 105, 991–1006. https://doi.org/10.1007/s00253-020-11073-1. PMC

Gupta V., Mohapatra S., Mishra H., Farooq U., Kumar K., Ansari M. J., Aldawsari M. F., Alalaiwe A. S., Mirza M. A. & Iqbal Z. (2022) Nanotechnology in cosmetics and cosmeceuticals – a review of latest advancements, Gels, 8, 173. https://doi.org/10.3390/gels8030173. PubMed PMC

Guterres S. S., Alves M. P. & Pohlmann A. R. (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications, Drug Target Insights, 2, 147–157. https://doi.org/10.1177/117739280700200002. PubMed

Haselbach J., Hey S. & Berner T. (2000) Short-term oral toxicity study of FAVOR PAC in rats, Regulatory Toxicology and Pharmacology, 32, 310–316. https://doi.org/10.1006/rtph.2000.1449. PubMed

HERA (2014) Polycarboxylates Used in Detergents (Part I). Polyacrylic Acid Homopolymers and Their Sodium Salts (CAS 9003-04-7), Version 3.0. Brussels, Belgium: Human and Environmental Risk Assessment on Ingredients of European Household Cleaning Products, Secretariat.

Hidayaturrahman H. & Lee T.-G. (2019) A study on characteristics of microplastic in wastewater of South Korea: identification, quantification, and fate of microplastics during treatment process, Marine Pollution Bulletin, 146, 696–702. https://doi.org/10.1016/j.marpolbul.2019.06.071. PubMed

ISO 6060 (1989) Water Quality – Determination of the Chemical Oxygen Demand. Geneva, Switzerland: International Organization for Standardization.

ISO 9408 (1999) Water Quality – Evaluation of Ultimate Aerobic Biodegradability of Organic Compounds in Aqueous Medium by Determination of Oxygen Demand in a Closed Respirometer. Geneva, Switzerland: International Organization for Standardization.

ISO 9888 (1999) Water Quality – Evaluation of the Aerobic Biodegradability of Organic Compounds in Aqueous Medium – Static Test (Zahn-Wellens Method). Geneva, Switzerland: International Organization for Standardization.

ISO 8192 (2007) Water Quality – Test for Inhibition of Oxygen Consumption by Activated Sludge for Carbonaceous and Ammonium Oxidation. Geneva, Switzerland: International Organization for Standardization.

ISO 20236 (2018) Water Quality – Determination of Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), Total Bound Nitrogen (TNb) and Dissolved Bound Nitrogen (DNb) After High Temperature Catalytic Oxidative Combustion. Geneva, Switzerland: International Organization for Standardization.

Iyare P. U., Ouki S. K. & Bond T. (2020) Microplastics removal in wastewater treatment plants: a critical review, Environmental Science: Water Research & Technology, 6, 2664–2675. https://doi.org/10.1039/D0EW00397B.

Jakobi G. (1984) Wasserlösliche polymere als waschmittelinhaltsstoffe, Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 123, 119–145. https://doi.org/10.1002/apmc.1984.051230105.

Jose J., Shenoy S., Shetty S., Zulfa S., Haseena T., (2024) Chapter 18 – Nanomaterials in cosmetics. In: Malik M. I., Hussain D., Shah M. R. & Guo D.-S. (eds.) Handbook of Nanomaterials, Vol. 2. Amsterdam, The Netherlands: Elsevier, Micro and Nano Technologies, pp. 497–522.

Koltzenburg S., Maskos M., Nuyken O., Koltzenburg S., Maskos M. & Nuyken O. (2014) Funktionale polymere, Polymere: Synthese, Eigenschaften und Anwendungen, 2, 511–532.

Kubo I., Muroi H. & Kubo A. (1995) Structural functions of antimicrobial long-chain alcohols and phenols, Bioorganic & Medicinal Chemistry, 3, 873–880. https://doi.org/10.1016/0968-0896(95)00081-Q.

Kumar A. & Dixit C. K. (2017) Methods for characterization of nanoparticles. In: Nimesh, S., Chandra, R. & Gupta, N. (eds) Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Cambridge, UK: Elsevier, pp. 43–58.

Larson R. J., Bookland E. A., Williams R. T., Yocom K. M., Saucy D. A., Freeman M. B. & Swift G. (1997) Biodegradation of acrylic acid polymers and oligomers by mixed microbial communities in activated sludge, Journal of Environmental Polymer Degradation, 5, 41–48. https://doi.org/10.1007/BF02763567.

Lindenschmidt R. C., Stone L. C., Seymour J. L., Anderson R. L., Forshey P. A. & Winrow M. J. (1991) Effects of oral administration of a high-molecular-weight crosslinked polyacrylate in rats, Fundamental and Applied Toxicology, 17, 128–135. https://doi.org/10.1016/0272-0590(91)90245-Y. PubMed

Liu Q., Li L., Zhao X. & Song K. (2021) An evaluation of the effects of nanoplastics on the removal of activated-sludge nutrients and production of short chain fatty acid, Process Safety and Environmental Protection, 148, 1070–1076. https://doi.org/10.1016/j.psep.2021.02.029.

Organization for Economic Cooperation and Development (OECD) SIDS (Screening Information Data Set) (2002) 1-Dodecanol.

Qian J., He X., Wang P., Xu B., Li K., Lu B., Jin W. & Tang S. (2021) Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: the role of surface functional groups, Environmental Pollution, 279, 116904. https://doi.org/10.1016/j.envpol.2021.116904. PubMed

Qu J., Li H., Xu S., Huang J., Liu Z., Long M., Guo J. & Fang F. (2023) Acute exposure to polystyrene nanoplastics inhibits the flocculation of activated sludge, Journal of Environmental Chemical Engineering, 11, 109794. https://doi.org/10.1016/j.jece.2023.109794.

Raj S., Jose S., Sumod U. S. & Sabitha M. (2012) Nanotechnology in cosmetics: opportunities and challenges, Journal of Pharmacy & Bioallied Sciences, 4, 186. https://doi.org/10.4103/0975-7406.99016. PMC

R Core Team (2022) R: A Language and Environment for Statistical Computing. Available at: https://www.R-project.org/ [Accessed 6 January 2024].

Ren P., Dou M., Wang C., Li G. & Jia R. (2020) Abundance and removal characteristics of microplastics at a wastewater treatment plant in Zhengzhou, Environmental Science and Pollution Research, 27, 36295–36305. https://doi.org/10.1007/s11356-020-09611-5. PubMed

Riffat R. & Husnain T. (2022) Fundamentals of Wastewater Treatment and Engineering, 2nd edn. London, UK: CRC Press.

Roex E., Vethaak D., Leslie H. & Kreuk M. D. (2013) Potential Risk of Microplastics in the Fresh Water Environment. Amersfoort, The Netherlands: STOWA.

Rout P. R., Mohanty A., Sharma A., Miglani M., Liu D. & Varjani S. (2022) Micro- and nanoplastics removal mechanisms in wastewater treatment plants: a review, Journal of Hazardous Materials Advances, 6, 100070. https://doi.org/10.1016/j.hazadv.2022.100070.

Rozman U. & Kalčíková G. (2021) The first comprehensive study evaluating the ecotoxicity and biodegradability of water-soluble polymers used in personal care products and cosmetics, Ecotoxicology and Environmental Safety, 228, 113016. https://doi.org/10.1016/j.ecoenv.2021.113016. PubMed

Sahoo S., Chakraborti C. K., Mishra S. C., Naik S. & Nanda U. N. (2011) FTIR and Raman spectroscopy as a tool for analyzing sustained release hydrogel of ciprofloxacin/carbopol polymer, International Journal of Pharmaceutical Sciences and Research, 2, 268–277.

Sheriff I., Awang N. A., Halim H. B., Ikechukwu O. S. & Jusoh A. F. (2024) Extraction and analytical methods of microplastics in wastewater treatment plants: isolation patterns, quantification, and size characterization techniques, Desalination and Water Treatment, 318, 100399. https://doi.org/10.1016/j.dwt.2024.100399.

Somasundaran P., Chakraborty S., Deo P., Deo N., Somasundaran T., (2006) Chapter 6 – Contribution of surfactants to personal care products. In: Rhein L. D., Schlossman M., O'Lenick A. & Somasundaran P. (eds.) Surfactants in Personal Care Products and Decorative Cosmetics. Boca Raton, FL, USA: CRC Press, pp. 121–136.

Song K., Xue Y., Li L., Deng M. & Zhao X. (2022) Impact and microbial mechanism of continuous nanoplastics exposure on the urban wastewater treatment process, Water Research, 223, 119017. https://doi.org/10.1016/j.watres.2022.119017. PubMed

Stivala S. S. & Reich L. (1980) Structure vs stability in polymer degradation, Polymer Engineering & Science, 20, 654–661. https://doi.org/10.1002/pen.760201003.

Sverdrup L. E., Källqvist T., Kelley A. E., Fürst C. S. & Hagen S. B. (2001) Comparative toxicity of acrylic acid to marine and freshwater microalgae and the significance for environmental effects assessments, Chemosphere, 45, 653–658. https://doi.org/10.1016/S0045-6535(01)00044-3. PubMed

Tang S., Qian J., Wang P., Lu B., He Y., Yi Z. & Zhang Y. (2022) Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: evidence from bacterial individuals and groups, Environmental Pollution, 306, 119471. https://doi.org/10.1016/j.envpol.2022.119471. PubMed

Thermo Fisher Scientific (2021a) Safety Data Sheet for 1-Tetradecanol. CAS RN 112-72-1. Waltham, MA, USA: Thermo Fisher Scientific.

Thermo Fisher Scientific (2021b) Safety Data Sheet for 1-Dodecanol. CAS RN 112-53-8. Waltham, MA, USA: Thermo Fisher Scientific.

UNEP (2015) Plastic in Cosmetics – Are We Polluting the Environment Through Personal Care? Plastic Ingredients That Contribute to Marine Microplastic Litter. Nairobi, Kenya: UNEP.

UNEP (United Nations Environmental Programme) (2018) Legal Limits on Single-Use Plastics and Microplastics. Nairobi, Kenya: UNEP. Available at: https://www.unep.org/resources/report/legal-limits-single-use-plastics-and-microplastics [Accessed 28 January 2025].

USEPA (1998) How Wastewater Treatment Works. The Basics. Washington, DC, USA: USEPA. Available at: https://www3.epa.gov/npdes/pubs/bastre.pdf [Accessed 6 January 2024].

Yang H., Liu Y., Niu C., Wang Y., Wang B., Liu Y., Guo L. & Wang Z. (2023) Long-term exposure of polytetrafluoroethylene-nanoplastics on the nitrogen removal and extracellular polymeric substances in sequencing batch reactor, Enzyme and Microbial Technology, 166, 110229. https://doi.org/10.1016/j.enzmictec.2023.110229. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...