Methylene Blue Dye Adsorption from Wastewater Using Hydroxyapatite/Gold Nanocomposite: Kinetic and Thermodynamics Studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
F.15-1/2017/PDFWM-2017-18-HIM-51703(SA-II)
University Grants Commission
PubMed
34073274
PubMed Central
PMC8227305
DOI
10.3390/nano11061403
PII: nano11061403
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial, dye adsorbed waste, dye adsorption, gold nanoparticles, hydroxyapatite, nanocomposites,
- Publikační typ
- časopisecké články MeSH
The present work demonstrates the development of hydroxyapatite (HA)/gold (Au) nanocomposites to increase the adsorption of methylene blue (MB) dye from the wastewater. HA nanopowder was prepared via a wet chemical precipitation method by means of Ca(OH)2 and H3PO4 as starting materials. The biosynthesis of gold nanoparticles (AuNPs) has been reported for the first time by using the plant extract of Acrocarpus fraxinifolius. Finally, the as-prepared HA nanopowder was mixed with an optimized AuNPs solution to produce HA/Au nanocomposite. The prepared HA/Au nanocomposite was studied by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) analysis. Adsorption studies were executed by batch experiments on the synthesized composite. The effect of the amount of adsorbent, pH, dye concentration and temperature was studied. Pseudo-first-order and pseudo-second-order models were used to fit the kinetic data and the kinetic modeling results reflected that the experimental data is perfectly matched with the pseudo-first-order kinetic model. The dye adsorbed waste materials have also been investigated against Pseudomonas aeruginosa, Micrococcus luteus, and Staphylococcus aureus bacteria by the agar well diffusion method. The inhibition zones of dye adsorbed samples are more or less the same as compared to as-prepared samples. The results so obtained indicates the suitability of the synthesized sample to be exploited as an adsorbent for effective treatment of MB dye from wastewater and dye adsorbed waste as an effective antibacterial agent from an economic point of view.
Department of Biotechnology Chandigarh University Gharuan 140413 India
Department of Chemistry DAV College Sector 10 Chandigarh 160011 India
Department of Physics National Institute of Technology Srinagar 190006 India
Department of Production Engineering Warsaw University of Life Sciences 02 776 Warsaw Poland
Faculty of Business and Economics Mendel University in Brno 61300 Brno Czech Republic
Institute of Forensic Science and Criminology Panjab University Chandigarh 160014 India
Zobrazit více v PubMed
Zhang M., Yin Q., Ji X., Wang F., Gao X., Zhao M. High and fast adsorption of Cd(II) and Pb(II) ions from aqueous solutions by a waste biomass based hydrogel. Sci. Rep. 2020;10:3285. doi: 10.1038/s41598-020-60160-w. PubMed DOI PMC
Tang P., Sun Q., Zhao L., Tang Y., Liu Y., Pu H., Gan N., Liu Y., Li H. A simple and green method to construct cyclodextrin polymer for the effective and simultaneous estrogen pollutant and metal removal. Chem. Eng. J. 2019;366:598–607. doi: 10.1016/j.cej.2019.02.117. DOI
Jiao T., Guo H., Zhang Q., Peng Q., Tang Y., Yan X., Li B. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment. Sci. Rep. 2015;511:873. doi: 10.1038/srep11873. PubMed DOI PMC
Ahmed N.D., Naji A.L., Faisal H.A.A., Al-Ansari N., Naushad M. Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution. Sci. Rep. 2020;10:2042. doi: 10.1038/s41598-020-58866-y. PubMed DOI PMC
Singh S., Kumar V., Datta S., Dhanjal D.S., Sharma K., Samuel J., Singh J. Current advancement and future prospect of biosorbents for bioremediation. Sci. Total Environ. 2020;709:135895. doi: 10.1016/j.scitotenv.2019.135895. PubMed DOI
Naushad N., Alqadami A.A., Alothma A.Z., Alsohaimi H.I., Algamdi S.M., Aldawsari M.A. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J. Mol. Liq. 2019;293:111442. doi: 10.1016/j.molliq.2019.111442. DOI
Meng L., Li C., Liu X., Lu J., Cheng Y., Xio L.P., Wang H. Preparation of magnetic hydrogel microspheres of lignin derivate for application in water. Sci. Total Environ. 2019;685:847–855. doi: 10.1016/j.scitotenv.2019.06.278. PubMed DOI
Wong S., Ghafar A.N., Ngadi N., Razmi A.F., Inuwa M.I., Mat R., Amin S.A.N. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep. 2020;10:2928. doi: 10.1038/s41598-020-60021-6. PubMed DOI PMC
Yaseen D.A., Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Tech. 2019;16:1193–1226. doi: 10.1007/s13762-018-2130-z. DOI
Yagub T.M., Sen K.T., Afroze S., Ang M.H. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014;209:172–184. doi: 10.1016/j.cis.2014.04.002. PubMed DOI
Pirkarami A., Olya M.E. Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. J. Saudi Chem. Soc. 2017;21:S179–S186. doi: 10.1016/j.jscs.2013.12.008. DOI
Zamel D., Hassanin H.A., Ellethy R., Singer G., Abdelmoneim A. Novel Bacteria-Immobilized Cellulose Acetate/Poly(ethylene oxide) Nanofibrous Membrane for Wastewater Treatment. Sci. Rep. 2019;9:18994. doi: 10.1038/s41598-019-55265-w. PubMed DOI PMC
Adegoke K.A., Bello O.S. Dye sequestration using agricultural wastes as adsorbents. Water Resour. Ind. 2015;12:8–24. doi: 10.1016/j.wri.2015.09.002. DOI
Ho Y.-S., Chiang C.-C., Hsu Y.-C. Sorption Kinetics for Dye Removal from Aqueous Solution Using Activated Clay. Sep. Sci. Technol. 2001;36:2473–2488. doi: 10.1081/SS-100106104. DOI
Crini G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006;97:1061–1085. doi: 10.1016/j.biortech.2005.05.001. PubMed DOI
Paulino A.T., Guilherme R.M., Reis V.A., Campese M.G., Muniz C.E., Nozaki J. Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J. Colloid Interface Sci. 2006;301:55–62. doi: 10.1016/j.jcis.2006.04.036. PubMed DOI
Zhou L., Huang J., He B., Zhang F., Li H. Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution. Carbohydr. Polym. 2014;101:574–581. doi: 10.1016/j.carbpol.2013.09.093. PubMed DOI
Banat M.I., Nigam P., Singh D., Marchant R. Microbial decolorization of textile-dye containing effluents: A review. Bioresour. Technol. 1996;58:217–227. doi: 10.1016/S0960-8524(96)00113-7. DOI
Sarkar S., Banerjee A., Halder U., Biswas R., Bandopadhyay R. Degradation of Synthetic Azo Dyes of Textile Industry: A Sustainable Approach Using Microbial Enzymes. Water Conserv. Sci. Eng. 2017;2:121–131. doi: 10.1007/s41101-017-0031-5. DOI
Ahmad A., Mohd-Setapar H.S., Chuong S.C., Khatoon A., Wani A.W., Kumar R., Rafatullah M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015;5:30801–30818. doi: 10.1039/C4RA16959J. DOI
Nidheesh P.V., Zhou M., Oturan M.A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere. 2018;197:210–227. doi: 10.1016/j.chemosphere.2017.12.195. PubMed DOI
Banerjee P., Gupta D.S., De S. Removal of dye from aqueous solution using a combination of advanced oxidation process and nanofiltration. J. Hazard. Mater. 2007;140:95–103. doi: 10.1016/j.jhazmat.2006.06.075. PubMed DOI
Lin H.S., Peng F.C. Treatment of textile wastewater by electrochemical method. Water Res. 1994;28:277–282. doi: 10.1016/0043-1354(94)90264-X. DOI
Karcher S., Kornmüller A., Jekel M. Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Res. 2002;36:4717–4724. doi: 10.1016/S0043-1354(02)00195-1. PubMed DOI
Li M., Wang X., Porter J.C., Cheng W., Zhang X., Wang L., Elimelech M. Concentration and Recovery of Dyes from Textile Wastewater Using a Self-Standing, Support-Free Forward Osmosis Membrane. Environ. Sci. Technol. 2019;53:3078–3086. doi: 10.1021/acs.est.9b00446. PubMed DOI
Van Thamaraisel C., Noel M. Membrane Processes for Dye Wastewater Treatment: Recent Progress in Fouling Control. Crit. Rev. Environ. Sci. Technol. 2015;45:1007–1040. doi: 10.1080/10643389.2014.900242. DOI
Naushad M., Ahamad T., Alothman Z.A., Al-Muhtaseb H.A. Green and eco-friendly nanocomposite for the removal of toxic Hg(II) metal ion from aqueous environment: Adsorption kinetics & isotherm modelling. J. Mol. Liq. 2019;279:1–8.
Wang H., Ji X., Ahmed M., Huang F., Sessler L.J. Hydrogels for anion removal from water. J. Mater. Chem. A. 2019;7:1394–1403. doi: 10.1039/C8TA10286D. DOI
Varaprasad K., Nunez D., Yallapu M.M., Jayaramudu T., Elgueta E., Oyarzun P. Nano-hydroxyapatite polymeric hydrogels for dye Removal. RSC Adv. 2018;8:18118–18127. doi: 10.1039/C8RA01887A. PubMed DOI PMC
Hu X.-S., Liang R., Sun G. Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J. Mater. Chem A. 2018;6:17612–17624. doi: 10.1039/C8TA04722G. DOI
Gisi D.S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016;9:10–40.
Sobczak-Kupiec A., Pluta A., Drabczyk A., Wlos M., Tyliszczak B. Synthesis and characterization of ceramic—Polymer composites containing bioactive synthetic hydroxyapatite for biomedical applications. Ceram. Int. 2018;44:13630–13638. doi: 10.1016/j.ceramint.2018.04.199. DOI
Bundela H., Bajpai K.A. Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: Correlation with biocompatibility aspects. Express Polym. Lett. 2008;2:201–213. doi: 10.3144/expresspolymlett.2008.25. DOI
Hou H., Zhou R., Wu P., Wu L. Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chem. Eng. J. 2012;211–212:336–342. doi: 10.1016/j.cej.2012.09.100. DOI
Mousa M.S., Ammar S.N., Ibrahim A.H. Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. J. Saudi Chem. Soc. 2016;20:357–365. doi: 10.1016/j.jscs.2014.12.006. DOI
Feng Y., Gong J.-L., Zeng G.-M., Niua Q.-Y., Zhang H.-Y., Niu C.-G., Deng J.-H., Yan M. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem. Eng. J. 2010;162:487–494. doi: 10.1016/j.cej.2010.05.049. DOI
Zhu X.-H., Li J., Luo J.-H., Jin Y., Zheng D. Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites. J. Taiwan Inst. Chem. E. 2017;70:200–208. doi: 10.1016/j.jtice.2016.10.049. DOI
Hassan A.M., Mohammad M.A., Salaheldin A.T., El-Anadouli E.B. A promising hydroxyapatite/graphene hybrid nanocomposite for methylene blue dye’s removal in wastewater treatment. Int. J. Electrochem. Sci. 2018;13:8222–8240. doi: 10.20964/2018.08.77. DOI
Adeogun A.I., Ofudje E.A., Idowu M.A., Kareem S.O., Vahidhabanu S., Babu B.R. Biowaste-Derived Hydroxyapatite for Effective Removal of Reactive Yellow 4 Dye: Equilibrium, Kinetic, and Thermodynamic Studies. ACS Omega. 2018;3:1991–2000. doi: 10.1021/acsomega.7b01768. PubMed DOI PMC
Guan Y., Cao W., Wang X., Marchetti A., Tu Y. Hydroxyapatite nano-rods for the fast removal of congo red dye from aqueous solution. Mater. Res. Exp. 2018;5:065053. doi: 10.1088/2053-1591/aaccb8. DOI
Kumar P.V., Kala S.M.J., Prakash K.S. Green synthesis of gold nanoparticles using Croton Caudatus Geisel Leaf extract and their biological studies. Mater. Lett. 2018;236:19–22. doi: 10.1016/j.matlet.2018.10.025. DOI
Sharma K., Sharma S., Thapa S., Bhagat M., Kumar V., Sharma V. Nanohydroxyapatite-, Gelatin-, and Acrylic Acid-Based Novel Dental Restorative Material. ACS Omega. 2020;5:27886–27895. doi: 10.1021/acsomega.0c03125. PubMed DOI PMC
Yelten-Yilmaz A., Yilmaz S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram. Int. 2018;44:9703–9710. doi: 10.1016/j.ceramint.2018.02.201. DOI
Choudhary S., Sharma K., Kumar V., Bhatia J.K., Sharma S., Sharma V. Microwave-assisted synthesis of gum gellan-cl-poly(acrylic-co- methacrylic acid) hydrogel for cationic dyes removal. Polym. Bull. 2020;77:4917–4935. doi: 10.1007/s00289-019-02998-3. DOI
Sharma S., Virk K., Sharma S., Bose S.K., Kumar V., Sharma V., Focarete M.L., Kalia S. Preparation of gum acacia-poly(acrylamide-IPN-acrylic acid) based nanocomposite hydrogels via polymerization methods for antimicrobial applications. J. Mol. Str. 2020;1215:128298. doi: 10.1016/j.molstruc.2020.128298. DOI
Ahmed S., Ikram A.S., Yudha S.S. Biosynthesis of gold nanoparticles: A green approach. J. Photochem. Photobiol. B. 2016;161:141–153. doi: 10.1016/j.jphotobiol.2016.04.034. PubMed DOI
Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI
Ahmad T., Bustam M.A., Irfan M., Moniruzzaman M., Asghar H.M.A., Bhattacharjee S. Green synthesis of stabilized spherical shaped gold nanoparticles using novel aqueous Elaeis guineensis (oil palm) leaves extract. J. Mol. Struct. 2018;1159:167–173. doi: 10.1016/j.molstruc.2017.11.095. DOI
Smitha S.L., Philip D., Gopchandran K.G. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009;74:735–739. doi: 10.1016/j.saa.2009.08.007. PubMed DOI
Santos dos C.F., Gomes P.S., Almeida M.M., Willinger M.-G., Franke R.-P., Fernandes M.H. Costa ME Gold-dotted hydroxyapatite nanoparticles as multifunctional platforms for medical applications. RSC Adv. 2015;5:69184–69195. doi: 10.1039/C5RA11978B. DOI
Wang J., Wang M., Chen F., Wei Y., Chen X., Zhou Y., Yang X., Zhu X., Tu C., Zhang X. Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway. Int. J. Nanomed. 2019;14:7987–8000. doi: 10.2147/IJN.S216182. PubMed DOI PMC
Singh P., Kim Y.J., Wang C., Mathiyalagan R., Yang D.C. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif. Cells Nanomed. Biotechnol. 2016;44:1150–1157. doi: 10.3109/21691401.2015.1115410. PubMed DOI
Wijesinghe W.P.S.L., Mantilaka M.M.M.G.P.G., Rajapakse R.M.G., Pitawala H.M.T.G.A., Premachandra T.N., Herath H.M.T.U., Rajapakse R.P.V.J., Upul Wijayantha K.G. Urea-assisted synthesis of hydroxyapatite nanorods from naturally occurring impure apatite rocks for biomedical applications. RSC Adv. 2017;7:24806. doi: 10.1039/C7RA02166F. DOI
Yadav S., Singh P., Pyare R. Synthesis, characterization, mechanical and biological properties of biocomposite based on zirconia containing 1393 bioactive glass with hydroxyapatite. Ceram. Int. 2020;46:10442–10451. doi: 10.1016/j.ceramint.2020.01.043. DOI
Gangwar R.K., Dhumale V.A., Gosavi S.W., Sharma R.B., Datar S.S. Catalytic activity of allamanda mediated phytosynthesized anisotropic gold nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4:045005. doi: 10.1088/2043-6262/4/4/045005. DOI
Rodrıguez-Lugo V., Karthik T.V.K., Mendoza-Anaya D., Rubio-Rosas E., Villasenor Ceron L.S., Reyes-Valderrama M.I., Salinas-Rodrıguez E. Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: Effect of pH and sintering temperature on structural and morphological properties. R. Soc. Open Sci. 2018;15:180962. doi: 10.1098/rsos.180962. PubMed DOI PMC
Xu Z., Qian G., Fen M. Using polyacrylamide to control particle size and synthesize porous nano hydroxyapatite. Results Phys. 2020;16:102991. doi: 10.1016/j.rinp.2020.102991. DOI
Reddy B., Madhusudhan G., Ramakrishan A. Catalytic reduction of methylene blue and congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. Int. Nano Lett. 2015;5:215–222.
Indira T.K., Lakshmi P.K. Magnetic Nanoparticles: A review. Int. J. Pharm. Sci. Nanotechnol. 2010;3:1035–1042.
Malik P.K. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: A case study of Acid Yellow 36. Dyes Pigm. 2003;56:239–249. doi: 10.1016/S0143-7208(02)00159-6. DOI
Arshadi M., Salimi Vahid F., Salvacion J.W.L., Soleymanzadeh M. Adsorption studies of methyl orange on an immobilized Mn-nanoparticle: Kinetic and thermodynamic. RSC Adv. 2014;4:16005–16017. doi: 10.1039/C3RA47756H. DOI
Pathania D., Sharma S., Singh P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian J. Chem. 2017;10:S1445–S1451. doi: 10.1016/j.arabjc.2013.04.021. DOI
Misran E., Bani O., Situmeang E.M., Purba A.S. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence. IOP Conf. Ser. Earth Environ. Sci. 2018;122:012085. doi: 10.1088/1755-1315/122/1/012085. DOI
Tharaneedhar V., Kumar P.S., Saravanan A., Ravikumar C., Jaikumar V. Prediction and interpretation of adsorption parameters for the sequestration of methylene blue dye from aqueous solution using microwave assisted corncob activated carbon. Sustain. Mater. Technol. 2017;11:1–11. doi: 10.1016/j.susmat.2016.11.001. DOI
Ragab A., Ahmed I., Bader D. The Removal of Brilliant Green Dye from Aqueous Solution Using Nano Hydroxyapatite/Chitosan Composite as a Sorbent. Molecules. 2019;24:847. doi: 10.3390/molecules24050847. PubMed DOI PMC
M Peydayesh A.R. Kelishami, Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies. J. Ind. Eng. Chem. 2015;21:1014–1019. doi: 10.1016/j.jiec.2014.05.010. DOI
Shu J., Wang Z., Huang Y., Huang N., Ren C., Zhang W. Adsorption removal of Congo red from aqueous solution bypolyhedral Cu2O nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis. J. Alloy. Compd. 2015;633:338–346. doi: 10.1016/j.jallcom.2015.02.048. DOI
Nguyen V.C., Po Q.H. Preparation of chitosan coated magnetic hydroxyapatite nanoparticles and application for adsorption of reactive Blue 19 and Ni2+ ions. Sci. World J. 2014;2014:273082. doi: 10.1155/2014/273082. PubMed DOI PMC
Le D.T., Le T.P.T., Do H.T., Vo H.T., Pham N.T., Nguyen T.T., Cao H.T., Nguyen P.T., Dinh T.M.T., Le H.V., et al. Fabrication of Porous Hydroxyapatite Granules as an Effective Adsorbent for the Removal of Aqueous Pb(II) Ions. J. Chem. 2019;2019 doi: 10.1155/2019/8620181. DOI
Sricharoen P., Kongsri S., Kukusamude C., Areerob Y., Nuengmatcha P., Chanthai S., Limchoowong N. Ultrasound-irradiated synthesis of 3-mercaptopropyl trimethoxysilane-modified hydroxyapatite derived from fish-scale residues followed by ultrasound-assisted organic dyes removal. Sci. Rep. 2018;11:5560. doi: 10.1038/s41598-021-85206-5. PubMed DOI PMC
Joudi M., Nasserlah H., Hafdi H., Mouldar J., Hatimi B., Mhammedi M.E., Bakasse M. Synthesis of an efficient hydroxyapatite–chitosan–montmorillonite thin film for the adsorption of anionic and cationic dyes, adsorption isotherm, kinetic and thermodynamic study. Sn Appl. Sci. 2020;2:1078. doi: 10.1007/s42452-020-2848-3. DOI
Barka N., Qouzal S., Assabbane A., Nounhan A., Ichou Y.A. Removal of reactive yellow 84 from aqueous solutions by adsorption onto hydroxyapatite. J. Saudi Chem. Soc. 2011;15:263–267. doi: 10.1016/j.jscs.2010.10.002. DOI
Badruddoza A.Z.M., Goh S.S.H., Hidajat K., Uddin M.S. Synthesis of Carboxymethyl-β-Cyclodextrin Conjugated Magnetic Nano-Adsorbent for Removal of Methylene Blue. Colloids Surf. Physicochem. Eng. Asp. 2010;367:85–95. doi: 10.1016/j.colsurfa.2010.06.018. DOI
Paska O.M., Pacurariua C., Muntean S.G. Kinetic and thermodynamic studies on methylene blue biosorption using corn-husk. RSC Adv. 2014;4:62621–62630. doi: 10.1039/C4RA10504D. DOI
Wunder S., Lu Y., Albrecht M., Ballauff M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: Evidence for substrate-induced surface restructuring. ACS Catal. 2011;1:908–916. doi: 10.1021/cs200208a. DOI
Carniti P., Gervasini A., Tiozzo C., Guidotti M. Niobium-Containing Hydroxyapatites as Amphoteric Catalysts: Synthesis, Properties, and Activity. ACS Catal. 2014;4:469–479. doi: 10.1021/cs4010453. DOI
Bouyarmane H., El Asri S., Rami A., Roux C., Mahly M.A., Saoiabi A., Coradinc T., Laghzizil A. Pyridine and Phenol Removal Using Natural and Synthetic Apatites as Low Costsorbents: Influence of Porosity and Surface Interactions. J. Hazard Mater. 2010;181:736–741. doi: 10.1016/j.jhazmat.2010.05.074. PubMed DOI
Menichetti F. Current and emerging serious Gram-positive infections. Clin. Microbiol. Infect. 2005;11:22–28. doi: 10.1111/j.1469-0691.2005.01138.x. PubMed DOI
Beveridge T.J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriolog. 1999;181:4725–4733. doi: 10.1128/JB.181.16.4725-4733.1999. PubMed DOI PMC
Chen G., Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000;52:662–668. PubMed
Yan B., Mu Q., Jiang G., Chen L., Zhou H., Fourches D., Tropsha A. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev. 2014;114:7740–7781. PubMed PMC
Tenover F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control. 2006;34:S3–S10. doi: 10.1016/j.ajic.2006.05.219. PubMed DOI
Sharma A.K., Kaith B.S., Shanker U., Gupta B. γ-radiation induced synthesis of antibacterial silver nanocomposite scaffolds derived from natural gum Boswellia serrata. J. Drug Del Sci. Technol. 2020;56:101550. doi: 10.1016/j.jddst.2020.101550. DOI