Methylene Blue Dye Adsorption from Wastewater Using Hydroxyapatite/Gold Nanocomposite: Kinetic and Thermodynamics Studies

. 2021 May 26 ; 11 (6) : . [epub] 20210526

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34073274

Grantová podpora
F.15-1/2017/PDFWM-2017-18-HIM-51703(SA-II) University Grants Commission

The present work demonstrates the development of hydroxyapatite (HA)/gold (Au) nanocomposites to increase the adsorption of methylene blue (MB) dye from the wastewater. HA nanopowder was prepared via a wet chemical precipitation method by means of Ca(OH)2 and H3PO4 as starting materials. The biosynthesis of gold nanoparticles (AuNPs) has been reported for the first time by using the plant extract of Acrocarpus fraxinifolius. Finally, the as-prepared HA nanopowder was mixed with an optimized AuNPs solution to produce HA/Au nanocomposite. The prepared HA/Au nanocomposite was studied by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) analysis. Adsorption studies were executed by batch experiments on the synthesized composite. The effect of the amount of adsorbent, pH, dye concentration and temperature was studied. Pseudo-first-order and pseudo-second-order models were used to fit the kinetic data and the kinetic modeling results reflected that the experimental data is perfectly matched with the pseudo-first-order kinetic model. The dye adsorbed waste materials have also been investigated against Pseudomonas aeruginosa, Micrococcus luteus, and Staphylococcus aureus bacteria by the agar well diffusion method. The inhibition zones of dye adsorbed samples are more or less the same as compared to as-prepared samples. The results so obtained indicates the suitability of the synthesized sample to be exploited as an adsorbent for effective treatment of MB dye from wastewater and dye adsorbed waste as an effective antibacterial agent from an economic point of view.

Zobrazit více v PubMed

Zhang M., Yin Q., Ji X., Wang F., Gao X., Zhao M. High and fast adsorption of Cd(II) and Pb(II) ions from aqueous solutions by a waste biomass based hydrogel. Sci. Rep. 2020;10:3285. doi: 10.1038/s41598-020-60160-w. PubMed DOI PMC

Tang P., Sun Q., Zhao L., Tang Y., Liu Y., Pu H., Gan N., Liu Y., Li H. A simple and green method to construct cyclodextrin polymer for the effective and simultaneous estrogen pollutant and metal removal. Chem. Eng. J. 2019;366:598–607. doi: 10.1016/j.cej.2019.02.117. DOI

Jiao T., Guo H., Zhang Q., Peng Q., Tang Y., Yan X., Li B. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment. Sci. Rep. 2015;511:873. doi: 10.1038/srep11873. PubMed DOI PMC

Ahmed N.D., Naji A.L., Faisal H.A.A., Al-Ansari N., Naushad M. Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution. Sci. Rep. 2020;10:2042. doi: 10.1038/s41598-020-58866-y. PubMed DOI PMC

Singh S., Kumar V., Datta S., Dhanjal D.S., Sharma K., Samuel J., Singh J. Current advancement and future prospect of biosorbents for bioremediation. Sci. Total Environ. 2020;709:135895. doi: 10.1016/j.scitotenv.2019.135895. PubMed DOI

Naushad N., Alqadami A.A., Alothma A.Z., Alsohaimi H.I., Algamdi S.M., Aldawsari M.A. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J. Mol. Liq. 2019;293:111442. doi: 10.1016/j.molliq.2019.111442. DOI

Meng L., Li C., Liu X., Lu J., Cheng Y., Xio L.P., Wang H. Preparation of magnetic hydrogel microspheres of lignin derivate for application in water. Sci. Total Environ. 2019;685:847–855. doi: 10.1016/j.scitotenv.2019.06.278. PubMed DOI

Wong S., Ghafar A.N., Ngadi N., Razmi A.F., Inuwa M.I., Mat R., Amin S.A.N. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep. 2020;10:2928. doi: 10.1038/s41598-020-60021-6. PubMed DOI PMC

Yaseen D.A., Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Tech. 2019;16:1193–1226. doi: 10.1007/s13762-018-2130-z. DOI

Yagub T.M., Sen K.T., Afroze S., Ang M.H. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014;209:172–184. doi: 10.1016/j.cis.2014.04.002. PubMed DOI

Pirkarami A., Olya M.E. Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. J. Saudi Chem. Soc. 2017;21:S179–S186. doi: 10.1016/j.jscs.2013.12.008. DOI

Zamel D., Hassanin H.A., Ellethy R., Singer G., Abdelmoneim A. Novel Bacteria-Immobilized Cellulose Acetate/Poly(ethylene oxide) Nanofibrous Membrane for Wastewater Treatment. Sci. Rep. 2019;9:18994. doi: 10.1038/s41598-019-55265-w. PubMed DOI PMC

Adegoke K.A., Bello O.S. Dye sequestration using agricultural wastes as adsorbents. Water Resour. Ind. 2015;12:8–24. doi: 10.1016/j.wri.2015.09.002. DOI

Ho Y.-S., Chiang C.-C., Hsu Y.-C. Sorption Kinetics for Dye Removal from Aqueous Solution Using Activated Clay. Sep. Sci. Technol. 2001;36:2473–2488. doi: 10.1081/SS-100106104. DOI

Crini G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006;97:1061–1085. doi: 10.1016/j.biortech.2005.05.001. PubMed DOI

Paulino A.T., Guilherme R.M., Reis V.A., Campese M.G., Muniz C.E., Nozaki J. Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J. Colloid Interface Sci. 2006;301:55–62. doi: 10.1016/j.jcis.2006.04.036. PubMed DOI

Zhou L., Huang J., He B., Zhang F., Li H. Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution. Carbohydr. Polym. 2014;101:574–581. doi: 10.1016/j.carbpol.2013.09.093. PubMed DOI

Banat M.I., Nigam P., Singh D., Marchant R. Microbial decolorization of textile-dye containing effluents: A review. Bioresour. Technol. 1996;58:217–227. doi: 10.1016/S0960-8524(96)00113-7. DOI

Sarkar S., Banerjee A., Halder U., Biswas R., Bandopadhyay R. Degradation of Synthetic Azo Dyes of Textile Industry: A Sustainable Approach Using Microbial Enzymes. Water Conserv. Sci. Eng. 2017;2:121–131. doi: 10.1007/s41101-017-0031-5. DOI

Ahmad A., Mohd-Setapar H.S., Chuong S.C., Khatoon A., Wani A.W., Kumar R., Rafatullah M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015;5:30801–30818. doi: 10.1039/C4RA16959J. DOI

Nidheesh P.V., Zhou M., Oturan M.A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere. 2018;197:210–227. doi: 10.1016/j.chemosphere.2017.12.195. PubMed DOI

Banerjee P., Gupta D.S., De S. Removal of dye from aqueous solution using a combination of advanced oxidation process and nanofiltration. J. Hazard. Mater. 2007;140:95–103. doi: 10.1016/j.jhazmat.2006.06.075. PubMed DOI

Lin H.S., Peng F.C. Treatment of textile wastewater by electrochemical method. Water Res. 1994;28:277–282. doi: 10.1016/0043-1354(94)90264-X. DOI

Karcher S., Kornmüller A., Jekel M. Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Res. 2002;36:4717–4724. doi: 10.1016/S0043-1354(02)00195-1. PubMed DOI

Li M., Wang X., Porter J.C., Cheng W., Zhang X., Wang L., Elimelech M. Concentration and Recovery of Dyes from Textile Wastewater Using a Self-Standing, Support-Free Forward Osmosis Membrane. Environ. Sci. Technol. 2019;53:3078–3086. doi: 10.1021/acs.est.9b00446. PubMed DOI

Van Thamaraisel C., Noel M. Membrane Processes for Dye Wastewater Treatment: Recent Progress in Fouling Control. Crit. Rev. Environ. Sci. Technol. 2015;45:1007–1040. doi: 10.1080/10643389.2014.900242. DOI

Naushad M., Ahamad T., Alothman Z.A., Al-Muhtaseb H.A. Green and eco-friendly nanocomposite for the removal of toxic Hg(II) metal ion from aqueous environment: Adsorption kinetics & isotherm modelling. J. Mol. Liq. 2019;279:1–8.

Wang H., Ji X., Ahmed M., Huang F., Sessler L.J. Hydrogels for anion removal from water. J. Mater. Chem. A. 2019;7:1394–1403. doi: 10.1039/C8TA10286D. DOI

Varaprasad K., Nunez D., Yallapu M.M., Jayaramudu T., Elgueta E., Oyarzun P. Nano-hydroxyapatite polymeric hydrogels for dye Removal. RSC Adv. 2018;8:18118–18127. doi: 10.1039/C8RA01887A. PubMed DOI PMC

Hu X.-S., Liang R., Sun G. Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J. Mater. Chem A. 2018;6:17612–17624. doi: 10.1039/C8TA04722G. DOI

Gisi D.S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016;9:10–40.

Sobczak-Kupiec A., Pluta A., Drabczyk A., Wlos M., Tyliszczak B. Synthesis and characterization of ceramic—Polymer composites containing bioactive synthetic hydroxyapatite for biomedical applications. Ceram. Int. 2018;44:13630–13638. doi: 10.1016/j.ceramint.2018.04.199. DOI

Bundela H., Bajpai K.A. Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: Correlation with biocompatibility aspects. Express Polym. Lett. 2008;2:201–213. doi: 10.3144/expresspolymlett.2008.25. DOI

Hou H., Zhou R., Wu P., Wu L. Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chem. Eng. J. 2012;211–212:336–342. doi: 10.1016/j.cej.2012.09.100. DOI

Mousa M.S., Ammar S.N., Ibrahim A.H. Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. J. Saudi Chem. Soc. 2016;20:357–365. doi: 10.1016/j.jscs.2014.12.006. DOI

Feng Y., Gong J.-L., Zeng G.-M., Niua Q.-Y., Zhang H.-Y., Niu C.-G., Deng J.-H., Yan M. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem. Eng. J. 2010;162:487–494. doi: 10.1016/j.cej.2010.05.049. DOI

Zhu X.-H., Li J., Luo J.-H., Jin Y., Zheng D. Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites. J. Taiwan Inst. Chem. E. 2017;70:200–208. doi: 10.1016/j.jtice.2016.10.049. DOI

Hassan A.M., Mohammad M.A., Salaheldin A.T., El-Anadouli E.B. A promising hydroxyapatite/graphene hybrid nanocomposite for methylene blue dye’s removal in wastewater treatment. Int. J. Electrochem. Sci. 2018;13:8222–8240. doi: 10.20964/2018.08.77. DOI

Adeogun A.I., Ofudje E.A., Idowu M.A., Kareem S.O., Vahidhabanu S., Babu B.R. Biowaste-Derived Hydroxyapatite for Effective Removal of Reactive Yellow 4 Dye: Equilibrium, Kinetic, and Thermodynamic Studies. ACS Omega. 2018;3:1991–2000. doi: 10.1021/acsomega.7b01768. PubMed DOI PMC

Guan Y., Cao W., Wang X., Marchetti A., Tu Y. Hydroxyapatite nano-rods for the fast removal of congo red dye from aqueous solution. Mater. Res. Exp. 2018;5:065053. doi: 10.1088/2053-1591/aaccb8. DOI

Kumar P.V., Kala S.M.J., Prakash K.S. Green synthesis of gold nanoparticles using Croton Caudatus Geisel Leaf extract and their biological studies. Mater. Lett. 2018;236:19–22. doi: 10.1016/j.matlet.2018.10.025. DOI

Sharma K., Sharma S., Thapa S., Bhagat M., Kumar V., Sharma V. Nanohydroxyapatite-, Gelatin-, and Acrylic Acid-Based Novel Dental Restorative Material. ACS Omega. 2020;5:27886–27895. doi: 10.1021/acsomega.0c03125. PubMed DOI PMC

Yelten-Yilmaz A., Yilmaz S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram. Int. 2018;44:9703–9710. doi: 10.1016/j.ceramint.2018.02.201. DOI

Choudhary S., Sharma K., Kumar V., Bhatia J.K., Sharma S., Sharma V. Microwave-assisted synthesis of gum gellan-cl-poly(acrylic-co- methacrylic acid) hydrogel for cationic dyes removal. Polym. Bull. 2020;77:4917–4935. doi: 10.1007/s00289-019-02998-3. DOI

Sharma S., Virk K., Sharma S., Bose S.K., Kumar V., Sharma V., Focarete M.L., Kalia S. Preparation of gum acacia-poly(acrylamide-IPN-acrylic acid) based nanocomposite hydrogels via polymerization methods for antimicrobial applications. J. Mol. Str. 2020;1215:128298. doi: 10.1016/j.molstruc.2020.128298. DOI

Ahmed S., Ikram A.S., Yudha S.S. Biosynthesis of gold nanoparticles: A green approach. J. Photochem. Photobiol. B. 2016;161:141–153. doi: 10.1016/j.jphotobiol.2016.04.034. PubMed DOI

Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI

Ahmad T., Bustam M.A., Irfan M., Moniruzzaman M., Asghar H.M.A., Bhattacharjee S. Green synthesis of stabilized spherical shaped gold nanoparticles using novel aqueous Elaeis guineensis (oil palm) leaves extract. J. Mol. Struct. 2018;1159:167–173. doi: 10.1016/j.molstruc.2017.11.095. DOI

Smitha S.L., Philip D., Gopchandran K.G. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009;74:735–739. doi: 10.1016/j.saa.2009.08.007. PubMed DOI

Santos dos C.F., Gomes P.S., Almeida M.M., Willinger M.-G., Franke R.-P., Fernandes M.H. Costa ME Gold-dotted hydroxyapatite nanoparticles as multifunctional platforms for medical applications. RSC Adv. 2015;5:69184–69195. doi: 10.1039/C5RA11978B. DOI

Wang J., Wang M., Chen F., Wei Y., Chen X., Zhou Y., Yang X., Zhu X., Tu C., Zhang X. Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway. Int. J. Nanomed. 2019;14:7987–8000. doi: 10.2147/IJN.S216182. PubMed DOI PMC

Singh P., Kim Y.J., Wang C., Mathiyalagan R., Yang D.C. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif. Cells Nanomed. Biotechnol. 2016;44:1150–1157. doi: 10.3109/21691401.2015.1115410. PubMed DOI

Wijesinghe W.P.S.L., Mantilaka M.M.M.G.P.G., Rajapakse R.M.G., Pitawala H.M.T.G.A., Premachandra T.N., Herath H.M.T.U., Rajapakse R.P.V.J., Upul Wijayantha K.G. Urea-assisted synthesis of hydroxyapatite nanorods from naturally occurring impure apatite rocks for biomedical applications. RSC Adv. 2017;7:24806. doi: 10.1039/C7RA02166F. DOI

Yadav S., Singh P., Pyare R. Synthesis, characterization, mechanical and biological properties of biocomposite based on zirconia containing 1393 bioactive glass with hydroxyapatite. Ceram. Int. 2020;46:10442–10451. doi: 10.1016/j.ceramint.2020.01.043. DOI

Gangwar R.K., Dhumale V.A., Gosavi S.W., Sharma R.B., Datar S.S. Catalytic activity of allamanda mediated phytosynthesized anisotropic gold nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4:045005. doi: 10.1088/2043-6262/4/4/045005. DOI

Rodrıguez-Lugo V., Karthik T.V.K., Mendoza-Anaya D., Rubio-Rosas E., Villasenor Ceron L.S., Reyes-Valderrama M.I., Salinas-Rodrıguez E. Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: Effect of pH and sintering temperature on structural and morphological properties. R. Soc. Open Sci. 2018;15:180962. doi: 10.1098/rsos.180962. PubMed DOI PMC

Xu Z., Qian G., Fen M. Using polyacrylamide to control particle size and synthesize porous nano hydroxyapatite. Results Phys. 2020;16:102991. doi: 10.1016/j.rinp.2020.102991. DOI

Reddy B., Madhusudhan G., Ramakrishan A. Catalytic reduction of methylene blue and congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. Int. Nano Lett. 2015;5:215–222.

Indira T.K., Lakshmi P.K. Magnetic Nanoparticles: A review. Int. J. Pharm. Sci. Nanotechnol. 2010;3:1035–1042.

Malik P.K. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: A case study of Acid Yellow 36. Dyes Pigm. 2003;56:239–249. doi: 10.1016/S0143-7208(02)00159-6. DOI

Arshadi M., Salimi Vahid F., Salvacion J.W.L., Soleymanzadeh M. Adsorption studies of methyl orange on an immobilized Mn-nanoparticle: Kinetic and thermodynamic. RSC Adv. 2014;4:16005–16017. doi: 10.1039/C3RA47756H. DOI

Pathania D., Sharma S., Singh P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian J. Chem. 2017;10:S1445–S1451. doi: 10.1016/j.arabjc.2013.04.021. DOI

Misran E., Bani O., Situmeang E.M., Purba A.S. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence. IOP Conf. Ser. Earth Environ. Sci. 2018;122:012085. doi: 10.1088/1755-1315/122/1/012085. DOI

Tharaneedhar V., Kumar P.S., Saravanan A., Ravikumar C., Jaikumar V. Prediction and interpretation of adsorption parameters for the sequestration of methylene blue dye from aqueous solution using microwave assisted corncob activated carbon. Sustain. Mater. Technol. 2017;11:1–11. doi: 10.1016/j.susmat.2016.11.001. DOI

Ragab A., Ahmed I., Bader D. The Removal of Brilliant Green Dye from Aqueous Solution Using Nano Hydroxyapatite/Chitosan Composite as a Sorbent. Molecules. 2019;24:847. doi: 10.3390/molecules24050847. PubMed DOI PMC

M Peydayesh A.R. Kelishami, Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies. J. Ind. Eng. Chem. 2015;21:1014–1019. doi: 10.1016/j.jiec.2014.05.010. DOI

Shu J., Wang Z., Huang Y., Huang N., Ren C., Zhang W. Adsorption removal of Congo red from aqueous solution bypolyhedral Cu2O nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis. J. Alloy. Compd. 2015;633:338–346. doi: 10.1016/j.jallcom.2015.02.048. DOI

Nguyen V.C., Po Q.H. Preparation of chitosan coated magnetic hydroxyapatite nanoparticles and application for adsorption of reactive Blue 19 and Ni2+ ions. Sci. World J. 2014;2014:273082. doi: 10.1155/2014/273082. PubMed DOI PMC

Le D.T., Le T.P.T., Do H.T., Vo H.T., Pham N.T., Nguyen T.T., Cao H.T., Nguyen P.T., Dinh T.M.T., Le H.V., et al. Fabrication of Porous Hydroxyapatite Granules as an Effective Adsorbent for the Removal of Aqueous Pb(II) Ions. J. Chem. 2019;2019 doi: 10.1155/2019/8620181. DOI

Sricharoen P., Kongsri S., Kukusamude C., Areerob Y., Nuengmatcha P., Chanthai S., Limchoowong N. Ultrasound-irradiated synthesis of 3-mercaptopropyl trimethoxysilane-modified hydroxyapatite derived from fish-scale residues followed by ultrasound-assisted organic dyes removal. Sci. Rep. 2018;11:5560. doi: 10.1038/s41598-021-85206-5. PubMed DOI PMC

Joudi M., Nasserlah H., Hafdi H., Mouldar J., Hatimi B., Mhammedi M.E., Bakasse M. Synthesis of an efficient hydroxyapatite–chitosan–montmorillonite thin film for the adsorption of anionic and cationic dyes, adsorption isotherm, kinetic and thermodynamic study. Sn Appl. Sci. 2020;2:1078. doi: 10.1007/s42452-020-2848-3. DOI

Barka N., Qouzal S., Assabbane A., Nounhan A., Ichou Y.A. Removal of reactive yellow 84 from aqueous solutions by adsorption onto hydroxyapatite. J. Saudi Chem. Soc. 2011;15:263–267. doi: 10.1016/j.jscs.2010.10.002. DOI

Badruddoza A.Z.M., Goh S.S.H., Hidajat K., Uddin M.S. Synthesis of Carboxymethyl-β-Cyclodextrin Conjugated Magnetic Nano-Adsorbent for Removal of Methylene Blue. Colloids Surf. Physicochem. Eng. Asp. 2010;367:85–95. doi: 10.1016/j.colsurfa.2010.06.018. DOI

Paska O.M., Pacurariua C., Muntean S.G. Kinetic and thermodynamic studies on methylene blue biosorption using corn-husk. RSC Adv. 2014;4:62621–62630. doi: 10.1039/C4RA10504D. DOI

Wunder S., Lu Y., Albrecht M., Ballauff M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: Evidence for substrate-induced surface restructuring. ACS Catal. 2011;1:908–916. doi: 10.1021/cs200208a. DOI

Carniti P., Gervasini A., Tiozzo C., Guidotti M. Niobium-Containing Hydroxyapatites as Amphoteric Catalysts: Synthesis, Properties, and Activity. ACS Catal. 2014;4:469–479. doi: 10.1021/cs4010453. DOI

Bouyarmane H., El Asri S., Rami A., Roux C., Mahly M.A., Saoiabi A., Coradinc T., Laghzizil A. Pyridine and Phenol Removal Using Natural and Synthetic Apatites as Low Costsorbents: Influence of Porosity and Surface Interactions. J. Hazard Mater. 2010;181:736–741. doi: 10.1016/j.jhazmat.2010.05.074. PubMed DOI

Menichetti F. Current and emerging serious Gram-positive infections. Clin. Microbiol. Infect. 2005;11:22–28. doi: 10.1111/j.1469-0691.2005.01138.x. PubMed DOI

Beveridge T.J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriolog. 1999;181:4725–4733. doi: 10.1128/JB.181.16.4725-4733.1999. PubMed DOI PMC

Chen G., Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000;52:662–668. PubMed

Yan B., Mu Q., Jiang G., Chen L., Zhou H., Fourches D., Tropsha A. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev. 2014;114:7740–7781. PubMed PMC

Tenover F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control. 2006;34:S3–S10. doi: 10.1016/j.ajic.2006.05.219. PubMed DOI

Sharma A.K., Kaith B.S., Shanker U., Gupta B. γ-radiation induced synthesis of antibacterial silver nanocomposite scaffolds derived from natural gum Boswellia serrata. J. Drug Del Sci. Technol. 2020;56:101550. doi: 10.1016/j.jddst.2020.101550. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enzymatic degradation of cellulose in soil: A review

. 2024 Jan 15 ; 10 (1) : e24022. [epub] 20240103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...