Structural determinants for subnanomolar inhibition of the secreted aspartic protease Sapp1p from Candida parapsilosis

. 2021 Dec ; 36 (1) : 914-921.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33843395

Pathogenic Candida albicans yeasts frequently cause infections in hospitals. Antifungal drugs lose effectiveness due to other Candida species and resistance. New medications are thus required. Secreted aspartic protease of C. parapsilosis (Sapp1p) is a promising target. We have thus solved the crystal structures of Sapp1p complexed to four peptidomimetic inhibitors. Three potent inhibitors (Ki: 0.1, 0.4, 6.6 nM) resembled pepstatin A (Ki: 0.3 nM), a general aspartic protease inhibitor, in terms of their interactions with Sapp1p. However, the weaker inhibitor (Ki: 14.6 nM) formed fewer nonpolar contacts with Sapp1p, similarly to the smaller HIV protease inhibitor ritonavir (Ki: 1.9 µM), which, moreover, formed fewer H-bonds. The analyses have revealed the structural determinants of the subnanomolar inhibition of C. parapsilosis aspartic protease. Because of the high similarity between Saps from different Candida species, these results can further be used for the design of potent and specific Sap inhibitor-based antimycotic drugs.

Zobrazit více v PubMed

Toth R, Nosek J, Mora-Montes HM, et al. . Candida parapsilosis: from genes to the bedside. Clin Microbiol Rev 2019;32:e00111-18. PubMed PMC

Prasad R, Shah AH, Rawal MK.. Antifungals: mechanism of action and drug resistance. Adv Exp Med Biol 2016; 892:327–49. PubMed

Baddley JW, Patel M, Bhavnani SM, et al. . Association of fluconazole pharmacodynamics with mortality in patients with candidemia. Antimicrob Agents Chemother 2008;52:3022–8. PubMed PMC

Lohse MB, Gulati M, Craik CS, et al. . Combination of antifungal drugs and protease inhibitors prevent candida albicans biofilm formation and disrupt mature biofilms. Front Microbiol 2020;11:1027. PubMed PMC

Hruskova-Heidingsfeldova O. Secreted proteins of Candida albicans. Front Biosci 2008;13:7227–42. PubMed

Winter MB, Salcedo EC, Lohse MB, et al. . Global identification of biofilm-specific proteolysis in candida albicans. mBio 2016;7: PubMed PMC

Naglik JR, Rodgers CA, Shirlaw PJ, et al. . Differential expression of candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 2003;188:469–79. PubMed

Cassone A, De Bernardis F, Torosantucci A, et al. . In vitro and in vivo anticandidal activity of human immunodeficiency virus protease inhibitors. J Infect Dis 1999;180:448–53. PubMed

Bektic J, Lell CP, Fuchs A, et al. . Hiv protease inhibitors attenuate adherence of Candida albicans to epithelial cells in vitro. FEMS Immunol Med Microbiol 2001;31:65–71. PubMed

Schaller M, Bein M, Korting HC, et al. . The secreted aspartyl proteinases sap1 and sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 2003;71:3227–34. PubMed PMC

Borg-von Zepelin M, Meyer I, Thomssen R, et al. . Hiv-protease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases. J Invest Dermatol 1999;113:747–51. PubMed

Fallon K, Bausch K, Noonan J, et al. . Role of aspartic proteases in disseminated Candida albicans infection in mice. Infect Immun 1997;65:551–6. PubMed PMC

Korting HC, Schaller M, Eder G, et al. . Effects of the human immunodeficiency virus (hiv) proteinase inhibitors saquinavir and indinavir on in vitro activities of secreted aspartyl proteinases of Candida albicans isolates from hiv-infected patients. Antimicrob Agents Chemother 1999;43:2038–42. PubMed PMC

Cenci E, Francisci D, Belfiori B, et al. . Tipranavir exhibits different effects on opportunistic pathogenic fungi. J Infect 2008;56:58–64. PubMed

Braga-Silva LA, Mogami SS, Valle RS, et al. . Multiple effects of amprenavir against Candida albicans. FEMS Yeast Res 2010;10:221–4. PubMed

Li C, Liu Y, Wu S, et al. . Targeting fungal virulence factor by small molecules: structure-based discovery of novel secreted aspartic protease 2 (sap2) inhibitors. Eur J Med Chem 2020;201:(112515. PubMed

Dong G, Liu Y, Wu Y, et al. . Novel non-peptidic small molecule inhibitors of secreted aspartic protease 2 (sap2) for the treatment of resistant fungal infections. Chem Commun 2018;54:13535–8. PubMed

Horvath P, Nosanchuk JD, Hamari Z, et al. . The identification of gene duplication and the role of secreted aspartyl proteinase 1 in Candida parapsilosis virulence. J Infect Dis 2012;205:923–33. PubMed

Singh DK, Nemeth T, Papp A, et al. . Functional characterization of secreted aspartyl proteases in candida parapsilosis. mSphere 2019;4:e00484-19. PubMed PMC

Wlodawer A, Vondrasek J.. Inhibitors of hiv-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 1998; 27:249–84. PubMed

Dunn BM. Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem Rev 2002;102:4431–58. PubMed

Hruskova-Heidingsfeldova O, Dostal J, Majer F, et al. . Two aspartic proteinases secreted by the pathogenic yeast candida parapsilosis differ in expression pattern and catalytic properties. Biol Chem 2009;390:259–68. PubMed

Dostal J, Brynda J, Hruskova-Heidingsfeldova O, et al. . The crystal structure of the secreted aspartic protease 1 from candida parapsilosis in complex with pepstatin A. J Struct Biol 2009;167:145–52. PubMed

Umezawa H, Aoyagi T, Morishima H, et al. . Pepstatin, a new pepsin inhibitor produced by actinomycetes. J Antibiot 1970;23:259–62. PubMed

Pichova I, Pavlickova L, Dostal J, et al. . Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and candida lusitaniae. Inhibition with peptidomimetic inhibitors. Eur J Biochem 2001;268:2669–77. PubMed

Houstecka R, Hadzima M, Fanfrlik J, et al. . Biomimetic macrocyclic inhibitors of human Cathepsin D: structure-activity relationship and binding mode analysis. J Med Chem 2020;63:1576–96. PubMed

Cadicamo CD, Mortier J, Wolber G, et al. . Design, synthesis, inhibition studies, and molecular modeling of pepstatin analogues addressing different secreted aspartic proteinases of Candida albicans. Biochem Pharmacol 2013;85:881–7. PubMed

Gruber A, Berlit J, Speth C, et al. . Dissimilar attenuation of candida albicans virulence properties by human immunodeficiency virus type 1 protease inhibitors. Immunobiology 1999;201:133–44. PubMed

Gruber A, Speth C, Lukasser-Vogl E, et al. . Human immunodeficiency virus type 1 protease inhibitor attenuates Candida albicans virulence properties in vitro. Immunopharmacology 1999;41:227–34. PubMed

Skrbec D, Romeo D.. Inhibition of candida albicans secreted aspartic protease by a novel series of peptidomimetics, also active on the hiv-1 protease. Biochem Biophys Res Commun 2002;297:1350–3. PubMed

Dostal J, Pecina A, Hruskova-Heidingsfeldova O, et al. . Atomic resolution crystal structure of sapp2p, a secreted aspartic protease from Candida parapsilosis. Acta Crystallogr D Biol Crystallogr 2015;71:2494–504. PubMed

Dostal J, Brynda J, Hruskova-Heidingsfeldova O, et al. . The crystal structure of protease sapp1p from candida parapsilosis in complex with the hiv protease inhibitor ritonavir. J Enzyme Inhib Med Chem 2012;27:160–5. PubMed

Merkerova M, Dostal J, Hradilek M, et al. . Cloning and characterization of sapp2p, the second aspartic proteinase isoenzyme from Candida parapsilosis. FEMS Yeast Res 2006;6:1018–26. PubMed

Mueller U, Förster R, Hellmig M, et al. . The macromolecular crystallography beamlines at bessy ii of the helmholtz-zentrum berlin: current status and perspectives. Euro Phys J Plus 2015;130:141.

Winn MD, Ballard CC, Cowtan KD, et al. . Overview of the ccp4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011;67:235–42. PubMed PMC

Murshudov GN, Skubak P, Lebedev AA, et al. . Refmac5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 2011;67:355–67. PubMed PMC

Salentin S, Schreiber S, Haupt VJ, et al. . Plip: fully automated protein-ligand interaction profiler. Nucleic Acids Res 2015;43:W443–447. PubMed PMC

Pettersen EF, Goddard TD, Huang CC, et al. . Ucsf Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12. PubMed

Kozisek M, Lepsik M, Grantz Saskova K, et al. . Thermodynamic and structural analysis of hiv protease resistance to darunavir – analysis of heavily mutated patient-derived hiv-1 proteases. Febs J 2014;281:1834–47. PubMed

Northrop DB. Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases. Acc Chem Res 2001;34:790–7. PubMed

De Vivo M, Masetti M, Bottegoni G, Cavalli A.. Role of molecular dynamics and related methods in drug discovery. J Med Chem 2016;59:4035–61. PubMed

Spitaleri A, Zia SR, Di Micco P, et al. . Tuning local hydration enables a deeper understanding of protein-ligand binding: the pp1-src kinase case. J Phys Chem Lett 2021; 12:49–58. PubMed PMC

Gemperle J, Hexnerova R, Lepsik M, et al. . Structural characterization of cas sh3 domain selectivity and regulation reveals new cas interaction partners. Sci Rep 2017;7:8057. PubMed PMC

Wang W, Kollman PA.. Computational study of protein specificity: the molecular basis of hiv-1 protease drug resistance. Proc Natl Acad Sci USA 2001;98:14937–42. PubMed PMC

Lepsik M, Kriz Z, Havlas Z.. Efficiency of a second-generation hiv-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Proteins 2004;57:279–93. PubMed

Pecina A, Eyrilmez SM, Köprülüoğlu C, et al. . Sqm/cosmo scoring function: reliable quantum-mechanical tool for sampling and ranking in structure-based drug design. Chempluschem 2020;85:2362–71. PubMed

Cavasotto CN, Adler NS, Aucar MG.. Quantum chemical approaches in structure-based virtual screening and lead optimization. Front Chem 2018;6:188. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...