Functional Characterization of Secreted Aspartyl Proteases in Candida parapsilosis

. 2019 Aug 21 ; 4 (4) : . [epub] 20190821

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31434748

Candida parapsilosis is an emerging non-albicans Candida species that largely affects low-birth-weight infants and immunocompromised patients. Fungal pathogenesis is promoted by the dynamic expression of diverse virulence factors, with secreted proteolytic enzymes being linked to the establishment and progression of disease. Although secreted aspartyl proteases (Sap) are critical for Candida albicans pathogenicity, their role in C. parapsilosis is poorly elucidated. In the present study, we aimed to examine the contribution of C. parapsilosisSAPP genes SAPP1, SAPP2, and SAPP3 to the virulence of the species. Our results indicate that SAPP1 and SAPP2, but not SAPP3, influence adhesion, host cell damage, phagosome-lysosome maturation, phagocytosis, killing capacity, and cytokine secretion by human peripheral blood-derived macrophages. Purified Sapp1p and Sapp2p were also shown to efficiently cleave host complement component 3b (C3b) and C4b proteins and complement regulator factor H. Additionally, Sapp2p was able to cleave factor H-related protein 5 (FHR-5). Altogether, these data demonstrate the diverse, significant contributions that SAPP1 and SAPP2 make to the establishment and progression of disease by C. parapsilosis through enabling the attachment of the yeast cells to mammalian cells and modulating macrophage biology and disruption of the complement cascade.IMPORTANCE Aspartyl proteases are present in various organisms and, among virulent species, are considered major virulence factors. Host tissue and cell damage, hijacking of immune responses, and hiding from innate immune cells are the most common behaviors of fungal secreted proteases enabling pathogen survival and invasion. C. parapsilosis, an opportunistic human-pathogenic fungus mainly threatening low-birth weight neonates and children, possesses three SAPP protein-encoding genes that could contribute to the invasiveness of the species. Our results suggest that SAPP1 and SAPP2, but not SAPP3, influence host evasion by regulating cell damage, phagocytosis, phagosome-lysosome maturation, killing, and cytokine secretion. Furthermore, SAPP1 and SAPP2 also effectively contribute to complement evasion.

Zobrazit více v PubMed

Falagas ME, Roussos N, Vardakas KZ. 2010. Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis 14:e954–e966. doi:10.1016/j.ijid.2010.04.006. PubMed DOI

Lockhart SR. 2014. Current epidemiology of Candida infection. Clin Microbiol Newsl 36:131–136. doi:10.1016/j.clinmicnews.2014.08.001. DOI

Tóth R, Nosek J, Mora-Montes HM, Gabaldon T, Bliss JM, Nosanchuk JD, Turner SA, Butler G, Vágvölgyi C, Gácser A. 2019. Candida parapsilosis: from genes to the bedside. Clin Microbiol Rev 32:1–38. PubMed PMC

van Asbeck EC, Clemons KV, Stevens DA. 2009. Candida parapsilosis: a review of its epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility. Crit Rev Microbiol 35:283–309. doi:10.3109/10408410903213393. PubMed DOI

Gow NAR, van de Veerdonk FL, Brown AJP, Netea MG. 2012. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10:112–122. doi:10.1038/nrmicro2711. PubMed DOI PMC

Naglik JR, Richardson JP, Moyes DL. 2014. Candida albicans pathogenicity and epithelial immunity. PLoS Pathog 10:e1004257. doi:10.1371/journal.ppat.1004257. PubMed DOI PMC

Araújo D, Henriques M, Silva S. 2017. Portrait of Candida species biofilm regulatory network genes. Trends Microbiol 25:62–75. doi:10.1016/j.tim.2016.09.004. PubMed DOI

Jaskolski M, Miller M, Mohana Rao JK, Gustchina A, Wlodawer A. 2015. Elucidation of the structure of retroviral proteases: a reminiscence. FEBS J 282:4059–4066. doi:10.1111/febs.13397. PubMed DOI PMC

Dutton LC, Jenkinson HF, Lamont RJ, Nobbs AH. 2016. Role of Candida albicans secreted aspartyl protease SapIX in interkingdom biofilm formation. Pathog Dis 74:ftw005. doi:10.1093/femspd/ftw005. PubMed DOI PMC

Wu H, Downs D, Ghosh K, Ghosh AK, Staib P, Monod M, Tang J. 2013. Candida albicans secreted aspartic proteases 4–6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J 27:2132–2144. doi:10.1096/fj.12-214353. PubMed DOI PMC

Naglik JR, Challacombe SJ, Hube B. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428. doi:10.1128/mmbr.67.3.400-428.2003. PubMed DOI PMC

Pietrella D, Pandey N, Gabrielli E, Pericolini E, Perito S, Kasper L, Bistoni F, Cassone A, Hube B, Vecchiarelli A. 2013. Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome. Eur J Immunol 43:679–692. doi:10.1002/eji.201242691. PubMed DOI

Rasheed M, Battu A, Kaur R. 2018. Aspartyl proteases in Candida glabrata are required for suppression of the host innate immune response. J Biol Chem 293:6410–6433. doi:10.1074/jbc.M117.813741. PubMed DOI PMC

Rapala-Kozik M, Bochenska O, Zajac D, Karkowska-Kuleta J, Gogol M, Zawrotniak M, Kozik A. 2018. Extracellular proteinases of Candida species pathogenic yeasts. Mol Oral Microbiol 33:113–124. doi:10.1111/omi.12206. PubMed DOI

Horváth P, Nosanchuk JD, Hamari Z, Vágvölgyi C, Gácser A. 2012. The identification of gene duplication and the role of secreted aspartyl proteinase 1 in Candida parapsilosis virulence. J Infect Dis 205:923–933. doi:10.1093/infdis/jir873. PubMed DOI

Silva S, Henriques M, Oliveira R, Azeredo J, Malic S, Hooper SJ, Williams DW. 2009. Characterization of Candida parapsilosis infection of an in vitro reconstituted human oral epithelium. Eur J Oral Sci 117:669–675. doi:10.1111/j.1600-0722.2009.00677.x. PubMed DOI

Williams DW, Jordan RPC, Wei X, Alves CT, Wise P, Wilson MJ, Lewis M. 2013. Interactions of Candida albicans with host epithelial surfaces. J Oral Microbiol 5. doi:10.3402/jom.v5i0.2243. PubMed DOI PMC

Verma AH, Richardson JP, Zhou C, Coleman BM, Moyes DL, Ho J, Huppler AR, Ramani K, Mcgeachy MJ, Mufazalov IA, Waisman A, Kane LP, Biswas PS, Hube B, Naglik JR, Gaffen SL. 2017. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci Immunol 2:eaam8834. doi:10.1126/sciimmunol.aam8834. PubMed DOI PMC

Drummond RA, Gaffen SL, Hise AG, Brown GD. 2015. Innate defense against fungal pathogens. Cold Spring Harb Perspect Med 5:a019620. doi:10.1101/cshperspect.a019620. PubMed DOI PMC

Tucey TM, Verma J, Harrison PF, Snelgrove SL, Lo TL, Scherer AK, Barugahare AA, Powell DR, Wheeler RT, Hickey MJ, Beilharz TH, Naderer T, Traven A. 2018. Glucose homeostasis is important for immune cell viability during Candida challenge and host survival of systemic fungal infection. Cell Metab 27:988–1006.e7. doi:10.1016/j.cmet.2018.03.019. PubMed DOI PMC

Kasper L, König A, Koenig P, Gresnigt MS, Westman J, Drummond RA, Lionakis MS, Groß O, Ruland J, Naglik JR, Hube B. 2018. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat Commun 9:4260. doi:10.1038/s41467-018-06607-1. PubMed DOI PMC

Brown AJP, Gow NAR, Warris A, Brown GD. 2019. Memory in fungal pathogens promotes immune evasion, colonisation, and infection. Trends Microbiol 27:219–230. doi:10.1016/j.tim.2018.11.001. PubMed DOI

Lubbers R, van Essen MF, van Kooten C, Trouw LA. 2017. Production of complement components by cells of the immune system. Clin Exp Immunol 188:183–194. doi:10.1111/cei.12952. PubMed DOI PMC

Rosbjerg A, Genster N, Pilely K, Garred P. 2017. Evasion mechanisms used by pathogens to escape the lectin complement pathway. Front Microbiol 8:1–7. doi:10.3389/fmicb.2017.00868. PubMed DOI PMC

Karkowska-Kuleta J, Zajac D, Bochenska O, Kozik A. 2015. Surfaceome of pathogenic yeasts, Candida parapsilosis and Candida tropicalis, revealed with the use of cell surface shaving method and shotgun proteomic approach. Acta Biochim Pol 62:807–819. doi:10.18388/abp.2015_1140. PubMed DOI

Meri T, Hartmann A, Lenk D, Eck R, Würzner R, Hellwage J, Meri S, Zipfel PF. 2002. The yeast Candida albicans binds complement regulators factor H and FHL-1. Infect Immun 70:5185–5192. doi:10.1128/iai.70.9.5185-5192.2002. PubMed DOI PMC

Bryan AM, Del Poeta M. 2016. Secretory aspartyl proteinases induce neutrophil chemotaxis in vivo. Virulence 7:737–739. doi:10.1080/21505594.2016.1206170. PubMed DOI PMC

Borg-von Zepelin M, Beggah S, Boggian K, Sanglard D, Monod M. 1998. The expression of the secreted aspartyl proteinases SapIV to SapVI from Candida albicans in murine macrophages. Mol Microbiol 28:543–554. doi:10.1046/j.1365-2958.1998.00815.x. PubMed DOI

Dunkel N, Morschhäuser J. 2011. Loss of heterozygosity at an unlinked genomic locus is responsible for the phenotype of a Candida albicans sapIVΔ sapVΔ sapVIΔ mutant. Eukaryot Cell 10:54–62. doi:10.1128/EC.00281-10. PubMed DOI PMC

Vylkova S, Lorenz MC. 2014. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog 10:e1003995. doi:10.1371/journal.ppat.1003995. PubMed DOI PMC

Svoboda E, Schneider AE, Sándor N, Lermann U, Staib P, Kremlitzka M, Bajtay Z, Barz D, Erdei A, Józsi M. 2015. Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18). Immunology Lett 168:13–21. doi:10.1016/j.imlet.2015.08.009. PubMed DOI

Poltermann S, Kunert A, Von Der Heide M, Eck R, Hartmann A, Zipfel PF. 2007. Gpm1p is a factor H-, FHL-1, and plasminogen-binding surface protein of Candida albicans. J Biol Chem 282:37537–37544. doi:10.1074/jbc.M707280200. PubMed DOI

Gow NAR, Hube B. 2012. Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15:406–412. doi:10.1016/j.mib.2012.04.005. PubMed DOI

Joo MY, Shin JH, Jang HC, Song ES, Kee SJ, Shin MG, Suh SP, Ryang DW. 2013. Expression of SAPV and SAPIX in Candida albicans biofilms: comparison of bloodstream isolates with isolates from other sources. Med Mycol 51:892–896. doi:10.3109/13693786.2013.824623. PubMed DOI

Ghannoum M, Elteen KA. 1986. Correlative relationship between proteinase production, adherence and pathogenicity of various strains of Candida albicans. Med Mycol 24:407–413. doi:10.1080/02681218680000621. PubMed DOI

Navarro-Arias MJ, Defosse TA, Dementhon K, Csonka K, Mellado-Mojica E, Dias Valério A, González-Hernández RJ, Courdavault V, Clastre M, Hernández NV, Pérez-García LA, Singh DK, Vizler C, Gácser A, Almeida RS, Noël T, López MG, Papon N, Mora-Montes HM. 2016. Disruption of protein mannosylation affects Candida guilliermondii cell wall, immune sensing, and virulence. Front Microbiol 7:1951. doi:10.3389/fmicb.2016.01951. PubMed DOI PMC

Kumar R, Saraswat D, Tati S, Edgerton M. 2015. Novel aggregation properties of Candida albicans secreted aspartyl proteinase sapVI mediate virulence in oral candidiasis. Infect Immun 83:2614–2626. doi:10.1128/IAI.00282-15. PubMed DOI PMC

Watts HJ, Cheah FS, Hube B, Sanglard D, Gow NA. 1998. Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiol Lett 159:129–135. doi:10.1111/j.1574-6968.1998.tb12851.x. PubMed DOI

Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, De Groot P, MacCallum D, Odds FC, Schäfer W, Klis F, Monod M, Hube B. 2006. Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281:688–694. doi:10.1074/jbc.M509297200. PubMed DOI

Palmeira VF, Kneipp LF, Alviano CS, dos Santos A. 2006. Secretory aspartyl peptidase activity from mycelia of the human fungal pathogen Fonsecaea pedrosoi: effect of HIV aspartyl proteolytic inhibitors. Res Microbiol 157:819–826. doi:10.1016/j.resmic.2006.07.003. PubMed DOI

Noris M, Remuzzi G. 2013. Overview of complement activation and regulation. Semin Nephrol 33:479–492. doi:10.1016/j.semnephrol.2013.08.001. PubMed DOI PMC

Arbore G, Kemper C, Kolev M. 2017. Intracellular complement − the complosome − in immune cell regulation. Mol Immunol 89:2–9. doi:10.1016/j.molimm.2017.05.012. PubMed DOI PMC

Józsi M, Tortajada A, Uzonyi B, Goicoechea de Jorge E, Rodríguez de Córdoba S. 2015. Factor H-related proteins determine complement-activating surfaces. Trends Immunol 36:374–384. doi:10.1016/j.it.2015.04.008. PubMed DOI

Józsi M. 2017. Factor H family proteins in complement evasion of microorganisms. Front Immunol 8:571. doi:10.3389/fimmu.2017.00571. PubMed DOI PMC

Skerka C, Chen Q, Fremeaux-Bacchi V, Roumenina LT. 2013. Complement factor H related proteins (CFHRs). Mol Immunol 56:170–180. doi:10.1016/j.molimm.2013.06.001. PubMed DOI

Sánchez-Corral P, Pouw RB, López-Trascasa M, Józsi M. 2018. Self-damage caused by dysregulation of the complement alternative pathway: relevance of the factor H protein family. Front Immunol 9:1607. doi:10.3389/fimmu.2018.01607. PubMed DOI PMC

Zwarthoff SA, Berends ETM, Mol S, Ruyken M, Aerts PC, Józsi M, de Haas CJC, Rooijakkers SHM, Gorham RD. 2018. Functional characterization of alternative and classical pathway C3/C5 convertase activity and inhibition using purified models. Front Immunol 9:1691. doi:10.3389/fimmu.2018.01691. PubMed DOI PMC

McRae JL, Duthy TG, Griggs KM, Ormsby RJ, Cowan PJ, Cromer BA, McKinstry WJ, Parker MW, Murphy BF, Gordon DL. 2005. Human factor H-related protein 5 has cofactor activity, inhibits C3 convertase activity, binds heparin and C-reactive protein, and associates with lipoprotein. J Immunol 174:6250–6256. doi:10.4049/jimmunol.174.10.6250. PubMed DOI

Hellwage J, Jokiranta TS, Koistinen V, Vaarala O, Meri S, Zipfel PF. 1999. Functional properties of complement factor H-related proteins FHR-3 and FHR-4: binding to the C3d region of C3b and differential regulation by heparin. FEBS Lett 462:345–352. doi:10.1016/s0014-5793(99)01554-9. PubMed DOI

Heinen S, Hartmann A, Lauer N, Wiehl U, Dahse HM, Schirmer S, Gropp K, Enghardt T, Wallich R, Hälbich S, Mihlan M, Schlötzer-Schrehardt U, Zipfel PF, Skerka C. 2009. Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood 114:2439–2447. doi:10.1182/blood-2009-02-205641. PubMed DOI

Eberhardt HU, Buhlmann D, Hortschansky P, Chen Q, Böhm S, Kemper MJ, Wallich R, Hartmann A, Hallström T, Zipfel PF, Skerka C. 2013. Human factor H-related protein 2 (CFHR2) regulates complement activation. PLoS One 8:e78617. doi:10.1371/journal.pone.0078617. PubMed DOI PMC

Hebecker M, Józsi M. 2012. Factor H-related protein 4 activates complement by serving as a platform for the assembly of alternative pathway C3 convertase via its interaction with C3b protein. J Biol Chem 287:19528–19536. doi:10.1074/jbc.M112.364471. PubMed DOI PMC

Csincsi ÁI, Szabó Z, Bánlaki Z, Uzonyi B, Cserhalmi M, Kárpáti É, Tortajada A, Caesar JJE, Prohászka Z, Jokiranta TS, Lea SM, Rodríguez de Córdoba S, Józsi M. 2017. FHR-1 binds to C-reactive protein and enhances rather than inhibits complement activation. J Immunol 199:292–303. doi:10.4049/jimmunol.1600483. PubMed DOI

Goicoechea de Jorge E, Lea SM, Daigo K, Caesar JJE, Csincsi ÁI, Zöldi M, Pickering MC, Józsi M, Kopp A, Hamakubo T, Bánlaki Z, Uzonyi B, Hebecker M. 2015. Factor H-related protein 5 interacts with pentraxin 3 and the extracellular matrix and modulates complement activation. J Immunol 194:4963–4973. doi:10.4049/jimmunol.1403121. PubMed DOI PMC

Tóth R, Cabral V, Thuer E, Bohner F, Németh T, Papp C, Nimrichter L, Molnár G, Vágvölgyi C, Gabaldón T, Nosanchuk JD, Gácser A. 2018. Investigation of Candida parapsilosis virulence regulatory factors during host-pathogen interaction. Sci Rep 8:1346. doi:10.1038/s41598-018-19453-4. PubMed DOI PMC

Richardson JP, Ho J, Naglik JR. 2018. Candida-epithelial interactions. J Fungi (Basel) 4. doi:10.3390/jof4010022. PubMed DOI PMC

Pietrella D, Rachini A, Pandey N, Schild L, Netea M, Bistoni F, Hube B, Vecchiarelli A. 2010. The inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity. Infect Immun 78:4754–4762. doi:10.1128/IAI.00789-10. PubMed DOI PMC

Trevijano-Contador N, Zaragoza O. 2018. Immune response of Galleria mellonella against human fungal pathogens. J Fungi (Basel) 5:3. doi:10.3390/jof5010003. PubMed DOI PMC

Gácser A, Trofa D, Schäfer W, Nosanchuk JD. 2007. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest 117:3049–3058. doi:10.1172/JCI32294. PubMed DOI PMC

Németh T, Tóth A, Szenzenstein J, Horváth P, Nosanchuk JD, Grózer Z, Tóth R, Papp C, Hamari Z, Vágvölgyi C, Gácser A. 2013. Characterization of virulence properties in the C. parapsilosis sensu lato species. PLoS One 8:e68704. doi:10.1371/journal.pone.0068704. PubMed DOI PMC

Richardson JP, Mogavero S, Moyes DL, Blagojevic M, Krüger T, Verma AH, Coleman BM, De La Cruz Diaz J, Schulz D, Ponde NO, Carrano G, Kniemeyer O, Wilson D, Bader O, Enoiu SI, Ho J, Kichik N, Gaffen SL, Hube B, Naglik JR. 2018. Processing of Candida albicans Ece1p is critical for candidalysin maturation and fungal virulence. mBio 9:e02178-17. doi:10.1128/mBio.02178-17. PubMed DOI PMC

Tóth A, Németh T, Csonka K, Horváth P, Vágvölgyi C, Vizler C, Nosanchuk JD, Gácser A. 2014. Secreted Candida parapsilosis lipase modulates the immune response of primary human macrophages. Virulence 5:555–562. doi:10.4161/viru.28509. PubMed DOI PMC

Chakraborty T, Thuer E, Heijink M, Tóth R, Bodai L, Vágvölgyi C, Giera M, Gabaldón T, Gácser A. 2018. Eicosanoid biosynthesis influences the virulence of Candida parapsilosis. Virulence 9:1019–1035. doi:10.1080/21505594.2018.1475797. PubMed DOI PMC

Dostál J, Brynda J, Hrusková-Heidingsfeldová O, Sieglová I, Pichová I, Rezácová P. 2009. The crystal structure of the secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A. J Struct Biol 27:160–165. PubMed

Hrus O, Hradilek M, Majer F, Havlı J. 2009. Two aspartic proteinases secreted by the pathogenic yeast Candida parapsilosis differ in expression pattern and catalytic properties. Biol Chem 390:259–268. PubMed

Kopp A, Strobel S, Tortajada A, Rodríguez de Córdoba S, Sánchez-Corral P, Prohászka Z, López-Trascasa M, Józsi M. 2012. Atypical hemolytic uremic syndrome-associated variants and autoantibodies impair binding of factor H and factor H-related protein 1 to pentraxin 3. J Immunol 189:1858–1867. doi:10.4049/jimmunol.1200357. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...