• This record comes from PubMed

Innovative Sorbents for the Removal of Micropollutants from Water

. 2025 Mar 24 ; 30 (7) : . [epub] 20250324

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
TN02000044 Technology Agency of the Czech Republic

This review summarizes the current knowledge in the field of preparing new and/or innovative materials that can be advantageously used for the sorption of emerging pollutants from water. This paper highlights new innovative materials such as transition metal-modified biochar, zeolites, clays, carbon fibers, graphene, metal organic frameworks, and aerogels. These materials have great potential for the removal of heavy metals from water, particularly due to their large surface area, nanoscale size, and availability of various functionalities; moreover, they can easily be chemically modified and recycled. This paper not only highlights the advantages and ever-improving physicochemical properties of these new types of materials but also critically points out their shortcomings and suggests possible future directions.

See more in PubMed

Khan N.A., Khan S.U., Ahmed S., Farooqi I.H., Yousefi M., Mohammadi A.A., Changani F. Recent Trends in Disposal and Treatment Technologies of Emerging-Pollutants—A Critical Review. Trends Anal. Chem. 2020;122:115744. doi: 10.1016/j.trac.2019.115744. DOI

Rathi B.S., Kumar P.S., Show P.-L. A Review on Effective Removal of Emerging Contaminants from Aquatic Systems: Current Trends and Scope for Further Research. J. Hazard Mater. 2021;409:124413. doi: 10.1016/j.jhazmat.2020.124413. PubMed DOI

Di Marcantonio C., Chiavola A., Dossi S., Cecchini G., Leoni S., Frugis A., Spizzirri M., Boni M.R. Occurrence, Seasonal Variations and Removal of Organic Micropollutants in 76 Wastewater Treatment Plants. Process Saf. Environ. Prot. 2020;141:61–72. doi: 10.1016/j.psep.2020.05.032. DOI

Luo Y., Guo W., Ngo H.H., Nghiem L.D., Hai F.I., Zhang J., Liang S., Wang X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014;473:619–641. doi: 10.1016/j.scitotenv.2013.12.065. PubMed DOI

Speth T. PFAS Treatment in drinking water and wastewater. US EPA Office of Research and Development; Proceedings of the PFAS Science Webinars for EPA Region 1 and State & Tribal Partners; Web Conference. 16 September 2020.

Solcova O., Dlaskova M., Kastanek F. Challenges and Advances in Tertiary Waste Water Treatment for Municipal Treatment Plants. Processes. 2024;12:2084. doi: 10.3390/pr12102084. DOI

Adewuyi A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. Water. 2020;12:1551. doi: 10.3390/w12061551. DOI

Bhatnagar A., Hogland W., Marques M., Sillanpää M. An Overview of the Modification Methods of Activated Carbon for Its Water Treatment Applications. Chem. Eng. J. 2013;219:499–511. doi: 10.1016/j.cej.2012.12.038. DOI

Giwa A.S., Ndungutse J.M., Li Y., Mabi A., Liu X., Vakili M., Memon A.G., Ai L., Chenfeng Z., Sheng M. Modification of Biochar with Fe 3 O 4 and Humic Acid-Salt for Removal of Mercury from Aqueous Solutions: A Review. Environ. Pollut. Bioavailab. 2022;34:352–364. doi: 10.1080/26395940.2022.2115402. DOI

Gupta A., Sharma V., Sharma K., Kumar V., Choudhary S., Mankotia P., Kumar B., Mishra H., Moulick A., Ekielski A., et al. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials. 2021;14:4702. doi: 10.3390/ma14164702. PubMed DOI PMC

Jabbari V., Veleta J.M., Zarei-Chaleshtori M., Gardea-Torresdey J., Villagrán D. Green Synthesis of Magnetic MOF@GO and MOF@CNT Hybrid Nanocomposites with High Adsorption Capacity towards Organic Pollutants. Chem. Eng. J. 2016;304:774–783. doi: 10.1016/j.cej.2016.06.034. DOI

Koga H., Kitaoka T. Activated Carbon Water Purification Filter Prepared by Wet Molding with a DualPolyelectrolyte Retention System. Sen’i Gakkaishi. 2011;67:81–85. doi: 10.2115/fiber.67.81. DOI

Serafin J., Dziejarski B., Sreńscek-Nazzal J. An Innovative and Environmentally Friendly Bioorganic Synthesis of Activated Carbon Based on Olive Stones and Its Potential Application for CO2 Capture. Sustain. Mater. Technol. 2023;38:e00717. doi: 10.1016/j.susmat.2023.e00717. DOI

Suhas, Carrott P.J.M., Ribeiro Carrott M.M.L., Singh R., Singh L.P., Chaudhary M. An Innovative Approach to Develop Microporous Activated Carbons in Oxidising Atmosphere. J. Clean. Prod. 2017;156:549–555. doi: 10.1016/j.jclepro.2017.04.078. DOI

Pam A.A. Innovative Activated Carbon Based on Deep Eutectic Solvents (DES) and H3PO4. C. 2019;5:43. doi: 10.3390/c5030043. DOI

Tian H., Pan J., Zhu D., Guo Z., Yang C., Xue Y., Li S., Wang Y. Innovative One-Step Preparation of Activated Carbon from Low-Rank Coals Activated with Oxidized Pellets. J. Clean. Prod. 2021;313:127877. doi: 10.1016/j.jclepro.2021.127877. DOI

Koo-amornpattana W., Phadungbut P., Kunthakudee N., Jonglertjunya W., Ratchahat S., Hunsom M. Innovative Metal Oxides (CaO, SrO, MgO) Impregnated Waste-Derived Activated Carbon for Biohydrogen Purification. Sci. Rep. 2023;13:4705. doi: 10.1038/s41598-023-31723-4. PubMed DOI PMC

Ajayi O., Bowaje M., Ojo A., Ogunnaiya B., Idowu E., Oni S., Ajayi O., Dosunmu B. A Review on Natural Clay Application for Removal of Pharmaceutical Residue in Wastewater. Prog. Chem. Biochem. Res. 2023;6:71–87.

Mahouachi L., Rastogi T., Palm W.-U., Ghorbel-Abid I., Ben Hassen Chehimi D., Kümmerer K. Natural Clay as a Sorbent to Remove Pharmaceutical Micropollutants from Wastewater. Chemosphere. 2020;258:127213. doi: 10.1016/j.chemosphere.2020.127213. PubMed DOI

Viegas R.M.A., Melo M.L., Brandão Lima L.C., Garcia R.R.P., Filho E.C.S., Osajima J.A., Chiavone-Filho O. Carbamazepine Adsorption with a Series of Organoclays: Removal and Toxicity Analyses. Appl. Water Sci. 2024;14:133. doi: 10.1007/s13201-024-02198-z. DOI

Lelario F., Gardi I., Mishael Y., Dolev N., Undabeytia T., Nir S., Scrano L., Bufo S.A. Pairing Micropollutants and Clay-Composite Sorbents for Efficient Water Treatment: Filtration and Modeling at a Pilot Scale. Appl. Clay Sci. 2017;137:225–232. doi: 10.1016/J.CLAY.2016.12.029. DOI

Khan S., Ajmal S., Hussain T., Rahman M.U. Clay-Based Materials for Enhanced Water Treatment: Adsorption Mechanisms, Challenges, and Future Directions. J. Umm Al Qura Univ. Appl. Sci. 2023;9:1–16. doi: 10.1007/s43994-023-00083-0. DOI

Kovalchuk I. Clay-Based Sorbents for Environmental Protection from Inorganic Pollutants. Environ. Sci. Proc. 2023;25:34. doi: 10.3390/ECWS-7-14247. DOI

de Farias M.B., Spaolonzi M.P., da Silva T.L., da Silva M.G.C., Vieira M.G.A. Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments. Elsevier; Amsterdam, The Netherlands: 2022. Natural and Synthetic Clay-Based Materials Applied for the Removal of Emerging Pollutants from Aqueous Medium; pp. 359–392. DOI

Munir M., Nazar M.F., Zafar M.N., Zubair M., Ashfaq M., Hosseini-Bandegharaei A., Khan S.U.-D., Ahmad A. Effective Adsorptive Removal of Methylene Blue from Water by Didodecyldimethylammonium Bromide-Modified Brown Clay. ACS Omega. 2020;5:16711–16721. doi: 10.1021/acsomega.0c01613. PubMed DOI PMC

Zhao F., Mu B., Zhang T., Dong C., Zhu Y., Zong L., Wang A. Synthesis of Biochar/Clay Mineral Nanocomposites Using Oil Shale Semi-Coke Waste for Removal of Organic Pollutants. Biochar. 2023;5:7. doi: 10.1007/s42773-023-00205-1. DOI

Han H., Rafiq M.K., Zhou T., Xu R., Mašek O., Li X. A Critical Review of Clay-Based Composites with Enhanced Adsorption Performance for Metal and Organic Pollutants. J. Hazard. Mater. 2019;369:780–796. doi: 10.1016/j.jhazmat.2019.02.003. PubMed DOI

Atugoda T., Ashiq A., Keerthanan S., Wijekoon P., Ramanayaka S., Vithanage M. Biochar Amalgamation with Clay: Enhanced Performance for Environmental Remediation. Adv. Chem. Pollut. Environ. Manag. Prot. 2021;7:1–37. doi: 10.1016/bs.apmp.2021.08.001. DOI

da Silva Neto L.D., de Sá Í.M.G.L., Gabriel R., dos Santos Lins P.V., Freire J.T., Meili L. Clay Composites. Springer; Singapore: 2023. Application of Clay-Biochar Composites as Adsorbents for Water Treatment; pp. 113–142. DOI

Liu R., Li Y.C., Zhao Z., Liu D., Ren J., Luo Y. Synthesis and Characterization of Clay-Biochars Produced with Facile Low-Temperature One-Step in the Presence of Air for Adsorbing Methylene Blue from Aqueous Solution. Front. Environ. Sci. 2023;11:1137284. doi: 10.3389/fenvs.2023.1137284. DOI

Rallet D., Paltahe A., Tsamo C., Loura B. Synthesis of Clay-Biochar Composite for Glyphosate Removal from Aqueous Solution. Heliyon. 2022;8:e09112. doi: 10.1016/j.heliyon.2022.e09112. PubMed DOI PMC

Jagadeesh N., Sundaram B. Adsorption of Pollutants from Wastewater by Biochar: A Review. J. Hazard. Mater. Adv. 2023;9:100226. doi: 10.1016/j.hazadv.2022.100226. DOI

Qin Y., Li G., Gao Y., Zhang L., Ok Y.S., An T. Persistent Free Radicals in Carbon-Based Materials on Transformation of Refractory Organic Contaminants (ROCs) in Water: A Critical Review. Water Res. 2018;137:130–143. doi: 10.1016/j.watres.2018.03.012. PubMed DOI

Li X., Cheng H. Mn-Modified Biochars for Efficient Adsorption and Degradation of Cephalexin: Insight into the Enhanced Redox Reactivity. Water Res. 2023;243:120368. doi: 10.1016/j.watres.2023.120368. PubMed DOI

Xu Z., Xiang Y., Zhou H., Yang J., He Y., Zhu Z., Zhou Y. Manganese Ferrite Modified Biochar from Vinasse for Enhanced Adsorption of Levofloxacin: Effects and Mechanisms. Environ. Pollut. 2021;272:115968. doi: 10.1016/J.ENVPOL.2020.115968. PubMed DOI

Niu Z., Feng W., Huang H., Wang B., Chen L., Miao Y., Su S. Green Synthesis of a Novel Mn–Zn Ferrite/Biochar Composite from Waste Batteries and Pine Sawdust for Pb2+ Removal. Chemosphere. 2020;252:126529. doi: 10.1016/j.chemosphere.2020.126529. PubMed DOI

Yao B., Li Y., Zeng W., Yang G., Zeng J., Nie J., Zhou Y. Synergistic Adsorption and Oxidation of Trivalent Antimony from Groundwater Using Biochar Supported Magnesium Ferrite: Performances and Mechanisms. Environ. Pollut. 2023;323:121318. doi: 10.1016/j.envpol.2023.121318. PubMed DOI

Gul E., Alrawashdeh K.A.B., Masek O., Skreiberg Ø., Corona A., Zampilli M., Wang L., Samaras P., Yang Q., Zhou H., et al. Production and Use of Biochar from Lignin and Lignin-Rich Residues (Such as Digestate and Olive Stones) for Wastewater Treatment. J. Anal. Appl. Pyrolysis. 2021;158:105263. doi: 10.1016/J.JAAP.2021.105263. DOI

Yi Y., Huang Z., Lu B., Xian J., Tsang E.P., Cheng W., Fang J., Fang Z. Magnetic Biochar for Environmental Remediation: A Review. Bioresour. Technol. 2020;298:122468. doi: 10.1016/J.BIORTECH.2019.122468. PubMed DOI

Sharma G., Sharma S., Kumar A., Lai C.W., Naushad M., Shehnaz, Iqbal J., Stadler F.J. Activated Carbon as Superadsorbent and Sustainable Material for Diverse Applications. Adsorpt. Sci. Technol. 2022;2022:4184809. doi: 10.1155/2022/4184809. DOI

Aslam M.M.-A., Kuo H.-W., Den W., Usman M., Sultan M., Ashraf H. Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability. 2021;13:5717. doi: 10.3390/su13105717. DOI

Cukierman A.L., Nunell G.V., Bonelli P.R. Emerging and Nanomaterial Contaminants in Wastewater: Advanced Treatment Technologies. Elsevier; Amsterdam, The Netherlands: 2019. Removal of Emerging Pollutants from Water through Adsorption onto Carbon-Based Materials; pp. 159–213. DOI

Kurwadkar S., Hoang T.V., Malwade K., Kanel S.R., Harper W.F., Struckhoff G. Application of Carbon Nanotubes for Removal of Emerging Contaminants of Concern in Engineered Water and Wastewater Treatment Systems. Nanotechnol. Environ. Eng. 2019;4:12. doi: 10.1007/s41204-019-0059-1. DOI

Taleb A., Naif Al-sharif M., Ali Al-mutair M., Almasoudi S., Madkhali O., Muzibur Rahman M. Carbon Nanotubes—Recent Advances, New Perspectives and Potential Applications. IntechOpen; London, UK: 2023. Modification and Application of Carbon Nanotubes for the Removal of Emerging Contaminants from Wastewater: A Review. DOI

Multi-Walled Carbon Nanotube. [(accessed on 19 December 2024)]. Available online: https://commons.wikimedia.org/wiki/File:Multi-walled_Carbon_Nanotube.png.

Synthesis of Carbon Nanotube. [(accessed on 19 December 2024)]. Available online: https://en.wikipedia.org/wiki/Synthesis_of_carbon_nanotubes.

Timesnano. [(accessed on 19 December 2024)]. Available online: http://www.timesnano.com/en/article.php?prt=1,21.

Spaolonzi M.P., Duarte E.D.V., Oliveira M.G., Costa H.P.S., Ribeiro M.C.B., Silva T.L., Silva M.G.C., Vieira M.G.A. Green-Functionalized Carbon Nanotubes as Adsorbents for the Removal of Emerging Contaminants from Aqueous Media. J. Clean. Prod. 2022;373:133961. doi: 10.1016/j.jclepro.2022.133961. DOI

Pan B., Xing B. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environ. Sci. Technol. 2008;42:9005–9013. doi: 10.1021/es801777n. PubMed DOI

Orona-Návar C., García-Morales R., Rubio-Govea R., Mahlknecht J., Hernandez-Aranda R.I., Ramírez J.G., Nigam K.D.P., Ornelas-Soto N. Adsorptive Removal of Emerging Pollutants from Groundwater by Using Modified Titanate Nanotubes. J. Environ. Chem. Eng. 2018;6:5332–5340. doi: 10.1016/j.jece.2018.08.010. DOI

Cao Y., Li X. Adsorption of Graphene for the Removal of Inorganic Pollutants in Water Purification: A Review. Adsorption. 2014;20:713–727. doi: 10.1007/s10450-014-9615-y. DOI

Li X., Tao Y., Li F., Huang M. Efficient Preparation and Characterization of Functional Graphene with Versatile Applicability. J. Harbin Inst. Technol. 2016;23:1–29.

Jia Y., Guo L., Lu W., Guo Y., Lin J., Zhu K., Chen L., Huang Q., Huang J., Li Z., et al. Fabrication and Characterization of Graphene Derived from SiC. Sci. China Phys. Mech. Astron. 2013;56:2386–2394. doi: 10.1007/s11433-013-5348-2. DOI

Munuera J., Britnell L., Santoro C., Cuéllar-Franca R., Casiraghi C. A Review on Sustainable Production of Graphene and Related Life Cycle Assessment. 2D Mater. 2021;9:012002. doi: 10.1088/2053-1583/ac3f23. DOI

Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010;22:3906–3924. doi: 10.1002/adma.201001068. PubMed DOI

Guo Y., Zhang C., Chen Y., Nie Z. Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. Nanomaterials. 2022;12:2336. doi: 10.3390/nano12142336. PubMed DOI PMC

Graphen. [(accessed on 19 December 2024)]. Available online: https://cs.wikipedia.org/wiki/Grafen.

Sitko R., Zawisza B., Malicka E. Graphene as a New Sorbent in Analytical Chemistry. Trends Anal. Chem. 2013;51:33–43. doi: 10.1016/j.trac.2013.05.011. DOI

Alam S.N., Sharma N., Kumar L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (RGO) Graphene. 2017;6:1–18. doi: 10.4236/graphene.2017.61001. DOI

Graphite Oxide. [(accessed on 19 December 2024)]. Available online: https://en.wikipedia.org/wiki/Graphite_oxide#/media/File:Graphite_oxide.svg.

Anegbe B., Ifijen I.H., Maliki M., Uwidia I.E., Aigbodion A.I. Graphene Oxide Synthesis and Applications in Emerging Contaminant Removal: A Comprehensive Review. Environ. Sci. Eur. 2024;36:15. doi: 10.1186/s12302-023-00814-4. DOI

Li G., Du R., Cao Z., Li C., Xue J., Ma X., Wang S. Research Progress in Graphene-Based Adsorbents for Wastewater Treatment: Preparation, Adsorption Properties and Mechanisms for Inorganic and Organic Pollutants. C. 2024;10:78. doi: 10.3390/c10030078. DOI

Lü M., Li J., Yang X., Zhang C., Yang J., Hu H., Wang X. Applications of Graphene-Based Materials in Environmental Protection and Detection. Chin. Sci. Bull. 2013;58:2698–2710. doi: 10.1007/s11434-013-5887-y. DOI

MSE Suppliers Is Graphene Hydrophilic or Hydrophobic? [(accessed on 7 January 2025)]. Available online: https://www.msesupplies.com/blogs/news/is-graphene-hydrophilic-or-hydrophobic.

Kulakova I.I., Lisichkin G.V. Prospects for Using Graphene Nanomaterials: Sorbents, Membranes, and Gas Sensors. Russ. J. Appl. Chem. 2021;94:1177–1188. doi: 10.1134/S1070427221090019. DOI

Wang J., Zhang J., Han L., Wang J., Zhu L., Zeng H. Graphene-Based Materials for Adsorptive Removal of Pollutants from Water and Underlying Interaction Mechanism. Adv. Colloid Interface Sci. 2021;289:102360. doi: 10.1016/J.CIS.2021.102360. PubMed DOI

Machado A.B., Schmitt P., Maraschin T.G., Osorio D.M.M., Basso N.R.D.S., Berlese D.B. Adsorption Capacity of Pollutants from Water by Graphene and Graphene-Based Materials: A Bibliographic Review. Contrib. Cienc. Sociales. 2024;17:e4707. doi: 10.55905/revconv.17n.2-285. DOI

Baig N., Ihsanullah, Sajid M., Saleh T.A. Graphene-Based Adsorbents for the Removal of Toxic Organic Pollutants: A Review. J. Environ. Manag. 2019;244:370–382. doi: 10.1016/J.JENVMAN.2019.05.047. PubMed DOI

Rosli F.A., Ahmad H., Jumbri K., Abdullah A.H., Kamaruzaman S., Fathihah Abdullah N.A. Efficient Removal of Pharmaceuticals from Water Using Graphene Nanoplatelets as Adsorbent. R. Soc. Open Sci. 2021;8:201076. doi: 10.1098/rsos.201076. PubMed DOI PMC

Kyzas G.Z., Deliyanni E.A., Matis K.A. Graphene Oxide and Its Application as an Adsorbent for Wastewater Treatment. J. Chem. Technol. Biotechnol. 2013;89:196–205. doi: 10.1002/jctb.4220. DOI

Nanografi. [(accessed on 6 January 2025)]. Available online: https://nanografi.com/about-us-references/

Bytesnikova Z., Richtera L., Smerkova K., Adam V. Graphene Oxide as a Tool for Antibiotic-Resistant Gene Removal: A Review. Environ. Sci. Pollut. Res. 2019;26:20148–20163. doi: 10.1007/s11356-019-05283-y. PubMed DOI

Yu W., Zhan S., Shen Z., Zhou Q., Yang D. Efficient Removal Mechanism for Antibiotic Resistance Genes from Aquatic Environments by Graphene Oxide Nanosheet. Chem. Eng. J. 2017;313:836–846. doi: 10.1016/j.cej.2016.10.107. DOI

Karaolia P., Michael-Kordatou I., Hapeshi E., Drosou C., Bertakis Y., Christofilos D., Armatas G.S., Sygellou L., Schwartz T., Xekoukoulotakis N.P., et al. Removal of Antibiotics, Antibiotic-Resistant Bacteria and Their Associated Genes by Graphene-Based TiO2 Composite Photocatalysts under Solar Radiation in Urban Wastewaters. Appl. Catal. B Environ. 2018;224:810–824. doi: 10.1016/j.apcatb.2017.11.020. DOI

Pant A., Jain R., Ahammad S.Z., Ali S.W. Removal of Antibiotic Resistance Genes from Wastewater Using Diethylaminoethyl Cellulose as a Promising Adsorbent. J. Water Process Eng. 2023;55:104109. doi: 10.1016/j.jwpe.2023.104109. DOI

Wang X., Zhang H., Ham S., Qiao R. Graphene Oxide and Its Derivatives as Adsorbents for PFOA Molecules. J. Phys. Chem. B. 2023;127:9620–9629. doi: 10.1021/acs.jpcb.3c04762. PubMed DOI

Tunioli F., Marforio T.D., Favaretto L., Mantovani S., Pintus A., Bianchi A., Kovtun A., Agnes M., Palermo V., Calvaresi M., et al. Chemical Tailoring of Β-Cyclodextrin-Graphene Oxide for Enhanced Per- and Polyfluoroalkyl Substances (PFAS) Adsorption from Drinking Water. Chem. A Eur. J. 2023;29:e202301854. doi: 10.1002/chem.202301854. PubMed DOI

Gupta V.K., Saleh T.A. Sorption of Pollutants by Porous Carbon, Carbon Nanotubes and Fullerene- An Overview. Environ. Sci. Pollut. Res. 2013;20:2828–2843. doi: 10.1007/s11356-013-1524-1. PubMed DOI

Fullerene. [(accessed on 7 January 2025)]. Available online: https://cs.wikipedia.org/wiki/Fullereny.

Elessawy N.A., El-Sayed E.M., Ali S., Elkady M.F., Elnouby M., Hamad H.A. One-Pot Green Synthesis of Magnetic Fullerene Nanocomposite for Adsorption Characteristics. J. Water Process Eng. 2020;34:101047. doi: 10.1016/j.jwpe.2019.101047. DOI

Alomar M., Khan A.A. Porphyrin like Porous Fullerene Functionalized with Ga as an Effective Adsorbent for the Removal of Methylene Blue from Wastewater Effluent. Surf. Interfaces. 2024;52:104883. doi: 10.1016/j.surfin.2024.104883. DOI

Kausar A. Fullerene in Water Remediation Nanocomposite Membranes—Cutting Edge Advancements. Charact. Appl. Nanomater. 2024;7:4945. doi: 10.24294/can.v7i2.4945. DOI

Baby R., Saifullah B., Hussein M.Z. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. Nanoscale Res. Lett. 2019;14:341. doi: 10.1186/s11671-019-3167-8. PubMed DOI PMC

Lu W., Wei Z., Gu Z.-Y., Liu T.-F., Park J., Park J., Tian J., Zhang M., Zhang Q., Iii T.G., et al. Tuning the Structure and Function of Metal–Organic Frameworks via Linker Design. Chem. Soc. Rev. 2014;43:5561–5593. doi: 10.1039/C4CS00003J. PubMed DOI

Ossila. MOF Ligands. [(accessed on 6 January 2025)]. Available online: https://www.ossila.com/collections/mof-ligands.

Kumar M., Kulkarni N.V. Metal-Organic Frameworks (MOFs) [(accessed on 6 January 2025)]. Available online: https://www.amrita.edu/news/metal-organic-frameworks-mofs/

Kaye S.S., Dailly A., Yaghi O.M., Long J.R. Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-Benzenedicarboxylate)3 (MOF-5) J. Am. Chem. Soc. 2007;129:14176–14177. doi: 10.1021/ja076877g. PubMed DOI

Liu M., Zhang L., Wang M., Wang X., Cui H., Wei J., Li X. The Role of Metal-Organic Frameworks in Removing Emerging Contaminants in Wastewater. J. Clean. Prod. 2023;429:139526. doi: 10.1016/J.JCLEPRO.2023.139526. DOI

Wang B., Lv X.-L., Feng D., Xie L.-H., Zhang J., Li M., Xie Y., Li J.-R., Zhou H.-C. Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. J. Am. Chem. Soc. 2016;138:6204–6216. doi: 10.1021/jacs.6b01663. PubMed DOI

Wang C., Liu X., Keser Demir N., Chen J.P., Li K. Applications of Water Stable Metal–Organic Frameworks. Chem. Soc. Rev. 2016;45:5107–5134. doi: 10.1039/C6CS00362A. PubMed DOI

Ramezanalizadeh H., Manteghi F. Synthesis of a Novel MOF/CuWO4 Heterostructure for Efficient Photocatalytic Degradation and Removal of Water Pollutants. J. Clean. Prod. 2018;172:2655–2666. doi: 10.1016/J.JCLEPRO.2017.11.145. DOI

Beydaghdari M., Saboor F.H., Babapoor A., Asgari M. Recent Progress in Adsorptive Removal of Water Pollutants by Metal-Organic Frameworks. Chemnanomat. 2022;8:e202100400. doi: 10.1002/cnma.202100400. DOI

Darabdhara J., Ahmaruzzaman M. Recent Developments in MOF and MOF Based Composite as Potential Adsorbents for Removal of Aqueous Environmental Contaminants. Chemosphere. 2022;304:135261. doi: 10.1016/J.CHEMOSPHERE.2022.135261. PubMed DOI

Zadehahmadi F., Eden N.T., Mahdavi H., Konstas K., Mardel J.I., Shaibani M., Banerjee P.C., Hill M.R. Removal of Metals from Water Using MOF-Based Composite Adsorbents. Environ. Sci. Water Res. Technol. 2023;9:1305–1330. doi: 10.1039/D2EW00941B. DOI

Yan C., Jin J., Wang J., Zhang F., Tian Y., Liu C., Zhang F., Cao L., Zhou Y., Han Q. Metal–Organic Frameworks (MOFs) for the Efficient Removal of Contaminants from Water: Underlying Mechanisms, Recent Advances, Challenges, and Future Prospects. Coord. Chem. Rev. 2022;468:214595. doi: 10.1016/J.CCR.2022.214595. DOI

Wei Z., Su Q., Lin Q., Wang X., Long S., Zhang G., Yang J. Multifunctional Oxidized Poly (Arylene Sulfide Sulfone)/UiO-66 Nanofibrous Membrane with Efficient Adsorption/Separation Ability in Harsh Environment. Chem. Eng. J. 2022;430:133021. doi: 10.1016/j.cej.2021.133021. DOI

Martell Mendoza M., Alberto Méndez Cuesta C., Angel Zavala Sánchez M., Cuauhtemoc Pérez Montiel E., Mata Berbudez A., Pérez González C. Wastewater Treatment—Past and Future Perspectives. IntechOpen; London, UK: 2024. Metal Organic Frameworks Used as Antibiotic Removal Agents in Water. DOI

Du C., Zhang Z., Yu G., Wu H., Chen H., Zhou L., Zhang Y., Su Y., Tan S., Yang L., et al. A Review of Metal Organic Framework (MOFs)-Based Materials for Antibiotics Removal via Adsorption and Photocatalysis. Chemosphere. 2021;272:129501. doi: 10.1016/j.chemosphere.2020.129501. PubMed DOI

Lei M., Ge F., Ren S., Gao X., Zheng H. A Water-Stable Cd-MOF and Corresponding MOF@melamine Foam Composite for Detection and Removal of Antibiotics, Explosives, and Anions. Sep. Purif. Technol. 2022;286:120433. doi: 10.1016/j.seppur.2021.120433. DOI

Xu Z., Wen Y., Tian L., Li G. Efficient and Selective Adsorption of Nitroaromatic Explosives by Zr-MOF. Inorg. Chem. Commun. 2017;77:11–13. doi: 10.1016/j.inoche.2017.01.025. DOI

Tang X., Zhou C., Xia W., Liang Y., Zeng Y., Zhao X., Xiong W., Cheng M., Wang Z. Recent Advances in Metal–Organic Framework-Based Materials for Removal of Fluoride in Water: Performance, Mechanism, and Potential Practical Application. Chem. Eng. J. 2022;446:137299. doi: 10.1016/j.cej.2022.137299. DOI

Lal S., Singh P., Singhal A., Kumar S., Singh Gahlot A.P., Gandhi N., Kumari P. Advances in Metal–Organic Frameworks for Water Remediation Applications. RSC Adv. 2024;14:3413–3446. doi: 10.1039/D3RA07982A. PubMed DOI PMC

Li H., Eddaoudi M., O’Keeffe M., Yaghi O.M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature. 1999;402:276–279. doi: 10.1038/46248. DOI

Abedpour H., Moghaddas J.S., Borhani M.N., Borhani T.N. Separation of Toxic Contaminants from Water by Silica Aerogel-Based Adsorbents: A Comprehensive Review. J. Water Process Eng. 2023;53:103676. doi: 10.1016/j.jwpe.2023.103676. DOI

Soleimani Dorcheh A., Abbasi M.H. Silica Aerogel; Synthesis, Properties and Characterization. J. Mater. Process Technol. 2008;199:10–26. doi: 10.1016/j.jmatprotec.2007.10.060. DOI

Štandeker S., Novak Z., Knez Ž. Adsorption of Toxic Organic Compounds from Water with Hydrophobic Silica Aerogels. J. Colloid Interface Sci. 2007;310:362–368. doi: 10.1016/j.jcis.2007.02.021. PubMed DOI

Franco P., Cardea S., Tabernero A., De Marco I. Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules. 2021;26:4440. doi: 10.3390/molecules26154440. PubMed DOI PMC

Sekwele K.G., Tichapondwa S.M., Mhike W. Cellulose, Graphene and Graphene-Cellulose Composite Aerogels and Their Application in Water Treatment: A Review. Discov. Mater. 2024;4:23. doi: 10.1007/s43939-024-00097-3. DOI

Aylaz G., Okan M., Duman M., Aydin H.M. Study on Cost-Efficient Carbon Aerogel to Remove Antibiotics from Water Resources. ACS Omega. 2020;5:16635–16644. doi: 10.1021/acsomega.0c01479. PubMed DOI PMC

Ahmad A., Kamaruddin M.A., HPS A.K., Yahya E.B., Muhammad S., Rizal S., Ahmad M.I., Surya I., Abdullah C.K. Recent Advances in Nanocellulose Aerogels for Efficient Heavy Metal and Dye Removal. Gels. 2023;9:416. doi: 10.3390/gels9050416. PubMed DOI PMC

Boccia A.C., Neagu M., Pulvirenti A. Bio-Based Aerogels for the Removal of Heavy Metal Ions and Oils from Water: Novel Solutions for Environmental Remediation. Gels. 2023;10:32. doi: 10.3390/gels10010032. PubMed DOI PMC

Lv T., Wu F., Zhang Z., Liu Z., Zhao Y., Yu L., Zhang J., Yu C., Zhao C., Xing G. TiVCT X MXene/Graphene Nanosheet-Based Aerogels for Removal of Organic Contaminants from Wastewater. ACS Appl. Nano Mater. 2024;7:7312–7326. doi: 10.1021/acsanm.4c00038. DOI

Niu X., Si J., Chen B., Wang Q., Zeng S., Cui Z. Preparation of Bioaerogel from Iron-Rich Microalgae for the Removal of Water Pollutants. Processes. 2024;12:1313. doi: 10.3390/pr12071313. DOI

Ganesamoorthy R., Vadivel V.K., Kumar R., Kushwaha O.S., Mamane H. Aerogels for Water Treatment: A Review. J. Clean. Prod. 2021;329:129713. doi: 10.1016/j.jclepro.2021.129713. DOI

Garg S., Singh S., Shehata N., Sharma H., Samuel J., A Khan N., Ramamurthy P.C., Singh J., Mubashir M., Bokhari A., et al. Aerogels in Wastewater Treatment: A Review. J. Taiwan Inst. Chem. Eng. 2023;166:105299. doi: 10.1016/j.jtice.2023.105299. DOI

Lamy-Mendes A., Lopes D., Girão A.V., Silva R.F., Malfait W.J., Durães L. Carbon Nanostructures—Silica Aerogel Composites for Adsorption of Organic Pollutants. Toxics. 2023;11:232. doi: 10.3390/toxics11030232. PubMed DOI PMC

Sharma S.K., Ranjani P., Mamane H., Kumar R. Preparation of Graphene Oxide-Doped Silica Aerogel Using Supercritical Method for Efficient Removal of Emerging Pollutants from Wastewater. Sci. Rep. 2023;13:16448. doi: 10.1038/s41598-023-43613-w. PubMed DOI PMC

Lamy-Mendes A., Torres R.B., Vareda J.P., Lopes D., Ferreira M., Valente V., Girão A.V., Valente A.J.M., Durães L. Amine Modification of Silica Aerogels/Xerogels for Removal of Relevant Environmental Pollutants. Molecules. 2019;24:3701. doi: 10.3390/molecules24203701. PubMed DOI PMC

Gorgolis G., Kotsidi M., Paterakis G., Koutroumanis N., Tsakonas C., Galiotis C. Graphene Aerogels as Efficient Adsorbers of Water Pollutants and Their Effect of Drying Methods. Sci. Rep. 2024;14:8029. doi: 10.1038/s41598-024-58651-1. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...