Innovative Sorbents for the Removal of Micropollutants from Water
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
TN02000044
Technology Agency of the Czech Republic
PubMed
40286024
PubMed Central
PMC11990518
DOI
10.3390/molecules30071444
PII: molecules30071444
Knihovny.cz E-resources
- Keywords
- biochar, graphene, metal organic framework, nanotubes, sorption, water-treatment sorbent,
- Publication type
- Journal Article MeSH
- Review MeSH
This review summarizes the current knowledge in the field of preparing new and/or innovative materials that can be advantageously used for the sorption of emerging pollutants from water. This paper highlights new innovative materials such as transition metal-modified biochar, zeolites, clays, carbon fibers, graphene, metal organic frameworks, and aerogels. These materials have great potential for the removal of heavy metals from water, particularly due to their large surface area, nanoscale size, and availability of various functionalities; moreover, they can easily be chemically modified and recycled. This paper not only highlights the advantages and ever-improving physicochemical properties of these new types of materials but also critically points out their shortcomings and suggests possible future directions.
See more in PubMed
Khan N.A., Khan S.U., Ahmed S., Farooqi I.H., Yousefi M., Mohammadi A.A., Changani F. Recent Trends in Disposal and Treatment Technologies of Emerging-Pollutants—A Critical Review. Trends Anal. Chem. 2020;122:115744. doi: 10.1016/j.trac.2019.115744. DOI
Rathi B.S., Kumar P.S., Show P.-L. A Review on Effective Removal of Emerging Contaminants from Aquatic Systems: Current Trends and Scope for Further Research. J. Hazard Mater. 2021;409:124413. doi: 10.1016/j.jhazmat.2020.124413. PubMed DOI
Di Marcantonio C., Chiavola A., Dossi S., Cecchini G., Leoni S., Frugis A., Spizzirri M., Boni M.R. Occurrence, Seasonal Variations and Removal of Organic Micropollutants in 76 Wastewater Treatment Plants. Process Saf. Environ. Prot. 2020;141:61–72. doi: 10.1016/j.psep.2020.05.032. DOI
Luo Y., Guo W., Ngo H.H., Nghiem L.D., Hai F.I., Zhang J., Liang S., Wang X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014;473:619–641. doi: 10.1016/j.scitotenv.2013.12.065. PubMed DOI
Speth T. PFAS Treatment in drinking water and wastewater. US EPA Office of Research and Development; Proceedings of the PFAS Science Webinars for EPA Region 1 and State & Tribal Partners; Web Conference. 16 September 2020.
Solcova O., Dlaskova M., Kastanek F. Challenges and Advances in Tertiary Waste Water Treatment for Municipal Treatment Plants. Processes. 2024;12:2084. doi: 10.3390/pr12102084. DOI
Adewuyi A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. Water. 2020;12:1551. doi: 10.3390/w12061551. DOI
Bhatnagar A., Hogland W., Marques M., Sillanpää M. An Overview of the Modification Methods of Activated Carbon for Its Water Treatment Applications. Chem. Eng. J. 2013;219:499–511. doi: 10.1016/j.cej.2012.12.038. DOI
Giwa A.S., Ndungutse J.M., Li Y., Mabi A., Liu X., Vakili M., Memon A.G., Ai L., Chenfeng Z., Sheng M. Modification of Biochar with Fe 3 O 4 and Humic Acid-Salt for Removal of Mercury from Aqueous Solutions: A Review. Environ. Pollut. Bioavailab. 2022;34:352–364. doi: 10.1080/26395940.2022.2115402. DOI
Gupta A., Sharma V., Sharma K., Kumar V., Choudhary S., Mankotia P., Kumar B., Mishra H., Moulick A., Ekielski A., et al. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials. 2021;14:4702. doi: 10.3390/ma14164702. PubMed DOI PMC
Jabbari V., Veleta J.M., Zarei-Chaleshtori M., Gardea-Torresdey J., Villagrán D. Green Synthesis of Magnetic MOF@GO and MOF@CNT Hybrid Nanocomposites with High Adsorption Capacity towards Organic Pollutants. Chem. Eng. J. 2016;304:774–783. doi: 10.1016/j.cej.2016.06.034. DOI
Koga H., Kitaoka T. Activated Carbon Water Purification Filter Prepared by Wet Molding with a DualPolyelectrolyte Retention System. Sen’i Gakkaishi. 2011;67:81–85. doi: 10.2115/fiber.67.81. DOI
Serafin J., Dziejarski B., Sreńscek-Nazzal J. An Innovative and Environmentally Friendly Bioorganic Synthesis of Activated Carbon Based on Olive Stones and Its Potential Application for CO2 Capture. Sustain. Mater. Technol. 2023;38:e00717. doi: 10.1016/j.susmat.2023.e00717. DOI
Suhas, Carrott P.J.M., Ribeiro Carrott M.M.L., Singh R., Singh L.P., Chaudhary M. An Innovative Approach to Develop Microporous Activated Carbons in Oxidising Atmosphere. J. Clean. Prod. 2017;156:549–555. doi: 10.1016/j.jclepro.2017.04.078. DOI
Pam A.A. Innovative Activated Carbon Based on Deep Eutectic Solvents (DES) and H3PO4. C. 2019;5:43. doi: 10.3390/c5030043. DOI
Tian H., Pan J., Zhu D., Guo Z., Yang C., Xue Y., Li S., Wang Y. Innovative One-Step Preparation of Activated Carbon from Low-Rank Coals Activated with Oxidized Pellets. J. Clean. Prod. 2021;313:127877. doi: 10.1016/j.jclepro.2021.127877. DOI
Koo-amornpattana W., Phadungbut P., Kunthakudee N., Jonglertjunya W., Ratchahat S., Hunsom M. Innovative Metal Oxides (CaO, SrO, MgO) Impregnated Waste-Derived Activated Carbon for Biohydrogen Purification. Sci. Rep. 2023;13:4705. doi: 10.1038/s41598-023-31723-4. PubMed DOI PMC
Ajayi O., Bowaje M., Ojo A., Ogunnaiya B., Idowu E., Oni S., Ajayi O., Dosunmu B. A Review on Natural Clay Application for Removal of Pharmaceutical Residue in Wastewater. Prog. Chem. Biochem. Res. 2023;6:71–87.
Mahouachi L., Rastogi T., Palm W.-U., Ghorbel-Abid I., Ben Hassen Chehimi D., Kümmerer K. Natural Clay as a Sorbent to Remove Pharmaceutical Micropollutants from Wastewater. Chemosphere. 2020;258:127213. doi: 10.1016/j.chemosphere.2020.127213. PubMed DOI
Viegas R.M.A., Melo M.L., Brandão Lima L.C., Garcia R.R.P., Filho E.C.S., Osajima J.A., Chiavone-Filho O. Carbamazepine Adsorption with a Series of Organoclays: Removal and Toxicity Analyses. Appl. Water Sci. 2024;14:133. doi: 10.1007/s13201-024-02198-z. DOI
Lelario F., Gardi I., Mishael Y., Dolev N., Undabeytia T., Nir S., Scrano L., Bufo S.A. Pairing Micropollutants and Clay-Composite Sorbents for Efficient Water Treatment: Filtration and Modeling at a Pilot Scale. Appl. Clay Sci. 2017;137:225–232. doi: 10.1016/J.CLAY.2016.12.029. DOI
Khan S., Ajmal S., Hussain T., Rahman M.U. Clay-Based Materials for Enhanced Water Treatment: Adsorption Mechanisms, Challenges, and Future Directions. J. Umm Al Qura Univ. Appl. Sci. 2023;9:1–16. doi: 10.1007/s43994-023-00083-0. DOI
Kovalchuk I. Clay-Based Sorbents for Environmental Protection from Inorganic Pollutants. Environ. Sci. Proc. 2023;25:34. doi: 10.3390/ECWS-7-14247. DOI
de Farias M.B., Spaolonzi M.P., da Silva T.L., da Silva M.G.C., Vieira M.G.A. Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments. Elsevier; Amsterdam, The Netherlands: 2022. Natural and Synthetic Clay-Based Materials Applied for the Removal of Emerging Pollutants from Aqueous Medium; pp. 359–392. DOI
Munir M., Nazar M.F., Zafar M.N., Zubair M., Ashfaq M., Hosseini-Bandegharaei A., Khan S.U.-D., Ahmad A. Effective Adsorptive Removal of Methylene Blue from Water by Didodecyldimethylammonium Bromide-Modified Brown Clay. ACS Omega. 2020;5:16711–16721. doi: 10.1021/acsomega.0c01613. PubMed DOI PMC
Zhao F., Mu B., Zhang T., Dong C., Zhu Y., Zong L., Wang A. Synthesis of Biochar/Clay Mineral Nanocomposites Using Oil Shale Semi-Coke Waste for Removal of Organic Pollutants. Biochar. 2023;5:7. doi: 10.1007/s42773-023-00205-1. DOI
Han H., Rafiq M.K., Zhou T., Xu R., Mašek O., Li X. A Critical Review of Clay-Based Composites with Enhanced Adsorption Performance for Metal and Organic Pollutants. J. Hazard. Mater. 2019;369:780–796. doi: 10.1016/j.jhazmat.2019.02.003. PubMed DOI
Atugoda T., Ashiq A., Keerthanan S., Wijekoon P., Ramanayaka S., Vithanage M. Biochar Amalgamation with Clay: Enhanced Performance for Environmental Remediation. Adv. Chem. Pollut. Environ. Manag. Prot. 2021;7:1–37. doi: 10.1016/bs.apmp.2021.08.001. DOI
da Silva Neto L.D., de Sá Í.M.G.L., Gabriel R., dos Santos Lins P.V., Freire J.T., Meili L. Clay Composites. Springer; Singapore: 2023. Application of Clay-Biochar Composites as Adsorbents for Water Treatment; pp. 113–142. DOI
Liu R., Li Y.C., Zhao Z., Liu D., Ren J., Luo Y. Synthesis and Characterization of Clay-Biochars Produced with Facile Low-Temperature One-Step in the Presence of Air for Adsorbing Methylene Blue from Aqueous Solution. Front. Environ. Sci. 2023;11:1137284. doi: 10.3389/fenvs.2023.1137284. DOI
Rallet D., Paltahe A., Tsamo C., Loura B. Synthesis of Clay-Biochar Composite for Glyphosate Removal from Aqueous Solution. Heliyon. 2022;8:e09112. doi: 10.1016/j.heliyon.2022.e09112. PubMed DOI PMC
Jagadeesh N., Sundaram B. Adsorption of Pollutants from Wastewater by Biochar: A Review. J. Hazard. Mater. Adv. 2023;9:100226. doi: 10.1016/j.hazadv.2022.100226. DOI
Qin Y., Li G., Gao Y., Zhang L., Ok Y.S., An T. Persistent Free Radicals in Carbon-Based Materials on Transformation of Refractory Organic Contaminants (ROCs) in Water: A Critical Review. Water Res. 2018;137:130–143. doi: 10.1016/j.watres.2018.03.012. PubMed DOI
Li X., Cheng H. Mn-Modified Biochars for Efficient Adsorption and Degradation of Cephalexin: Insight into the Enhanced Redox Reactivity. Water Res. 2023;243:120368. doi: 10.1016/j.watres.2023.120368. PubMed DOI
Xu Z., Xiang Y., Zhou H., Yang J., He Y., Zhu Z., Zhou Y. Manganese Ferrite Modified Biochar from Vinasse for Enhanced Adsorption of Levofloxacin: Effects and Mechanisms. Environ. Pollut. 2021;272:115968. doi: 10.1016/J.ENVPOL.2020.115968. PubMed DOI
Niu Z., Feng W., Huang H., Wang B., Chen L., Miao Y., Su S. Green Synthesis of a Novel Mn–Zn Ferrite/Biochar Composite from Waste Batteries and Pine Sawdust for Pb2+ Removal. Chemosphere. 2020;252:126529. doi: 10.1016/j.chemosphere.2020.126529. PubMed DOI
Yao B., Li Y., Zeng W., Yang G., Zeng J., Nie J., Zhou Y. Synergistic Adsorption and Oxidation of Trivalent Antimony from Groundwater Using Biochar Supported Magnesium Ferrite: Performances and Mechanisms. Environ. Pollut. 2023;323:121318. doi: 10.1016/j.envpol.2023.121318. PubMed DOI
Gul E., Alrawashdeh K.A.B., Masek O., Skreiberg Ø., Corona A., Zampilli M., Wang L., Samaras P., Yang Q., Zhou H., et al. Production and Use of Biochar from Lignin and Lignin-Rich Residues (Such as Digestate and Olive Stones) for Wastewater Treatment. J. Anal. Appl. Pyrolysis. 2021;158:105263. doi: 10.1016/J.JAAP.2021.105263. DOI
Yi Y., Huang Z., Lu B., Xian J., Tsang E.P., Cheng W., Fang J., Fang Z. Magnetic Biochar for Environmental Remediation: A Review. Bioresour. Technol. 2020;298:122468. doi: 10.1016/J.BIORTECH.2019.122468. PubMed DOI
Sharma G., Sharma S., Kumar A., Lai C.W., Naushad M., Shehnaz, Iqbal J., Stadler F.J. Activated Carbon as Superadsorbent and Sustainable Material for Diverse Applications. Adsorpt. Sci. Technol. 2022;2022:4184809. doi: 10.1155/2022/4184809. DOI
Aslam M.M.-A., Kuo H.-W., Den W., Usman M., Sultan M., Ashraf H. Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability. 2021;13:5717. doi: 10.3390/su13105717. DOI
Cukierman A.L., Nunell G.V., Bonelli P.R. Emerging and Nanomaterial Contaminants in Wastewater: Advanced Treatment Technologies. Elsevier; Amsterdam, The Netherlands: 2019. Removal of Emerging Pollutants from Water through Adsorption onto Carbon-Based Materials; pp. 159–213. DOI
Kurwadkar S., Hoang T.V., Malwade K., Kanel S.R., Harper W.F., Struckhoff G. Application of Carbon Nanotubes for Removal of Emerging Contaminants of Concern in Engineered Water and Wastewater Treatment Systems. Nanotechnol. Environ. Eng. 2019;4:12. doi: 10.1007/s41204-019-0059-1. DOI
Taleb A., Naif Al-sharif M., Ali Al-mutair M., Almasoudi S., Madkhali O., Muzibur Rahman M. Carbon Nanotubes—Recent Advances, New Perspectives and Potential Applications. IntechOpen; London, UK: 2023. Modification and Application of Carbon Nanotubes for the Removal of Emerging Contaminants from Wastewater: A Review. DOI
Multi-Walled Carbon Nanotube. [(accessed on 19 December 2024)]. Available online: https://commons.wikimedia.org/wiki/File:Multi-walled_Carbon_Nanotube.png.
Synthesis of Carbon Nanotube. [(accessed on 19 December 2024)]. Available online: https://en.wikipedia.org/wiki/Synthesis_of_carbon_nanotubes.
Timesnano. [(accessed on 19 December 2024)]. Available online: http://www.timesnano.com/en/article.php?prt=1,21.
Spaolonzi M.P., Duarte E.D.V., Oliveira M.G., Costa H.P.S., Ribeiro M.C.B., Silva T.L., Silva M.G.C., Vieira M.G.A. Green-Functionalized Carbon Nanotubes as Adsorbents for the Removal of Emerging Contaminants from Aqueous Media. J. Clean. Prod. 2022;373:133961. doi: 10.1016/j.jclepro.2022.133961. DOI
Pan B., Xing B. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environ. Sci. Technol. 2008;42:9005–9013. doi: 10.1021/es801777n. PubMed DOI
Orona-Návar C., García-Morales R., Rubio-Govea R., Mahlknecht J., Hernandez-Aranda R.I., Ramírez J.G., Nigam K.D.P., Ornelas-Soto N. Adsorptive Removal of Emerging Pollutants from Groundwater by Using Modified Titanate Nanotubes. J. Environ. Chem. Eng. 2018;6:5332–5340. doi: 10.1016/j.jece.2018.08.010. DOI
Cao Y., Li X. Adsorption of Graphene for the Removal of Inorganic Pollutants in Water Purification: A Review. Adsorption. 2014;20:713–727. doi: 10.1007/s10450-014-9615-y. DOI
Li X., Tao Y., Li F., Huang M. Efficient Preparation and Characterization of Functional Graphene with Versatile Applicability. J. Harbin Inst. Technol. 2016;23:1–29.
Jia Y., Guo L., Lu W., Guo Y., Lin J., Zhu K., Chen L., Huang Q., Huang J., Li Z., et al. Fabrication and Characterization of Graphene Derived from SiC. Sci. China Phys. Mech. Astron. 2013;56:2386–2394. doi: 10.1007/s11433-013-5348-2. DOI
Munuera J., Britnell L., Santoro C., Cuéllar-Franca R., Casiraghi C. A Review on Sustainable Production of Graphene and Related Life Cycle Assessment. 2D Mater. 2021;9:012002. doi: 10.1088/2053-1583/ac3f23. DOI
Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010;22:3906–3924. doi: 10.1002/adma.201001068. PubMed DOI
Guo Y., Zhang C., Chen Y., Nie Z. Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. Nanomaterials. 2022;12:2336. doi: 10.3390/nano12142336. PubMed DOI PMC
Graphen. [(accessed on 19 December 2024)]. Available online: https://cs.wikipedia.org/wiki/Grafen.
Sitko R., Zawisza B., Malicka E. Graphene as a New Sorbent in Analytical Chemistry. Trends Anal. Chem. 2013;51:33–43. doi: 10.1016/j.trac.2013.05.011. DOI
Alam S.N., Sharma N., Kumar L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (RGO) Graphene. 2017;6:1–18. doi: 10.4236/graphene.2017.61001. DOI
Graphite Oxide. [(accessed on 19 December 2024)]. Available online: https://en.wikipedia.org/wiki/Graphite_oxide#/media/File:Graphite_oxide.svg.
Anegbe B., Ifijen I.H., Maliki M., Uwidia I.E., Aigbodion A.I. Graphene Oxide Synthesis and Applications in Emerging Contaminant Removal: A Comprehensive Review. Environ. Sci. Eur. 2024;36:15. doi: 10.1186/s12302-023-00814-4. DOI
Li G., Du R., Cao Z., Li C., Xue J., Ma X., Wang S. Research Progress in Graphene-Based Adsorbents for Wastewater Treatment: Preparation, Adsorption Properties and Mechanisms for Inorganic and Organic Pollutants. C. 2024;10:78. doi: 10.3390/c10030078. DOI
Lü M., Li J., Yang X., Zhang C., Yang J., Hu H., Wang X. Applications of Graphene-Based Materials in Environmental Protection and Detection. Chin. Sci. Bull. 2013;58:2698–2710. doi: 10.1007/s11434-013-5887-y. DOI
MSE Suppliers Is Graphene Hydrophilic or Hydrophobic? [(accessed on 7 January 2025)]. Available online: https://www.msesupplies.com/blogs/news/is-graphene-hydrophilic-or-hydrophobic.
Kulakova I.I., Lisichkin G.V. Prospects for Using Graphene Nanomaterials: Sorbents, Membranes, and Gas Sensors. Russ. J. Appl. Chem. 2021;94:1177–1188. doi: 10.1134/S1070427221090019. DOI
Wang J., Zhang J., Han L., Wang J., Zhu L., Zeng H. Graphene-Based Materials for Adsorptive Removal of Pollutants from Water and Underlying Interaction Mechanism. Adv. Colloid Interface Sci. 2021;289:102360. doi: 10.1016/J.CIS.2021.102360. PubMed DOI
Machado A.B., Schmitt P., Maraschin T.G., Osorio D.M.M., Basso N.R.D.S., Berlese D.B. Adsorption Capacity of Pollutants from Water by Graphene and Graphene-Based Materials: A Bibliographic Review. Contrib. Cienc. Sociales. 2024;17:e4707. doi: 10.55905/revconv.17n.2-285. DOI
Baig N., Ihsanullah, Sajid M., Saleh T.A. Graphene-Based Adsorbents for the Removal of Toxic Organic Pollutants: A Review. J. Environ. Manag. 2019;244:370–382. doi: 10.1016/J.JENVMAN.2019.05.047. PubMed DOI
Rosli F.A., Ahmad H., Jumbri K., Abdullah A.H., Kamaruzaman S., Fathihah Abdullah N.A. Efficient Removal of Pharmaceuticals from Water Using Graphene Nanoplatelets as Adsorbent. R. Soc. Open Sci. 2021;8:201076. doi: 10.1098/rsos.201076. PubMed DOI PMC
Kyzas G.Z., Deliyanni E.A., Matis K.A. Graphene Oxide and Its Application as an Adsorbent for Wastewater Treatment. J. Chem. Technol. Biotechnol. 2013;89:196–205. doi: 10.1002/jctb.4220. DOI
Nanografi. [(accessed on 6 January 2025)]. Available online: https://nanografi.com/about-us-references/
Bytesnikova Z., Richtera L., Smerkova K., Adam V. Graphene Oxide as a Tool for Antibiotic-Resistant Gene Removal: A Review. Environ. Sci. Pollut. Res. 2019;26:20148–20163. doi: 10.1007/s11356-019-05283-y. PubMed DOI
Yu W., Zhan S., Shen Z., Zhou Q., Yang D. Efficient Removal Mechanism for Antibiotic Resistance Genes from Aquatic Environments by Graphene Oxide Nanosheet. Chem. Eng. J. 2017;313:836–846. doi: 10.1016/j.cej.2016.10.107. DOI
Karaolia P., Michael-Kordatou I., Hapeshi E., Drosou C., Bertakis Y., Christofilos D., Armatas G.S., Sygellou L., Schwartz T., Xekoukoulotakis N.P., et al. Removal of Antibiotics, Antibiotic-Resistant Bacteria and Their Associated Genes by Graphene-Based TiO2 Composite Photocatalysts under Solar Radiation in Urban Wastewaters. Appl. Catal. B Environ. 2018;224:810–824. doi: 10.1016/j.apcatb.2017.11.020. DOI
Pant A., Jain R., Ahammad S.Z., Ali S.W. Removal of Antibiotic Resistance Genes from Wastewater Using Diethylaminoethyl Cellulose as a Promising Adsorbent. J. Water Process Eng. 2023;55:104109. doi: 10.1016/j.jwpe.2023.104109. DOI
Wang X., Zhang H., Ham S., Qiao R. Graphene Oxide and Its Derivatives as Adsorbents for PFOA Molecules. J. Phys. Chem. B. 2023;127:9620–9629. doi: 10.1021/acs.jpcb.3c04762. PubMed DOI
Tunioli F., Marforio T.D., Favaretto L., Mantovani S., Pintus A., Bianchi A., Kovtun A., Agnes M., Palermo V., Calvaresi M., et al. Chemical Tailoring of Β-Cyclodextrin-Graphene Oxide for Enhanced Per- and Polyfluoroalkyl Substances (PFAS) Adsorption from Drinking Water. Chem. A Eur. J. 2023;29:e202301854. doi: 10.1002/chem.202301854. PubMed DOI
Gupta V.K., Saleh T.A. Sorption of Pollutants by Porous Carbon, Carbon Nanotubes and Fullerene- An Overview. Environ. Sci. Pollut. Res. 2013;20:2828–2843. doi: 10.1007/s11356-013-1524-1. PubMed DOI
Fullerene. [(accessed on 7 January 2025)]. Available online: https://cs.wikipedia.org/wiki/Fullereny.
Elessawy N.A., El-Sayed E.M., Ali S., Elkady M.F., Elnouby M., Hamad H.A. One-Pot Green Synthesis of Magnetic Fullerene Nanocomposite for Adsorption Characteristics. J. Water Process Eng. 2020;34:101047. doi: 10.1016/j.jwpe.2019.101047. DOI
Alomar M., Khan A.A. Porphyrin like Porous Fullerene Functionalized with Ga as an Effective Adsorbent for the Removal of Methylene Blue from Wastewater Effluent. Surf. Interfaces. 2024;52:104883. doi: 10.1016/j.surfin.2024.104883. DOI
Kausar A. Fullerene in Water Remediation Nanocomposite Membranes—Cutting Edge Advancements. Charact. Appl. Nanomater. 2024;7:4945. doi: 10.24294/can.v7i2.4945. DOI
Baby R., Saifullah B., Hussein M.Z. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. Nanoscale Res. Lett. 2019;14:341. doi: 10.1186/s11671-019-3167-8. PubMed DOI PMC
Lu W., Wei Z., Gu Z.-Y., Liu T.-F., Park J., Park J., Tian J., Zhang M., Zhang Q., Iii T.G., et al. Tuning the Structure and Function of Metal–Organic Frameworks via Linker Design. Chem. Soc. Rev. 2014;43:5561–5593. doi: 10.1039/C4CS00003J. PubMed DOI
Ossila. MOF Ligands. [(accessed on 6 January 2025)]. Available online: https://www.ossila.com/collections/mof-ligands.
Kumar M., Kulkarni N.V. Metal-Organic Frameworks (MOFs) [(accessed on 6 January 2025)]. Available online: https://www.amrita.edu/news/metal-organic-frameworks-mofs/
Kaye S.S., Dailly A., Yaghi O.M., Long J.R. Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-Benzenedicarboxylate)3 (MOF-5) J. Am. Chem. Soc. 2007;129:14176–14177. doi: 10.1021/ja076877g. PubMed DOI
Liu M., Zhang L., Wang M., Wang X., Cui H., Wei J., Li X. The Role of Metal-Organic Frameworks in Removing Emerging Contaminants in Wastewater. J. Clean. Prod. 2023;429:139526. doi: 10.1016/J.JCLEPRO.2023.139526. DOI
Wang B., Lv X.-L., Feng D., Xie L.-H., Zhang J., Li M., Xie Y., Li J.-R., Zhou H.-C. Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. J. Am. Chem. Soc. 2016;138:6204–6216. doi: 10.1021/jacs.6b01663. PubMed DOI
Wang C., Liu X., Keser Demir N., Chen J.P., Li K. Applications of Water Stable Metal–Organic Frameworks. Chem. Soc. Rev. 2016;45:5107–5134. doi: 10.1039/C6CS00362A. PubMed DOI
Ramezanalizadeh H., Manteghi F. Synthesis of a Novel MOF/CuWO4 Heterostructure for Efficient Photocatalytic Degradation and Removal of Water Pollutants. J. Clean. Prod. 2018;172:2655–2666. doi: 10.1016/J.JCLEPRO.2017.11.145. DOI
Beydaghdari M., Saboor F.H., Babapoor A., Asgari M. Recent Progress in Adsorptive Removal of Water Pollutants by Metal-Organic Frameworks. Chemnanomat. 2022;8:e202100400. doi: 10.1002/cnma.202100400. DOI
Darabdhara J., Ahmaruzzaman M. Recent Developments in MOF and MOF Based Composite as Potential Adsorbents for Removal of Aqueous Environmental Contaminants. Chemosphere. 2022;304:135261. doi: 10.1016/J.CHEMOSPHERE.2022.135261. PubMed DOI
Zadehahmadi F., Eden N.T., Mahdavi H., Konstas K., Mardel J.I., Shaibani M., Banerjee P.C., Hill M.R. Removal of Metals from Water Using MOF-Based Composite Adsorbents. Environ. Sci. Water Res. Technol. 2023;9:1305–1330. doi: 10.1039/D2EW00941B. DOI
Yan C., Jin J., Wang J., Zhang F., Tian Y., Liu C., Zhang F., Cao L., Zhou Y., Han Q. Metal–Organic Frameworks (MOFs) for the Efficient Removal of Contaminants from Water: Underlying Mechanisms, Recent Advances, Challenges, and Future Prospects. Coord. Chem. Rev. 2022;468:214595. doi: 10.1016/J.CCR.2022.214595. DOI
Wei Z., Su Q., Lin Q., Wang X., Long S., Zhang G., Yang J. Multifunctional Oxidized Poly (Arylene Sulfide Sulfone)/UiO-66 Nanofibrous Membrane with Efficient Adsorption/Separation Ability in Harsh Environment. Chem. Eng. J. 2022;430:133021. doi: 10.1016/j.cej.2021.133021. DOI
Martell Mendoza M., Alberto Méndez Cuesta C., Angel Zavala Sánchez M., Cuauhtemoc Pérez Montiel E., Mata Berbudez A., Pérez González C. Wastewater Treatment—Past and Future Perspectives. IntechOpen; London, UK: 2024. Metal Organic Frameworks Used as Antibiotic Removal Agents in Water. DOI
Du C., Zhang Z., Yu G., Wu H., Chen H., Zhou L., Zhang Y., Su Y., Tan S., Yang L., et al. A Review of Metal Organic Framework (MOFs)-Based Materials for Antibiotics Removal via Adsorption and Photocatalysis. Chemosphere. 2021;272:129501. doi: 10.1016/j.chemosphere.2020.129501. PubMed DOI
Lei M., Ge F., Ren S., Gao X., Zheng H. A Water-Stable Cd-MOF and Corresponding MOF@melamine Foam Composite for Detection and Removal of Antibiotics, Explosives, and Anions. Sep. Purif. Technol. 2022;286:120433. doi: 10.1016/j.seppur.2021.120433. DOI
Xu Z., Wen Y., Tian L., Li G. Efficient and Selective Adsorption of Nitroaromatic Explosives by Zr-MOF. Inorg. Chem. Commun. 2017;77:11–13. doi: 10.1016/j.inoche.2017.01.025. DOI
Tang X., Zhou C., Xia W., Liang Y., Zeng Y., Zhao X., Xiong W., Cheng M., Wang Z. Recent Advances in Metal–Organic Framework-Based Materials for Removal of Fluoride in Water: Performance, Mechanism, and Potential Practical Application. Chem. Eng. J. 2022;446:137299. doi: 10.1016/j.cej.2022.137299. DOI
Lal S., Singh P., Singhal A., Kumar S., Singh Gahlot A.P., Gandhi N., Kumari P. Advances in Metal–Organic Frameworks for Water Remediation Applications. RSC Adv. 2024;14:3413–3446. doi: 10.1039/D3RA07982A. PubMed DOI PMC
Li H., Eddaoudi M., O’Keeffe M., Yaghi O.M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature. 1999;402:276–279. doi: 10.1038/46248. DOI
Abedpour H., Moghaddas J.S., Borhani M.N., Borhani T.N. Separation of Toxic Contaminants from Water by Silica Aerogel-Based Adsorbents: A Comprehensive Review. J. Water Process Eng. 2023;53:103676. doi: 10.1016/j.jwpe.2023.103676. DOI
Soleimani Dorcheh A., Abbasi M.H. Silica Aerogel; Synthesis, Properties and Characterization. J. Mater. Process Technol. 2008;199:10–26. doi: 10.1016/j.jmatprotec.2007.10.060. DOI
Štandeker S., Novak Z., Knez Ž. Adsorption of Toxic Organic Compounds from Water with Hydrophobic Silica Aerogels. J. Colloid Interface Sci. 2007;310:362–368. doi: 10.1016/j.jcis.2007.02.021. PubMed DOI
Franco P., Cardea S., Tabernero A., De Marco I. Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules. 2021;26:4440. doi: 10.3390/molecules26154440. PubMed DOI PMC
Sekwele K.G., Tichapondwa S.M., Mhike W. Cellulose, Graphene and Graphene-Cellulose Composite Aerogels and Their Application in Water Treatment: A Review. Discov. Mater. 2024;4:23. doi: 10.1007/s43939-024-00097-3. DOI
Aylaz G., Okan M., Duman M., Aydin H.M. Study on Cost-Efficient Carbon Aerogel to Remove Antibiotics from Water Resources. ACS Omega. 2020;5:16635–16644. doi: 10.1021/acsomega.0c01479. PubMed DOI PMC
Ahmad A., Kamaruddin M.A., HPS A.K., Yahya E.B., Muhammad S., Rizal S., Ahmad M.I., Surya I., Abdullah C.K. Recent Advances in Nanocellulose Aerogels for Efficient Heavy Metal and Dye Removal. Gels. 2023;9:416. doi: 10.3390/gels9050416. PubMed DOI PMC
Boccia A.C., Neagu M., Pulvirenti A. Bio-Based Aerogels for the Removal of Heavy Metal Ions and Oils from Water: Novel Solutions for Environmental Remediation. Gels. 2023;10:32. doi: 10.3390/gels10010032. PubMed DOI PMC
Lv T., Wu F., Zhang Z., Liu Z., Zhao Y., Yu L., Zhang J., Yu C., Zhao C., Xing G. TiVCT X MXene/Graphene Nanosheet-Based Aerogels for Removal of Organic Contaminants from Wastewater. ACS Appl. Nano Mater. 2024;7:7312–7326. doi: 10.1021/acsanm.4c00038. DOI
Niu X., Si J., Chen B., Wang Q., Zeng S., Cui Z. Preparation of Bioaerogel from Iron-Rich Microalgae for the Removal of Water Pollutants. Processes. 2024;12:1313. doi: 10.3390/pr12071313. DOI
Ganesamoorthy R., Vadivel V.K., Kumar R., Kushwaha O.S., Mamane H. Aerogels for Water Treatment: A Review. J. Clean. Prod. 2021;329:129713. doi: 10.1016/j.jclepro.2021.129713. DOI
Garg S., Singh S., Shehata N., Sharma H., Samuel J., A Khan N., Ramamurthy P.C., Singh J., Mubashir M., Bokhari A., et al. Aerogels in Wastewater Treatment: A Review. J. Taiwan Inst. Chem. Eng. 2023;166:105299. doi: 10.1016/j.jtice.2023.105299. DOI
Lamy-Mendes A., Lopes D., Girão A.V., Silva R.F., Malfait W.J., Durães L. Carbon Nanostructures—Silica Aerogel Composites for Adsorption of Organic Pollutants. Toxics. 2023;11:232. doi: 10.3390/toxics11030232. PubMed DOI PMC
Sharma S.K., Ranjani P., Mamane H., Kumar R. Preparation of Graphene Oxide-Doped Silica Aerogel Using Supercritical Method for Efficient Removal of Emerging Pollutants from Wastewater. Sci. Rep. 2023;13:16448. doi: 10.1038/s41598-023-43613-w. PubMed DOI PMC
Lamy-Mendes A., Torres R.B., Vareda J.P., Lopes D., Ferreira M., Valente V., Girão A.V., Valente A.J.M., Durães L. Amine Modification of Silica Aerogels/Xerogels for Removal of Relevant Environmental Pollutants. Molecules. 2019;24:3701. doi: 10.3390/molecules24203701. PubMed DOI PMC
Gorgolis G., Kotsidi M., Paterakis G., Koutroumanis N., Tsakonas C., Galiotis C. Graphene Aerogels as Efficient Adsorbers of Water Pollutants and Their Effect of Drying Methods. Sci. Rep. 2024;14:8029. doi: 10.1038/s41598-024-58651-1. PubMed DOI PMC