Silver(I) ions ultrasensitive detection at carbon electrodes-analysis of waters, tobacco cells and fish tissues
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
22399980
PubMed Central
PMC3290483
DOI
10.3390/s90906934
PII: s90906934
Knihovny.cz E-zdroje
- Klíčová slova
- ecotoxicology, guppy (Poecilia reticulata), miniaturized carbon electrodes, silver, tobacco cells, voltammetry,
- Publikační typ
- časopisecké články MeSH
We used carbon paste electrodes and a standard potentiostat to detect silver ions. The detection limit (3 Signal/Noise ratio) was estimated as 0.5 μM. A standard electrochemical instrument microanalysis of silver(I) ions was suggested. As a working electrode a carbon tip (1 mL) or carbon pencil was used. Limits of detection estimated by dilution of a standard were 1 (carbon tip) or 10 nM (carbon pencil). Further we employed flow injection analysis coupled with carbon tip to detect silver(I) ions released in various beverages and mineral waters. During first, second and third week the amount of silver(I) ions releasing into water samples was under the detection limit of the technique used for their quantification. At the end of a thirteen weeks long experiment the content of silver(I) ions was several times higher compared to the beginning of release detected in the third week and was on the order of tens of nanomoles. In subsequent experiments the influence of silver(I) ions (0, 5 and 10 μM) on a plant model system (tobacco BY-2 cells) during a four-day exposition was investigated. Silver(I) ions were highly toxic to the cells, which was revealed by a double staining viability assay. Moreover we investigated the effect of silver(I) ions (0, 0.3, 0.6, 1.2 and 2.5 μM) on guppies (Poecilia reticulata). Content of Ag(I) increased with increasing time of the treatment and applied concentrations in fish tissues. It can be concluded that a carbon tip or carbon pencil coupled with a miniaturized potentiostat can be used for detection of silver(I) ions in environmental samples and thus represents a small, portable, low cost and easy-to-use instrument for such purposes.
Zobrazit více v PubMed
Bell R.A., Kramer J.R. Structural chemistry and geochemistry of silver-sulfur compounds: Critical review. Environ. Toxicol. Chem. 1999;18:9–22.
Kramer J.R., Adams N.W.H., Manolopoulos H., Collins P.V. Silver at an old mining camp, cobalt, Ontario, Canada. Environ. Toxicol. Chem. 1999;18:23–29.
Bury N.R., Galvez F., Wood C.M. Effects of chloride, calcium, and dissolved organic carbon on silver toxicity: Comparison between rainbow trout and fathead minnows. Environ. Toxicol. Chem. 1999;18:56–62.
Bury N.R., McGeer J.C., Wood C.M. Effects of altering freshwater chemistry on physiological responses of rainbow trout to silver exposure. Environ. Toxicol. Chem. 1999;18:49–55.
Krizkova S., Adam V., Kizek R. Phytotoxicity of silver ions. Chem. Listy. 2009;103:559–568.
Kizek R., Vacek J., Trnkova L., Klejdus B., Kuban V. Electrochemical biosensors in agricultural and environmental analysis. Chem. Listy. 2003;97:1003–1006.
Morgan T.P., Wood C.M. A relationship between gill silver accumulation and acute silver toxicity in the freshwater rainbow trout: Support for the acute silver biotic ligand model. Environ. Toxicol. Chem. 2004;23:1261–1267. PubMed
Call D.J., Polkinghorne C.N., Markee T.P., Brooke L.T., Geiger D.L., Gorsuch J.W., Robillard K.A. Silver toxicity to Chironomus tentans in two freshwater sediments. Environ. Toxicol. Chem. 1999;18:30–39.
Berry W.J., Cantwell M.G., Edwards P.A., Serbst J.R., Hansen D.J. Predicting toxicity of sediments spiked with silver. Environ. Toxicol. Chem. 1999;18:40–48.
Krizkova S., Ryant P., Krystofova O., Adam V., Galiova M., Beklova M., Babula P., Kaiser J., Novotny K., Novotny J., Liska M., Malina R., Zehnalek J., Hubalek J., Havel L., Kizek R. Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions - Plants as bioindicators of environmental pollution. Sensors. 2008;8:445–463. PubMed PMC
Mahajan R.K., Kaur I., Sharma V., Kumar M. Sensor for silver(I) ion based on Schiff-base-p-tertbutylcalix[4] arene. Sensors. 2002;2:417–423.
Hogstrand C., Wood C.M. Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: Implications for water quality criteria. Environ. Toxicol. Chem. 1998;17:547–561.
Hogstrand C., Galvez F., Wood C.M. Toxicity, silver accumulation and metallothionein induction in freshwater rainbow trout during exposure to different silver salts. Environ. Toxicol. Chem. 1996;15:1102–1108.
Mann R.M., Ernste M.J., Bell R.A., Kramer J.R., Wood C.M. Evaluation of the protective effects of reactive sulfide on the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss) Environ. Toxicol. Chem. 2004;23:1204–1210. PubMed
Gorsuch J.W., Klaine S.J. Toxicity and fate of silver in the environment. Environ. Toxicol. Chem. 1998;17:537–538.
Raoof J.B., Ojani R., Kiani A. Kinetic determination of silver ion by its perturbation on Belousov-Zhabotinskii oscillating chemical reaction using potentiometric method. Anal. Sci. 2004;20:883–886. PubMed
Tsiouris S.E., Aravanopoulos F.A., Papadoyannis I.N., Sofoniou M.K., Samanidou V.F., Zachariadis G.A., Constantinidou H.I.A. Soil silver mobility in areas subjected to cloud seeding with AgI. Fresenius Environ. Bull. 2003;12:1059–1063.
Purcell T.W., Peters J.J. Sources of silver in the environment. Environ. Toxicol. Chem. 1998;17:539–546.
Purcell T.W., Peters J.J. Historical impacts of environmental regulation of silver. Environ. Toxicol. Chem. 1999;18:3–8.
Blastik O., Hubalek J., Adam V., Prasek J., Beklova M., Singer C., Sures B., Trnkova L., Zehnalek J., Kizek R. Ieee. Electrochemical sensor for determination of metallothionein as biomarker. IEEE Sensors. 2006;1–3:1187–1190.
Shamspur T., Mashhadizadeh M.H., Sheikhshoaie I. Flame atomic absorption spectrometric determination of silver ion after preconcentration on octadecyl silica membrane disk modified with bis[5-((4-nitrophenyl)azosalicylaldehyde)] as a new Schiff base ligand. J. Anal. At. Spectrom. 2003;18:1407–1410.
Saeki S., Kubota M., Asami T. Determination of silver in plants by flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 1996;64:179–183.
Safavi A., Iranpoor N., Saghir N. Directly silica bonded analytical reagents: synthesis of 2-mercaptobenzothiazole-silica gel and its application as a new sorbent for preconcentration and determination of silver ion using solid-phase extraction method. Sep. Purif. Technol. 2004;40:303–308.
Schildkraut D.E., Dao P.T., Twist J.P., Davis A.T., Robillard K.A. Determination of silver ions at sub microgram-per-liter levels using anodic square-wave stripping voltammetry. Environ. Toxicol. Chem. 1998;17:642–649.
Zhang S.B., Zhang X.J., Lin X.Q. An ethylenediaminetetraacetic acid modified carbon paste electrode for the determination of silver ion. Chin. J. Anal. Chem. 2002;30:745–747.
Guo S.X., Khoo S.B. Highly selective and sensitive determination of silver(I) at a poly(8-mercaptoquinoline) film modified glassy carbon electrode. Electroanalysis. 1999;11:891–898.
Ye X.Z., Yang Q.H., Wang Y., Li N.Q. Electrochemical behaviour of gold, silver, platinum and palladium on the glassy carbon electrode modified by chitosan and its application. Talanta. 1998;47:1099–1106. PubMed
Wang J., Lu J.M., Farias P.A.M. Remote electrochemical monitoring of trace silver. Anal. Chim. Acta. 1996;318:151–157.
Mikelova R., Baloun J., Petrlova J., Adam V., Havel L., Petrek H., Horna A., Kizek R. Electrochemical determination of Ag-ions in environment waters and their action on plant embryos. Bioelectrochemistry. 2007;70:508–518. PubMed
Huska D., Krizkova S., Hubalek J., Adam V., Beklova M., Trnkova L., Kizek R. Employing of electroanalytical techniques for detection of silver(I) ions. Toxicol. Lett. 2008;180:S236–S237.
Chaperon S., Sauve S. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol. Biochem. 2007;39:2329–2338.
Grosell M., Nielsen C., Bianchini A. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2002;133:287–303. PubMed
Blaedel W.J., Wang J. Mixed immobilized enzyme-porous electrode reactor. Anal. Chem. 1980;52:1426–1429.
Karen D.J., Ownby D.R., Forsythe B.L., Bills T.P., La Point T.W., Cobb G.B., Klaine S.J. Influence of water quality on silver toxicity to rainbow trout (Oncorhynchus mykiss), fathead minnows (Pimephales promelas), and water fleas (Daphnia magna) Environ. Toxicol. Chem. 1999;18:63–70.
Svancara I., Vytras K., Barek J., Zima J. Carbon paste electrodes in modern electroanalysis. Crit. Rev. Anal. Chem. 2001;31:311–345.
Svancara I., Kalcher K., Diewald W., Vytras K. Voltammetric determination of silver at ultratrace levels using a carbon paste electrode with improved surface characteristics. Electroanalysis. 1996;8:336–342.
Puigdomenech I., Bergstrom U. Calculation of distribution coefficients for radionuclides in soils and sediments. Nucl. Saf. 1995;36:142–154.
Jagner D., Sahlin E., Renman L. Experimental and computational study of species formed during electrochemical stripping oxidation of copper in chloride media - Determination of copper(Ii) in the NG 1(-1) range by stripping potentiometry. Talanta. 1995;42:1447–1455. PubMed
Babula P., Supalkova V., Adam V., Havel L., Beklova M., Sladky Z., Kizek R. An influence of cisplatin on tobacco cell culture Nicotiana tabacum BY-2. Plant Soil Environ. 2007;53:350–354.
Vitecek J., Petrlova J., Petrek J., Adam V., Havel L., Kramer K.J., Kizek R. Application of fluorimetric analysis of plant esterases to study of programmed cell death and effects of cadmium(II) ions. Biol. Plant. 2007;51:551–555.
Stejskal K., Krizkova S., Adam V., Sures B., Trnkova L., Zehnalek J., Hubalek J., Beklova M., Hanustiak P., Svobodova Z., Horna A., Kizek R. Bio-assessing of environmental pollution via monitoring of metallothionein level using electrochemical detection. IEEE Sens. J. 2008;8:1578–1585.
Kizek R., Masarik M., Kramer K.J., Potesil D., Bailey M., Howard J.A., Klejdus B., Mikelova R., Adam V., Trnkova L., Jelen F. An analysis of avidin, biotin and their interaction at attomole levels by voltammetric and chromatographic techniques. Anal. Bioanal. Chem. 2005;381:1167–1178. PubMed
Masarik M., Kizek R., Kramer K.J., Billova S., Brazdova M., Vacek J., Bailey M., Jelen F., Howard J.A. Application of avidin-biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal. Chem. 2003;75:2663–2669. PubMed
Petrlova J., Krizkova S., Supalkova V., Masarik M., Adam V., Havel L., Kramer K.J., Kizek R. The determination of avidin in genetically modified maize by voltammetric techniques. Plant Soil Environ. 2007;53:345–349.
Petrlova J., Masarik M., Potesil D., Adam V., Trnkova L., Kizek R. Zeptomole detection of streptavidin using carbon paste electrode and square wave voltammetry. Electroanalysis. 2007;19:1177–1182.
Wang J., Kawde A.N., Sahlin E. Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst. 1999;125:5–7. PubMed
Petrek J., Havel L., Petrlova J., Adam V., Potesil D., Babula P., Kizek R. Analysis of salicylic acid in willow barks and branches by an electrochemical method. Russ. J. Plant Physiol. 2007;54:553–558.
Supalkova V., Petrek J., Havel L., Krizkova S., Petrlova J., Adam V., Potesil D., Babula P., Beklova M., Horna A., Kizek R. Electrochemical sensors for detection of acetylsalicylic acid. Sensors. 2006;6:1483–1497.
Nagata T., Nemoto Y., Hasezawa S. Tobacco BY-2 cell-line as the Hela-cell in the cell biology of higher-plants. Int. Rev. Cytol. 1992;132:1–30.
Petrek J., Vitecek J., Vlasinova H., Kizek R., Kramer K.J., Adam V., Klejdus B., Havel L. Application of computer imaging, stripping voltammetry and mass spectrometry to study the effect of lead (Pb-EDTA) on the growth and viability of early somatic embryos of Norway spruce (Picea abies/L./Karst.) Anal. Bioanal. Chem. 2005;383:576–586. PubMed
Vitecek J., Petrlova J., Adam V., Havel L., Kramer K.J., Babula P., Kizek R. A fluorimetric sensor for detection of one living cell. Sensors. 2007;7:222–238.
Witte C.P., Medina-Escobar N. In-gel detection of urease with nitroblue tetrazolium and quantification of the enzyme from different crop plants using the indophenol reaction. Anal. Biochem. 2001;290:102–107. PubMed
Hubalek J., Hradecky J., Adam V., Krystofova O., Huska D., Masarik M., Trnkova L., Horna A., Klosova K., Adamek M., Zehnalek J., Kizek R. Spectrometric and voltammetric analysis of urease – Nickel nanoelectrode as an electrochemical sensor. Sensors. 2007;7:1238–1255.
Long G.L., Winefordner J.D. Limit of detection. Anal. Chem. 1983;55:A712–A724.
Investigation into the effect of molds in grasses on their content of low molecular mass thiols