Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MSM/LO1417
Ministerstvo Školství, Mládeže a Tělovýchovy
GA16-10948S
Grantová Agentura České Republiky
CZ.2.16/3.1.00/21519
Operational Programme Prague-Competitiveness
BILA-06
Bijzonder Onderzoeksfonds
PubMed
29502206
DOI
10.1007/s00299-018-2269-6
PII: 10.1007/s00299-018-2269-6
Knihovny.cz E-zdroje
- Klíčová slova
- Auxin, Calcium, Ethylene, Silver ions, Tobacco BY-2 cells, Transmembrane transport,
- MeSH
- buněčná membrána účinky léků metabolismus MeSH
- buněčné linie MeSH
- cytosol účinky léků metabolismus MeSH
- intracelulární prostor metabolismus MeSH
- ionty MeSH
- kyseliny indoloctové metabolismus MeSH
- permeabilita buněčné membrány účinky léků MeSH
- rostlinné buňky účinky léků metabolismus MeSH
- stříbro farmakologie MeSH
- tabák cytologie metabolismus MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ionty MeSH
- kyseliny indoloctové MeSH
- stříbro MeSH
- vápník MeSH
Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca2+) as shown by comparison of transport assays in Ca2+-rich and Ca2+-free buffers and upon treatment with inhibitors of plasma membrane Ca2+-permeable channels Al3+ and ruthenium red, both abolishing the effect of AgNO3. Confocal microscopy of Ca2+-sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca2+-permeable channels at the plasma membrane.
Zobrazit více v PubMed
J Physiol. 1998 Aug 15;511 ( Pt 1):25-32 PubMed
J Biol Chem. 1984 Nov 10;259(21):13363-9 PubMed
FEBS Lett. 2007 Oct 30;581(26):5105-9 PubMed
Plant Physiol. 1985 Sep;79(1):207-11 PubMed
Science. 1999 Feb 12;283(5404):996-8 PubMed
Plant Physiol. 1976 Sep;58(3):268-71 PubMed
Plants (Basel). 2013 Oct 21;2(4):650-75 PubMed
New Phytol. 2010 Apr;186(2):373-84 PubMed
Planta. 1996 Apr;198(4):532-541 PubMed
Plant J. 2016 Jan;85(2):245-57 PubMed
Plant Physiol. 2013 Nov;163(3):1230-41 PubMed
Arch Biochem Biophys. 1990 Feb 15;277(1):47-55 PubMed
Biochim Biophys Acta. 2000 May 1;1465(1-2):171-89 PubMed
Plant Cell Physiol. 2001 Sep;42(9):900-5 PubMed
Ann Bot. 2004 Jun;93(6):741-53 PubMed
J Physiol. 1998 Aug 15;511 ( Pt 1):15-24 PubMed
Proc Natl Acad Sci U S A. 1983 Mar;80(6):1526-30 PubMed
J Exp Bot. 2001 Aug;52(361):1615-23 PubMed
Plant Physiol. 2002 Dec;130(4):1983-91 PubMed
Biophys J. 1992 Nov;63(5):1416-20 PubMed
J Exp Bot. 2012 Jan;63(1):151-62 PubMed
Plant Physiol. 1992 Jan;98(1):230-7 PubMed
Science. 2006 May 12;312(5775):914-8 PubMed
Gen Physiol Biophys. 2003 Dec;22(4):515-23 PubMed
Sci Rep. 2016 Dec 01;6:38035 PubMed
Sensors (Basel). 2009;9(9):6934-50 PubMed
Environ Toxicol Chem. 2017 Oct;36(10 ):2773-2780 PubMed
FEBS Lett. 2002 Nov 20;531(3):443-7 PubMed
Biochem Biophys Res Commun. 2004 May 7;317(3):823-30 PubMed
Biochem Biophys Res Commun. 2004 Nov 5;324(1):40-5 PubMed
Plant J. 2008 Jul;55(2):175-87 PubMed
Plant Cell. 2007 Jul;19(7):2197-212 PubMed
Plant Cell. 2009 Nov;21(11):3585-90 PubMed
Synthetic auxin herbicide 2,4-D and its influence on a model BY-2 suspension