A Smartphone Camera Colorimetric Assay of Acetylcholinesterase and Butyrylcholinesterase Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH03030336
Technologická Agentura České Republiky
PubMed
33807562
PubMed Central
PMC7961819
DOI
10.3390/s21051796
PII: s21051796
Knihovny.cz E-zdroje
- Klíčová slova
- Carbamate, Ellman’s assay, cholinesterase, diagnosis, image analysis, inhibition, liver function test, organophosphate, point-of-care,
- MeSH
- acetylcholinesterasa * MeSH
- butyrylcholinesterasa * MeSH
- cholinesterasové inhibitory MeSH
- chytrý telefon MeSH
- kolorimetrie MeSH
- lidé MeSH
- spektrofotometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa * MeSH
- butyrylcholinesterasa * MeSH
- cholinesterasové inhibitory MeSH
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can serve as biochemical markers of various pathologies like liver disfunction and poisonings by nerve agents. Ellman's assay is the standard spectrophotometric method to measure cholinesterase activity in clinical laboratories. The authors present a new colorimetric test to assess AChE and BChE activity in biological samples using chromogenic reagents, treated 3D-printed measuring pads and a smartphone camera as a signal detector. Multiwell pads treated with reagent substrates 2,6-dichlorophenolindophenyl acetate, indoxylacetate, ethoxyresorufin and methoxyresorufin were prepared and tested for AChE and BChE. In the experiments, 3D-printed pads containing indoxylacetate as a chromogenic substrate were optimal for analytical purposes. The best results were achieved using the red (R) channel, where the limit of detection was 4.05 µkat/mL for BChE and 4.38 µkat/mL for AChE using a 40 µL sample and a 60 min assay. The major advantage of this method is its overall simplicity, as samples are applied directly without any specific treatment or added reagents. The assay was also validated to the standard Ellman's assay using human plasma samples. In conclusion, this smartphone camera-based colorimetric assay appears to have practical applicability and to be a suitable method for point-of-care testing because it does not require specific manipulation, additional education of staff or use of sophisticated analytical instruments.
Zobrazit více v PubMed
Pohanka M. Butyrylcholinesterase as a biochemical marker, a review. Brat. Med. J. 2013;114:726–734. doi: 10.4149/BLL_2013_153. PubMed DOI
Nurulain S.M., Adem A., Munir S., Habib R., Awan S., Anwar F., Batool S. Butyrylcholinesterase in substance abuse: An overview. Neurophysiology. 2020;52:145–158. doi: 10.1007/s11062-020-09864-3. DOI
Xing S.S., Li Q., Xiong B.C., Chen Y., Feng F., Liu W.Y., Sun H.P. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer’s disease, and fat metabolism. Med. Res. Rev. 2021 doi: 10.1002/med.21745. PubMed DOI
Ha Z.Y., Mathew S., Yeong K.Y. Butyrylcholinesterase: A multifaceted pharmacological target and tool. Curr. Protein Pept. Sci. 2020;21:99–109. doi: 10.2174/1389203720666191107094949. PubMed DOI
Pohanka M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci. 2012;13:2219–2238. doi: 10.3390/ijms13022219. PubMed DOI PMC
Rand J.B. Acetylcholine. WormBook. 2007 doi: 10.1895/wormbook.1.131.1. PubMed DOI PMC
Grunewald B., Siefert P. Acetylcholine and its receptors in honeybees: Involvement in development and impairments by neonicotinoids. Insects. 2019;10:420. doi: 10.3390/insects10120420. PubMed DOI PMC
Changeux J.P. Discovery of the first neurotransmitter receptor: The acetylcholine nicotinic receptor. Biomolecules. 2020;10:547. doi: 10.3390/biom10040547. PubMed DOI PMC
Pope C.N., Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol. 2018;153:205–216. doi: 10.1016/j.bcp.2018.01.044. PubMed DOI PMC
Lorke D.E., Petroianu G.A. Treatment of organophosphate poisoning with experimental oximes: A review. Curr. Org. Chem. 2019;23:628–639. doi: 10.2174/1385272823666190408114001. DOI
Hulse E.J., Haslam J.D., Emmett S.R., Woolley T. Organophosphorus nerve agent poisoning: Managing the poisoned patient. Br. J. Anaesth. 2019;123:457–463. doi: 10.1016/j.bja.2019.04.061. PubMed DOI
Sussman J.L., Silman I. Computational studies on cholinesterases: Strengthening our understanding of the integration of structure, dynamics and function. Neuropharmacology. 2020;179:108265. doi: 10.1016/j.neuropharm.2020.108265. PubMed DOI
Eckroat T.J., Manross D.L., Cowan S.C. Merged tacrine-based, multitarget-directed acetylcholinesterase inhibitors 2015-present: Synthesis and biological activity. Int. J. Mol. Sci. 2020;21:5965. doi: 10.3390/ijms21175965. PubMed DOI PMC
Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of alzheimer’s disease. Expert Opin. Drug Metab. Toxicol. 2020;16:673–701. doi: 10.1080/17425255.2020.1779700. PubMed DOI
Bagri K., Kumar A., Manisha, Kumar P. Computational studies on acetylcholinesterase inhibitors: From biochemistry to chemistry. Mini-Rev. Med. Chem. 2020;20:1403–1435. doi: 10.2174/1389557520666191224144346. PubMed DOI
Zagorska A., Jaromin A. Perspectives for new and more efficient multifunctional ligands for alzheimer’s disease therapy. Molecules. 2020;25:3337. doi: 10.3390/molecules25153337. PubMed DOI PMC
Ellman G.L., Courtney K.D., Andres V., Jr., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Ellman G.L., Lysko H. Disulfide and sulfhydryl compounds in tca extracts of human blood and plasma. J. Lab. Clin. Med. 1967;70:518–527. PubMed
Eyer P., Worek F., Kiderlen D., Sinko G., Stuglin A., Simeon-Rudolf V., Reiner E. Molar absorption coefficients for the reduced ellman reagent: Reassessment. Anal. Biochem. 2003;312:224–227. doi: 10.1016/S0003-2697(02)00506-7. PubMed DOI
Sergeyeva T., Yarynka D., Dubey L., Dubey I., Piletska E., Linnik R., Antonyuk M., Ternovska T., Brovko O., Piletsky S., et al. Sensor based on molecularly imprinted polymer membranes and smartphone for detection of fusariumcontamination in cereals. Sensors. 2020;20:4304. doi: 10.3390/s20154304. PubMed DOI PMC
Pohanka M. Colorimetric hand-held sensors and biosensors.with a small digital camera as signal recorder: A review. Rev. Anal. Chem. 2020;39:20–30. doi: 10.1515/revac-2020-0111. DOI
Ong D.S.Y., Poljak M. Smartphones as mobile microbiological laboratories. Clin. Microbiol. Infect. 2020;26:421–424. doi: 10.1016/j.cmi.2019.09.026. PubMed DOI
Nishidate I., Minakawa M., McDuff D., Wares A., Nakano K., Haneishi H., Aizu Y., Niizeki K. Simple and affordable imaging of multiple physiological parameters with rgb camera-based diffuse reflectance spectroscopy. Biomed. Opt. Express. 2020;11:1073–1091. doi: 10.1364/BOE.382270. PubMed DOI PMC
Watson H.A., Tribe R.M., Shennan A.H. The role of medical smartphone apps in clinical decision-support: A literature review. Artif. Intell. Med. 2019;100:21. doi: 10.1016/j.artmed.2019.101707. PubMed DOI
Lin B., Yu Y., Cao Y., Guo M., Zhu D., Dai J., Zheng M. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens. Bioelectron. 2018;100:482–489. doi: 10.1016/j.bios.2017.09.028. PubMed DOI
Mohamed M.A., Shaalan S., Ghazy A.E.M., Ali A.A., Abd-Elaziz A.M., Ghanem M.M.E., Abd-Elghany S.A. Purification and characterization of acetylcholinesterase in rhynchophorus ferrugineus (olivier) (coleoptera: Curculionidae) Int. J. Biol. Macromol. 2020;147:1029–1040. doi: 10.1016/j.ijbiomac.2019.10.071. PubMed DOI
Cao Y., Herrero-Nogareda L., Cedergreen N. A comparative study of acetylcholinesterase and general-esterase activity assays using different substrates, in vitro and in vivo exposures and model organisms. Ecotoxicol. Environ. Saf. 2020;189:109954. doi: 10.1016/j.ecoenv.2019.109954. PubMed DOI
Marinho C.S., Matias M.V.F., Brandao I.G.F., Santos E.L., Machado S.S., Zanta C. Characterization and kinetic study of the brain and muscle acetylcholinesterase from danio rerio. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019;222:11–18. doi: 10.1016/j.cbpc.2019.04.005. PubMed DOI
Kumar Y., Narsaiah K. Rapid point-of-care testing methods/devices for meat species identification: A review. Compr. Rev. Food. Sci. Food Saf. 2021;20 doi: 10.1111/1541-4337.12674. PubMed DOI
Masumi L., Fakhim H., Vaezi A., Pourhassan-Moghaddam M., Ebrahimi-Kalan A., Zarghami N. Strategies for isothermal amplification of nucleic acids: Are they ready to be applied in point of care diagnosis of mycosis? Biointerface Res. Appl. Chem. 2021;11:10559–10571.
Yuce M., Filiztekin E., Ozkaya K.G. Covid-19 diagnosis—A review of current methods. Biosens. Bioelectron. 2021;172:112752. doi: 10.1016/j.bios.2020.112752. PubMed DOI PMC
Subsoontorn P., Lohitnavy M., Kongkaew C. The diagnostic accuracy of isothermal nucleic acid point-of-care tests for human coronaviruses: A systematic review and meta-analysis. Sci. Rep. 2020;10:22349. doi: 10.1038/s41598-020-79237-7. PubMed DOI PMC
Murray L.P., Mace C.R. Usability as a guiding principle for the design of paper-based, point-of-care devices—A review. Anal. Chim. Acta. 2020;1140:236–249. doi: 10.1016/j.aca.2020.09.063. PubMed DOI
Price C.P., Fay M., Hopstaken R.M. Point-of-care testing for d-dimer in the diagnosis of venous thromboembolism in primary care: A narrative review. Cardiol. Ther. 2021:1–14. doi: 10.1007/s40119-020-00206-2. PubMed DOI PMC
Chen Y.T., Lee Y.C., Lai Y.H., Lim J.C., Huang N.T., Lin C.T., Huang J.J. Review of integrated optical biosensors for point-of-care applications. Biosensors. 2020;10:209. doi: 10.3390/bios10120209. PubMed DOI PMC
Ratajczak K., Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr. Polym. 2020;229:115463. doi: 10.1016/j.carbpol.2019.115463. PubMed DOI
Open Meter Duo: Low-Cost Instrument for Fluorimetric Determination of Cholinesterase Activity