A Smartphone Camera Colorimetric Assay of Acetylcholinesterase and Butyrylcholinesterase Activity

. 2021 Mar 05 ; 21 (5) : . [epub] 20210305

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33807562

Grantová podpora
TH03030336 Technologická Agentura České Republiky

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can serve as biochemical markers of various pathologies like liver disfunction and poisonings by nerve agents. Ellman's assay is the standard spectrophotometric method to measure cholinesterase activity in clinical laboratories. The authors present a new colorimetric test to assess AChE and BChE activity in biological samples using chromogenic reagents, treated 3D-printed measuring pads and a smartphone camera as a signal detector. Multiwell pads treated with reagent substrates 2,6-dichlorophenolindophenyl acetate, indoxylacetate, ethoxyresorufin and methoxyresorufin were prepared and tested for AChE and BChE. In the experiments, 3D-printed pads containing indoxylacetate as a chromogenic substrate were optimal for analytical purposes. The best results were achieved using the red (R) channel, where the limit of detection was 4.05 µkat/mL for BChE and 4.38 µkat/mL for AChE using a 40 µL sample and a 60 min assay. The major advantage of this method is its overall simplicity, as samples are applied directly without any specific treatment or added reagents. The assay was also validated to the standard Ellman's assay using human plasma samples. In conclusion, this smartphone camera-based colorimetric assay appears to have practical applicability and to be a suitable method for point-of-care testing because it does not require specific manipulation, additional education of staff or use of sophisticated analytical instruments.

Zobrazit více v PubMed

Pohanka M. Butyrylcholinesterase as a biochemical marker, a review. Brat. Med. J. 2013;114:726–734. doi: 10.4149/BLL_2013_153. PubMed DOI

Nurulain S.M., Adem A., Munir S., Habib R., Awan S., Anwar F., Batool S. Butyrylcholinesterase in substance abuse: An overview. Neurophysiology. 2020;52:145–158. doi: 10.1007/s11062-020-09864-3. DOI

Xing S.S., Li Q., Xiong B.C., Chen Y., Feng F., Liu W.Y., Sun H.P. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer’s disease, and fat metabolism. Med. Res. Rev. 2021 doi: 10.1002/med.21745. PubMed DOI

Ha Z.Y., Mathew S., Yeong K.Y. Butyrylcholinesterase: A multifaceted pharmacological target and tool. Curr. Protein Pept. Sci. 2020;21:99–109. doi: 10.2174/1389203720666191107094949. PubMed DOI

Pohanka M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci. 2012;13:2219–2238. doi: 10.3390/ijms13022219. PubMed DOI PMC

Rand J.B. Acetylcholine. WormBook. 2007 doi: 10.1895/wormbook.1.131.1. PubMed DOI PMC

Grunewald B., Siefert P. Acetylcholine and its receptors in honeybees: Involvement in development and impairments by neonicotinoids. Insects. 2019;10:420. doi: 10.3390/insects10120420. PubMed DOI PMC

Changeux J.P. Discovery of the first neurotransmitter receptor: The acetylcholine nicotinic receptor. Biomolecules. 2020;10:547. doi: 10.3390/biom10040547. PubMed DOI PMC

Pope C.N., Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol. 2018;153:205–216. doi: 10.1016/j.bcp.2018.01.044. PubMed DOI PMC

Lorke D.E., Petroianu G.A. Treatment of organophosphate poisoning with experimental oximes: A review. Curr. Org. Chem. 2019;23:628–639. doi: 10.2174/1385272823666190408114001. DOI

Hulse E.J., Haslam J.D., Emmett S.R., Woolley T. Organophosphorus nerve agent poisoning: Managing the poisoned patient. Br. J. Anaesth. 2019;123:457–463. doi: 10.1016/j.bja.2019.04.061. PubMed DOI

Sussman J.L., Silman I. Computational studies on cholinesterases: Strengthening our understanding of the integration of structure, dynamics and function. Neuropharmacology. 2020;179:108265. doi: 10.1016/j.neuropharm.2020.108265. PubMed DOI

Eckroat T.J., Manross D.L., Cowan S.C. Merged tacrine-based, multitarget-directed acetylcholinesterase inhibitors 2015-present: Synthesis and biological activity. Int. J. Mol. Sci. 2020;21:5965. doi: 10.3390/ijms21175965. PubMed DOI PMC

Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of alzheimer’s disease. Expert Opin. Drug Metab. Toxicol. 2020;16:673–701. doi: 10.1080/17425255.2020.1779700. PubMed DOI

Bagri K., Kumar A., Manisha, Kumar P. Computational studies on acetylcholinesterase inhibitors: From biochemistry to chemistry. Mini-Rev. Med. Chem. 2020;20:1403–1435. doi: 10.2174/1389557520666191224144346. PubMed DOI

Zagorska A., Jaromin A. Perspectives for new and more efficient multifunctional ligands for alzheimer’s disease therapy. Molecules. 2020;25:3337. doi: 10.3390/molecules25153337. PubMed DOI PMC

Ellman G.L., Courtney K.D., Andres V., Jr., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Ellman G.L., Lysko H. Disulfide and sulfhydryl compounds in tca extracts of human blood and plasma. J. Lab. Clin. Med. 1967;70:518–527. PubMed

Eyer P., Worek F., Kiderlen D., Sinko G., Stuglin A., Simeon-Rudolf V., Reiner E. Molar absorption coefficients for the reduced ellman reagent: Reassessment. Anal. Biochem. 2003;312:224–227. doi: 10.1016/S0003-2697(02)00506-7. PubMed DOI

Sergeyeva T., Yarynka D., Dubey L., Dubey I., Piletska E., Linnik R., Antonyuk M., Ternovska T., Brovko O., Piletsky S., et al. Sensor based on molecularly imprinted polymer membranes and smartphone for detection of fusariumcontamination in cereals. Sensors. 2020;20:4304. doi: 10.3390/s20154304. PubMed DOI PMC

Pohanka M. Colorimetric hand-held sensors and biosensors.with a small digital camera as signal recorder: A review. Rev. Anal. Chem. 2020;39:20–30. doi: 10.1515/revac-2020-0111. DOI

Ong D.S.Y., Poljak M. Smartphones as mobile microbiological laboratories. Clin. Microbiol. Infect. 2020;26:421–424. doi: 10.1016/j.cmi.2019.09.026. PubMed DOI

Nishidate I., Minakawa M., McDuff D., Wares A., Nakano K., Haneishi H., Aizu Y., Niizeki K. Simple and affordable imaging of multiple physiological parameters with rgb camera-based diffuse reflectance spectroscopy. Biomed. Opt. Express. 2020;11:1073–1091. doi: 10.1364/BOE.382270. PubMed DOI PMC

Watson H.A., Tribe R.M., Shennan A.H. The role of medical smartphone apps in clinical decision-support: A literature review. Artif. Intell. Med. 2019;100:21. doi: 10.1016/j.artmed.2019.101707. PubMed DOI

Lin B., Yu Y., Cao Y., Guo M., Zhu D., Dai J., Zheng M. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens. Bioelectron. 2018;100:482–489. doi: 10.1016/j.bios.2017.09.028. PubMed DOI

Mohamed M.A., Shaalan S., Ghazy A.E.M., Ali A.A., Abd-Elaziz A.M., Ghanem M.M.E., Abd-Elghany S.A. Purification and characterization of acetylcholinesterase in rhynchophorus ferrugineus (olivier) (coleoptera: Curculionidae) Int. J. Biol. Macromol. 2020;147:1029–1040. doi: 10.1016/j.ijbiomac.2019.10.071. PubMed DOI

Cao Y., Herrero-Nogareda L., Cedergreen N. A comparative study of acetylcholinesterase and general-esterase activity assays using different substrates, in vitro and in vivo exposures and model organisms. Ecotoxicol. Environ. Saf. 2020;189:109954. doi: 10.1016/j.ecoenv.2019.109954. PubMed DOI

Marinho C.S., Matias M.V.F., Brandao I.G.F., Santos E.L., Machado S.S., Zanta C. Characterization and kinetic study of the brain and muscle acetylcholinesterase from danio rerio. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019;222:11–18. doi: 10.1016/j.cbpc.2019.04.005. PubMed DOI

Kumar Y., Narsaiah K. Rapid point-of-care testing methods/devices for meat species identification: A review. Compr. Rev. Food. Sci. Food Saf. 2021;20 doi: 10.1111/1541-4337.12674. PubMed DOI

Masumi L., Fakhim H., Vaezi A., Pourhassan-Moghaddam M., Ebrahimi-Kalan A., Zarghami N. Strategies for isothermal amplification of nucleic acids: Are they ready to be applied in point of care diagnosis of mycosis? Biointerface Res. Appl. Chem. 2021;11:10559–10571.

Yuce M., Filiztekin E., Ozkaya K.G. Covid-19 diagnosis—A review of current methods. Biosens. Bioelectron. 2021;172:112752. doi: 10.1016/j.bios.2020.112752. PubMed DOI PMC

Subsoontorn P., Lohitnavy M., Kongkaew C. The diagnostic accuracy of isothermal nucleic acid point-of-care tests for human coronaviruses: A systematic review and meta-analysis. Sci. Rep. 2020;10:22349. doi: 10.1038/s41598-020-79237-7. PubMed DOI PMC

Murray L.P., Mace C.R. Usability as a guiding principle for the design of paper-based, point-of-care devices—A review. Anal. Chim. Acta. 2020;1140:236–249. doi: 10.1016/j.aca.2020.09.063. PubMed DOI

Price C.P., Fay M., Hopstaken R.M. Point-of-care testing for d-dimer in the diagnosis of venous thromboembolism in primary care: A narrative review. Cardiol. Ther. 2021:1–14. doi: 10.1007/s40119-020-00206-2. PubMed DOI PMC

Chen Y.T., Lee Y.C., Lai Y.H., Lim J.C., Huang N.T., Lin C.T., Huang J.J. Review of integrated optical biosensors for point-of-care applications. Biosensors. 2020;10:209. doi: 10.3390/bios10120209. PubMed DOI PMC

Ratajczak K., Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr. Polym. 2020;229:115463. doi: 10.1016/j.carbpol.2019.115463. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...