Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
23698772
PubMed Central
PMC3676818
DOI
10.3390/ijms14059873
PII: ijms14059873
Knihovny.cz E-zdroje
- MeSH
- acetylcholinesterasa metabolismus MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory farmakologie MeSH
- kofein farmakologie MeSH
- lidé MeSH
- molekulární modely MeSH
- počítačová simulace MeSH
- rekombinantní proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- kofein MeSH
- rekombinantní proteiny MeSH
Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE) and/or, butyrylcholinesterase (BChE), the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon's plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was -6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.
Zobrazit více v PubMed
Metherate R. Functional connectivity and cholinergic modulation in auditory cortex. Neurosci. Biobehav. Rev. 2011;35:2058–2063. PubMed PMC
Wessler I., Kirkpatrick C.J. Acetylcholine beyond neurons: The non-neuronal cholinergic system in humans. Br. J. Pharmacol. 2008;154:1558–1571. PubMed PMC
Pohanka M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci. 2012;13:2219–2238. PubMed PMC
Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. 2011;155:219–229. PubMed
Pohanka M. Acetylcholinesterase inhibitors: A patent review (2008–present) Expert Opin. Ther. Pat. 2012;22:871–886. PubMed
Jokanovic M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 2009;190:107–115. PubMed
Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58:51–66. PubMed
Pohanka M. Alzheimer’s disease and related neurodegenerative disorders: Implication and counteracting of melatonin. J. Appl. Biomed. 2011;9:185–196.
Holzgrabe U., Kapkova P., Alptuzun V., Scheiber J., Kugelmann E. Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin. Ther. Targets. 2007;11:161–179. PubMed
Krall W.J., Sramek J.J., Cutler N.R. Cholinesterase inhibitors: A therapeutic strategy for alzheimer disease. Ann. Pharmacother. 1999;33:441–450. PubMed
Bhat K.G., Singhal V., Borker A.S. Successful treatment of vincristine induced ptosis and polyneuropathy with pyridoxine and pyridostigmine in a child with acute lymphoblastic leukemia. Indian J. Med. Paediatr. Oncol. 2012;33:185–187. PubMed PMC
Yu Q.S., Holloway H.W., Luo W., Lahiri D.K., Brossi A., Greig N.H. Long-acting anticholinesterases for myasthenia gravis: Synthesis and activities of quaternary phenylcarbamates of neostigmine, pyridostigmine and physostigmine. Bioorg. Med. Chem. 2010;18:4687–4693. PubMed PMC
Iwasaki T., Yoneda M., Nakajima A., Terauchi Y. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern. Med. 2007;46:1633–1639. PubMed
Ostergaard D., Viby-Moogensen J., Hanel H.K., Skovgaard L.T. Half-life of plasma cholinesterase. Acta Anaesthesiol. Scand. 1988;32:266–269. PubMed
Guilbeau J.R. Health risks of energy drinks: What nurses and consumers need to know. Nurs. Women’s Health. 2012;16:423–428. PubMed
Sepkowitz K.A. Energy drinks and caffeine-related adverse effects. JAMA. 2013;309:243–244. PubMed
Potenza R.L., Armida M., Rerrante A., Pezzola A., Matteucci A., Puopolo M., Popoli P. Effects of chronic caffeine intake in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. Res. 2013;91:585–592. PubMed
Szadujkis-Szadurska K., Grzesk G., Szadujkis-Szadurski L., Gajdus M., Matusiak G. Role of acetylcholine and calcium ions in three vascular contraction models: Angiotensin II, phenylephrine and caffeine. Exp. Ther. Med. 2012;4:329–333. PubMed PMC
Glatter K.A., Myers R., Chiamvimonvat N. Recommendations regarding dietary intake and caffeine and alcohol consumption in patients with cardiac arrhythmias: What do you tell your patients to do or not to do? Curr. Threat. Opt. Cardiovasc. Med. 2012;14:529–535. PubMed PMC
Cummings K.J., Commons K.G., Trachtenberg F.L., Li A., Kinney H.C., Nattie E.E. Caffeine improves the ability of serotonin-deficient (pet-1−/−) mice to survive episodic asphyxia. Pediatr. Res. 2013;73:38–45. PubMed PMC
Golembiowska K., Dziubina A. The effect of adenosine a(2a) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of vmat2. Neurotox. Res. 2012;22:150–157. PubMed PMC
Shin H.J., Ryu J.H., Kim S.T., Zuo Z., Do S.H. Caffeine-induced inhibition of the activity of glutamate transporter type 3 expressed in xenopus oocytes. Toxicol. Lett. 2013;217:143–148. PubMed
Daly J.W. Caffeine analogs: Biomedical impact. Cell. Mol. Life Sci. 2007;64:2153–2169. PubMed PMC
Ribeiro J.A., Sebastiao A.M. Caffeine and adenosine. J. Alzheimers Dis. 2010;20:S3–S15. PubMed
Acquas E., Tanda G., DiChiara G. Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats. Neuropsychopharmacology. 2002;27:182–193. PubMed
Tomaszewski M., Olchowik G., Tomaszewska M., Burdan F. Use of X-ray microprobe to diagnose bone tissue demineralization after caffeine administration. Folia Histochem. Cytobiol. 2012;50:436–443. PubMed
Bai D.L., Tang X.C., He X.C. Huperzine a, a potential therapeutic agent for treatment of alzheimer’s disease. Curr. Med. Chem. 2000;7:355–374. PubMed
Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012;55:10282–10286. PubMed
Okello E.J., Leylabi R., McDougall G.J. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food Funct. 2012;3:651–661. PubMed
Karadsheh N., Kussie P., Linthicum D.C. Inhibition of acetylcholinesterase by caffeine, anabasine, methyl pyrrolidine and their derivatives. Toxicol. Lett. 1991;55:332–342. PubMed
Stoytcheva M., Zlatev R., Velkova Z., Valdez B., Ovalle M. Electrochemical study on the kinetic behavior of the immobilized acetylcholinesterase. ECS Trans. 2009;20:175–184.
Vukcevic N.P., Babic G., Segrt Z., Ercegovic G.V., Jankovic S., Acimovic L. Severe acute caffeine poisoning due to intradermal injections: Mesotherapy hazard. Vojnosanit. Pregl. 2012;69:707–713. PubMed
Pohanka M. Antioxidants countermeasures against sulfur mustard. Mini Rev. Med. Chem. 2012;12:742–748. PubMed
Yubero-Lahoz S., Pardo R., Farre M., Mathuna B.O., Torrens M., Mustata C., Perez-Mana C., Langohr K., Carbo M.L., de la Torre R. Changes in cyp1a2 activity in humans after 3,4-methylenedioxymethamphetamine (mdma, ecstasy) administration using caffeine as a probe drug. Drug Metab. Pharmacokineti. 2012;27:605–613. PubMed
Chu Y.F., Chang W.H., Black R.M., Liu J.R., Sompol P., Chen Y.M., Wei H.L., Zhao Q.Y., Cheng I.H. Crude caffeine reduces memory impairment and amyloid beta(1–42) levels in an alzheimer’s mouse model. Food Chem. 2012;135:2095–2102. PubMed
Vila-Luna S., Cabrera-Isidoro S., Vila-Luna L., Juarez-Diaz I., Bata-Garcia J.L., Alvarez-Cervera F.J., Zapata-Vazquez R.E., Arankowsky-Sandoval G., Heredia-Lopez F., Flores G., et al. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrities in ca1 hippocampal neurons. Neuroscience. 2012;202:384–395. PubMed
Oboh G., Agunloye O.M., Akinyemi A.J., Ademiluyi A.O., Adefegha S.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain—. In vitro. Neurochem. Res. 2013;38:413–419. PubMed
Hu Y.Q., Zhang J., Chandrashankra O., Ip F.C.F., Ip N.Y. Design, synthesis and evaluation of novel heterodimers of donepezil and huperzine fragments as acetylcholinesterase inhibitors. Bioorgan. Med. Chem. 2013;21:676–683. PubMed
Karlsson D., Fallarero A., Brunhofer G., Mayer C., Prakash O., Mohan C.G., Vuorela P., Erker T. The exploration of thienothiazines as selective butyrylcholinesterase inhibitors. Eur. J. Pharm. Sci. 2012;47:190–205. PubMed
Catto M., Pisani L., Leonetti F., Nicolotti O., Pesce P., Stefanachi A., Cellamare S., Carotti A. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg. Med. Chem. 2013;21:146–152. PubMed
Pohanka M. Role of oxidative stress in infectious diseases. A review. Folia Microbiol. 2013 doi: 10.1007/s12223-013-0239-5. PubMed DOI
Sanchez-Lopez F., Tasset I., Aguera E., Feijoo M., Fernandez-Bolanos R., Sanchez F.M., Ruiz M.C., Cruz A.H., Gascon F., Tunez I. Oxidative stress and inflammation biomarkers in the blood of patients with huntington’s disease. Neurol. Res. 2012;34:721–724. PubMed
Ramalingam M., Kim S.J. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J. Neural. Transm. 2012;119:891–910. PubMed
Holmes C., Ballard C., Lehmann D., Smith A.D., Beaumont H., Day I.N., Khan M.N., Lovestone S., McCulley M., Morris C.M., et al. Rate of progression of cognitive decline in alzheimer’s disease: Effect of butyrylcholinesterase K gene variation. J. Neurol. Neurosurg. Psychiatr. 2005;76:640–643. PubMed PMC
Pohanka M. Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Anal. Lett. 2012;45:367–374.
Pohanka M. Spectrophotomeric assay of aflatoxin b1 using acetylcholinesterase immobilized on standard microplates. Anal. Lett. 2013 doi: 10.1080/00032719.2012.757703. DOI
Pohanka M. Cholinesterases in biorecognition and biosensor construction, a review. Anal. Lett. 2013 doi: 10.1080/00032719.2013.780240. DOI
Eyer P., Worek F., Kiderlen D., Sinko G., Stuglin A., Simeon-Rudolf V., Reiner E. Molar absorption coefficients for the reduced ellman reagent: Reassessment. Anal. Biochem. 2003;312:224–227. PubMed
Trott O., Olson A.J. Software news and update autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Seeliger D., de Groot B.L. Ligand docking and binding site analysis with pymol and autodock/vina. J. Comput. Aid. Mol. Des. 2010;24:417–422. PubMed PMC
Dixon M. The determination of enzyme inhibitor constants. Biochem. J. 1953;55:170–171. PubMed PMC
Cornish-Bowden A. A simple graphical method for determinating the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem. J. 1973;137:143–144. PubMed PMC
Cortes A., Cascante M., Cardenas M.L., Cornish-Bowden A. Relationships between inhibition constants, inhibitor concentrations for 50% inhibition and types of inhibition: New ways of analysing data. Biochem. J. 2001;357:263–268. PubMed PMC
Cer R.Z., Mudunuri U., Stephens R., Lebeda F.J. Ic50-to-ki: A web-based tool for converting ic50 to ki values for inhibitors of enzyme activity and ligand binding. Nucleic Acids Res. 2009;37:W441–W445. PubMed PMC
Fluorometric and Colorimetric Biosensors for the Assay of Cholinesterase Inhibitors
Caffeine and cardiovascular diseases: critical review of current research