Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase

. 2013 May 08 ; 14 (5) : 9873-82. [epub] 20130508

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23698772

Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE) and/or, butyrylcholinesterase (BChE), the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon's plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was -6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

Zobrazit více v PubMed

Metherate R. Functional connectivity and cholinergic modulation in auditory cortex. Neurosci. Biobehav. Rev. 2011;35:2058–2063. PubMed PMC

Wessler I., Kirkpatrick C.J. Acetylcholine beyond neurons: The non-neuronal cholinergic system in humans. Br. J. Pharmacol. 2008;154:1558–1571. PubMed PMC

Pohanka M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci. 2012;13:2219–2238. PubMed PMC

Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. 2011;155:219–229. PubMed

Pohanka M. Acetylcholinesterase inhibitors: A patent review (2008–present) Expert Opin. Ther. Pat. 2012;22:871–886. PubMed

Jokanovic M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 2009;190:107–115. PubMed

Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58:51–66. PubMed

Pohanka M. Alzheimer’s disease and related neurodegenerative disorders: Implication and counteracting of melatonin. J. Appl. Biomed. 2011;9:185–196.

Holzgrabe U., Kapkova P., Alptuzun V., Scheiber J., Kugelmann E. Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin. Ther. Targets. 2007;11:161–179. PubMed

Krall W.J., Sramek J.J., Cutler N.R. Cholinesterase inhibitors: A therapeutic strategy for alzheimer disease. Ann. Pharmacother. 1999;33:441–450. PubMed

Bhat K.G., Singhal V., Borker A.S. Successful treatment of vincristine induced ptosis and polyneuropathy with pyridoxine and pyridostigmine in a child with acute lymphoblastic leukemia. Indian J. Med. Paediatr. Oncol. 2012;33:185–187. PubMed PMC

Yu Q.S., Holloway H.W., Luo W., Lahiri D.K., Brossi A., Greig N.H. Long-acting anticholinesterases for myasthenia gravis: Synthesis and activities of quaternary phenylcarbamates of neostigmine, pyridostigmine and physostigmine. Bioorg. Med. Chem. 2010;18:4687–4693. PubMed PMC

Iwasaki T., Yoneda M., Nakajima A., Terauchi Y. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern. Med. 2007;46:1633–1639. PubMed

Ostergaard D., Viby-Moogensen J., Hanel H.K., Skovgaard L.T. Half-life of plasma cholinesterase. Acta Anaesthesiol. Scand. 1988;32:266–269. PubMed

Guilbeau J.R. Health risks of energy drinks: What nurses and consumers need to know. Nurs. Women’s Health. 2012;16:423–428. PubMed

Sepkowitz K.A. Energy drinks and caffeine-related adverse effects. JAMA. 2013;309:243–244. PubMed

Potenza R.L., Armida M., Rerrante A., Pezzola A., Matteucci A., Puopolo M., Popoli P. Effects of chronic caffeine intake in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. Res. 2013;91:585–592. PubMed

Szadujkis-Szadurska K., Grzesk G., Szadujkis-Szadurski L., Gajdus M., Matusiak G. Role of acetylcholine and calcium ions in three vascular contraction models: Angiotensin II, phenylephrine and caffeine. Exp. Ther. Med. 2012;4:329–333. PubMed PMC

Glatter K.A., Myers R., Chiamvimonvat N. Recommendations regarding dietary intake and caffeine and alcohol consumption in patients with cardiac arrhythmias: What do you tell your patients to do or not to do? Curr. Threat. Opt. Cardiovasc. Med. 2012;14:529–535. PubMed PMC

Cummings K.J., Commons K.G., Trachtenberg F.L., Li A., Kinney H.C., Nattie E.E. Caffeine improves the ability of serotonin-deficient (pet-1−/−) mice to survive episodic asphyxia. Pediatr. Res. 2013;73:38–45. PubMed PMC

Golembiowska K., Dziubina A. The effect of adenosine a(2a) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of vmat2. Neurotox. Res. 2012;22:150–157. PubMed PMC

Shin H.J., Ryu J.H., Kim S.T., Zuo Z., Do S.H. Caffeine-induced inhibition of the activity of glutamate transporter type 3 expressed in xenopus oocytes. Toxicol. Lett. 2013;217:143–148. PubMed

Daly J.W. Caffeine analogs: Biomedical impact. Cell. Mol. Life Sci. 2007;64:2153–2169. PubMed PMC

Ribeiro J.A., Sebastiao A.M. Caffeine and adenosine. J. Alzheimers Dis. 2010;20:S3–S15. PubMed

Acquas E., Tanda G., DiChiara G. Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats. Neuropsychopharmacology. 2002;27:182–193. PubMed

Tomaszewski M., Olchowik G., Tomaszewska M., Burdan F. Use of X-ray microprobe to diagnose bone tissue demineralization after caffeine administration. Folia Histochem. Cytobiol. 2012;50:436–443. PubMed

Bai D.L., Tang X.C., He X.C. Huperzine a, a potential therapeutic agent for treatment of alzheimer’s disease. Curr. Med. Chem. 2000;7:355–374. PubMed

Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012;55:10282–10286. PubMed

Okello E.J., Leylabi R., McDougall G.J. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food Funct. 2012;3:651–661. PubMed

Karadsheh N., Kussie P., Linthicum D.C. Inhibition of acetylcholinesterase by caffeine, anabasine, methyl pyrrolidine and their derivatives. Toxicol. Lett. 1991;55:332–342. PubMed

Stoytcheva M., Zlatev R., Velkova Z., Valdez B., Ovalle M. Electrochemical study on the kinetic behavior of the immobilized acetylcholinesterase. ECS Trans. 2009;20:175–184.

Vukcevic N.P., Babic G., Segrt Z., Ercegovic G.V., Jankovic S., Acimovic L. Severe acute caffeine poisoning due to intradermal injections: Mesotherapy hazard. Vojnosanit. Pregl. 2012;69:707–713. PubMed

Pohanka M. Antioxidants countermeasures against sulfur mustard. Mini Rev. Med. Chem. 2012;12:742–748. PubMed

Yubero-Lahoz S., Pardo R., Farre M., Mathuna B.O., Torrens M., Mustata C., Perez-Mana C., Langohr K., Carbo M.L., de la Torre R. Changes in cyp1a2 activity in humans after 3,4-methylenedioxymethamphetamine (mdma, ecstasy) administration using caffeine as a probe drug. Drug Metab. Pharmacokineti. 2012;27:605–613. PubMed

Chu Y.F., Chang W.H., Black R.M., Liu J.R., Sompol P., Chen Y.M., Wei H.L., Zhao Q.Y., Cheng I.H. Crude caffeine reduces memory impairment and amyloid beta(1–42) levels in an alzheimer’s mouse model. Food Chem. 2012;135:2095–2102. PubMed

Vila-Luna S., Cabrera-Isidoro S., Vila-Luna L., Juarez-Diaz I., Bata-Garcia J.L., Alvarez-Cervera F.J., Zapata-Vazquez R.E., Arankowsky-Sandoval G., Heredia-Lopez F., Flores G., et al. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrities in ca1 hippocampal neurons. Neuroscience. 2012;202:384–395. PubMed

Oboh G., Agunloye O.M., Akinyemi A.J., Ademiluyi A.O., Adefegha S.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain—. In vitro. Neurochem. Res. 2013;38:413–419. PubMed

Hu Y.Q., Zhang J., Chandrashankra O., Ip F.C.F., Ip N.Y. Design, synthesis and evaluation of novel heterodimers of donepezil and huperzine fragments as acetylcholinesterase inhibitors. Bioorgan. Med. Chem. 2013;21:676–683. PubMed

Karlsson D., Fallarero A., Brunhofer G., Mayer C., Prakash O., Mohan C.G., Vuorela P., Erker T. The exploration of thienothiazines as selective butyrylcholinesterase inhibitors. Eur. J. Pharm. Sci. 2012;47:190–205. PubMed

Catto M., Pisani L., Leonetti F., Nicolotti O., Pesce P., Stefanachi A., Cellamare S., Carotti A. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg. Med. Chem. 2013;21:146–152. PubMed

Pohanka M. Role of oxidative stress in infectious diseases. A review. Folia Microbiol. 2013 doi: 10.1007/s12223-013-0239-5. PubMed DOI

Sanchez-Lopez F., Tasset I., Aguera E., Feijoo M., Fernandez-Bolanos R., Sanchez F.M., Ruiz M.C., Cruz A.H., Gascon F., Tunez I. Oxidative stress and inflammation biomarkers in the blood of patients with huntington’s disease. Neurol. Res. 2012;34:721–724. PubMed

Ramalingam M., Kim S.J. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J. Neural. Transm. 2012;119:891–910. PubMed

Holmes C., Ballard C., Lehmann D., Smith A.D., Beaumont H., Day I.N., Khan M.N., Lovestone S., McCulley M., Morris C.M., et al. Rate of progression of cognitive decline in alzheimer’s disease: Effect of butyrylcholinesterase K gene variation. J. Neurol. Neurosurg. Psychiatr. 2005;76:640–643. PubMed PMC

Pohanka M. Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Anal. Lett. 2012;45:367–374.

Pohanka M. Spectrophotomeric assay of aflatoxin b1 using acetylcholinesterase immobilized on standard microplates. Anal. Lett. 2013 doi: 10.1080/00032719.2012.757703. DOI

Pohanka M. Cholinesterases in biorecognition and biosensor construction, a review. Anal. Lett. 2013 doi: 10.1080/00032719.2013.780240. DOI

Eyer P., Worek F., Kiderlen D., Sinko G., Stuglin A., Simeon-Rudolf V., Reiner E. Molar absorption coefficients for the reduced ellman reagent: Reassessment. Anal. Biochem. 2003;312:224–227. PubMed

Trott O., Olson A.J. Software news and update autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC

Seeliger D., de Groot B.L. Ligand docking and binding site analysis with pymol and autodock/vina. J. Comput. Aid. Mol. Des. 2010;24:417–422. PubMed PMC

Dixon M. The determination of enzyme inhibitor constants. Biochem. J. 1953;55:170–171. PubMed PMC

Cornish-Bowden A. A simple graphical method for determinating the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem. J. 1973;137:143–144. PubMed PMC

Cortes A., Cascante M., Cardenas M.L., Cornish-Bowden A. Relationships between inhibition constants, inhibitor concentrations for 50% inhibition and types of inhibition: New ways of analysing data. Biochem. J. 2001;357:263–268. PubMed PMC

Cer R.Z., Mudunuri U., Stephens R., Lebeda F.J. Ic50-to-ki: A web-based tool for converting ic50 to ki values for inhibitors of enzyme activity and ligand binding. Nucleic Acids Res. 2009;37:W441–W445. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...