Caffeic Acid and Diseases-Mechanisms of Action
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Cooperatio METD
Charles University
EXCELES, ID Project No. LX22NPO5104
European Union
PubMed
36614030
PubMed Central
PMC9820408
DOI
10.3390/ijms24010588
PII: ijms24010588
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, atherosclerosis, caffeic acid, cancer, diabetes, obesity,
- MeSH
- fenethylalkohol * farmakologie MeSH
- kyseliny kávové * farmakologie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- caffeic acid MeSH Prohlížeč
- fenethylalkohol * MeSH
- kyseliny kávové * MeSH
Caffeic acid belongs to the polyphenol compounds we consume daily, often in the form of coffee. Even though it is less explored than caffeic acid phenethyl ester, it still has many positive effects on human health. Caffeic acid can affect cancer, diabetes, atherosclerosis, Alzheimer's disease, or bacterial and viral infections. This review focuses on the molecular mechanisms of how caffeic acid achieves its effects.
Zobrazit více v PubMed
El-Seedi H.R., El-Said A.M., Khalifa S.A., Goransson U., Bohlin L., Borg-Karlson A.K., Verpoorte R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 2012;60:10877–10895. doi: 10.1021/jf301807g. PubMed DOI
Trandafir I., Nour V., Ionica M.E. Antioxidant capacity, phenolic acids and caffeine contents of some commercial coffees available on the Romanian market. Arch. Latinoam. De Nutr. 2013;63:87–94. PubMed
Lafay S., Morand C., Manach C., Besson C., Scalbert A. Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. Br. J. Nutr. 2006;96:39–46. doi: 10.1079/BJN20061714. PubMed DOI
Baba S., Osakabe N., Natsume M., Terao J. Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid. Life Sci. 2004;75:165–178. doi: 10.1016/j.lfs.2003.11.028. PubMed DOI
Celli N., Dragani L.K., Murzilli S., Pagliani T., Poggi A. In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis. J. Agric. Food Chem. 2007;55:3398–3407. doi: 10.1021/jf063477o. PubMed DOI
Mirzaei S., Gholami M.H., Zabolian A., Saleki H., Farahani M.V., Hamzehlou S., Far F.B., Sharifzadeh S.O., Samarghandian S., Khan H., et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol. Res. 2021;171:105759. doi: 10.1016/j.phrs.2021.105759. PubMed DOI
Simonetti P., Gardana C., Pietta P. Plasma levels of caffeic acid and antioxidant status after red wine intake. J. Agric. Food Chem. 2001;49:5964–5968. doi: 10.1021/jf010546k. PubMed DOI
Khan F.A., Maalik A., Murtaza G. Inhibitory mechanism against oxidative stress of caffeic acid. J. Food. Drug. Anal. 2016;24:695–702. doi: 10.1016/j.jfda.2016.05.003. PubMed DOI PMC
Damasceno S.S., Dantas B.B., Ribeiro-Filho J., Antonio M.A.D., Galberto M.d.C.J. Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review. Curr. Pharm. Des. 2017;23:3015–3023. doi: 10.2174/1381612822666161208145508. PubMed DOI
Zheng L.F., Dai F., Zhou B., Yang L., Liu Z.L. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure-activity relationship. Food Chem. Toxicol. 2008;46:149–156. doi: 10.1016/j.fct.2007.07.010. PubMed DOI
Bhat S.H., Azmi A.S., Hadi S.M. Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: Involvement of endogenous copper and a putative mechanism for anticancer properties. Toxicol. Appl. Pharmacol. 2007;218:249–255. doi: 10.1016/j.taap.2006.11.022. PubMed DOI
Cai H., Huang X.J., Xu S.T., Shen H., Zhang P.F., Huang Y., Jiang J.Y., Sun Y.J., Jiang B., Wu X.M., et al. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. Eur. J. Med. Chem. 2016;108:89–103. doi: 10.1016/j.ejmech.2015.11.013. PubMed DOI
Adeyeye S.A.O. Heterocyclic Amines and Polycyclic Aromatic Hydrocarbons in Cooked Meat Products: A Review. Polycycl. Aromat. Compd. 2018;40:1557–1567. doi: 10.1080/10406638.2018.1559208. DOI
Felton J.S., Knize M.G., Wu R.W., Colvin M.E., Hatch F.T., Malfatti M.A. Mutagenic potency of food-derived heterocyclic amines. Mutat. Res. 2007;616:90–94. doi: 10.1016/j.mrfmmm.2006.11.010. PubMed DOI
Zhang N., Chen Y.F., Zhao Y.L., Fan D.M., Li L.J., Yan B.W., Tao G., Zhao J.X., Zhang H., Wang M.F. Caffeic acid assists microwave heating to inhibit the formation of mutagenic and carcinogenic PhIP. Food Chem. 2020;317:8. doi: 10.1016/j.foodchem.2020.126447. PubMed DOI
Cheng K.W., Wong C.C., Chao J., Lo C., Chen F., Chu I.K., Che C.-M., Ho C.-T., Wang M. Inhibition of mutagenic PhIP formation byepigallocatechin gallateviascavenging ofphenylacetaldehyde. Mol. Nutr. Food Res. 2009;53:716–725. doi: 10.1002/mnfr.200800206. PubMed DOI
Hong Y.J., Yang S.Y., Nam M.H., Koo Y.C., Lee K.W. Caffeic Acid Inhibits the Uptake of 2-Amino-1-methyl-6-phenylimidazo 4,5-b pyridine (PhIP) by Inducing the Efflux Transporters Expression in Caco-2 Cells. Biol. Pharm. Bull. 2015;38:201–207. doi: 10.1248/bpb.b14-00495. PubMed DOI
web3. [(accessed on 8 August 2022)]. Available online: https://www.wcrf.org/cancer-trends/liver-cancer-statistics/
McGlynn K.A., Petrick J.L., El-Serag H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology. 2021;73((Suppl. S1)):4–13. doi: 10.1002/hep.31288. PubMed DOI PMC
Espindola K.M.M., Ferreira R.G., Narvaez L.E.M., Rosario A., da Silva A.H.M., Silva A.G.B., Vieira A.P.O., Monteiro M.C. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 2019;9:541. doi: 10.3389/fonc.2019.00541. PubMed DOI PMC
Gu W.T., Yang Y., Zhang C., Zhang Y.J., Chen L.J., Shen J., Li G.Y., Li Z., Li L., Li Y., et al. Caffeic acid attenuates the angiogenic function of hepatocellular carcinoma cells via reduction in JNK-1-mediated HIF-1 alpha stabilization in hypoxia. RSC Adv. 2016;6:82774–82782. doi: 10.1039/C6RA07703J. DOI
Jiang F., Wang X.X., Liu Q.Q., Shen J., Li Z., Li Y., Zhang J.P. Inhibition of TGF-beta/SMAD3/NF-kappa B signaling by microRNA-491 is involved in arsenic trioxide-induced anti-angiogenesis in hepatocellular carcinoma cells. Toxicol. Lett. 2014;231:55–61. doi: 10.1016/j.toxlet.2014.08.024. PubMed DOI
Wang L.L., Lu M., Yi M., Chen L.J., Shen J., Li Z., Li L., Yang Y., Zhang J.P., Li Y. Caffeic acid attenuates the autocrine IL-6 in hepatocellular carcinoma via the epigenetic silencing of the NF-kappa B-IL-6-STAT-3 feedback loop. RSC Adv. 2015;5:52952–52957. doi: 10.1039/C5RA05878C. DOI
Chung T.W., Moon S.K., Chang Y.C., Ko J.H., Lee Y.C., Cho G., Kim S.H., Kim J.G., Kim C.H. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: Complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J. 2004;18:1670–1681. doi: 10.1096/fj.04-2126com. PubMed DOI
Yang Y., Jin M., Dai Y., Shan W.Q., Chen S., Cai R., Yang H.J., Tang L.M., Li L. Involvement and Targeted Intervention of Mortalin-Regulated Proteome Phosphorylated-Modification in Hepatocellular Carcinoma. Front. Oncol. 2021;11:12. doi: 10.3389/fonc.2021.687871. PubMed DOI PMC
Brautigan D.L., Gielata M., Heo J., Kubicka E., Wilkins L.R. Selective toxicity of caffeic acid in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 2018;505:612–617. doi: 10.1016/j.bbrc.2018.09.155. PubMed DOI
Wilkins L.R., Brautigan D.L., Wu H.P., Yarmohammadi H., Kubicka E., Serbulea V., Leitinger N., Liu W., Haaga J.R. Cinnamic Acid Derivatives Enhance the Efficacy of Transarterial Embolization in a Rat Model of Hepatocellular Carcinoma. Cardiovasc. Interv. Radiol. 2017;40:430–437. doi: 10.1007/s00270-016-1515-y. PubMed DOI PMC
Zhang Z., Wang D., Qiao S.L., Wu X.Y., Cao S.Y., Wang L., Su X.J., Li L. Metabolic and microbial signatures in rat hepatocellular carcinoma treated with caffeic acid and chlorogenic acid. Sci. Rep. 2017;7:10. doi: 10.1038/s41598-017-04888-y. PubMed DOI PMC
Bunz F. Principles of Cancer Genetics. 2nd ed. Springer Science+Business Media; Dordrecht, The Netherland: 2016.
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
web2. [(accessed on 15 August 2022)]. Available online: https://www.wcrf.org/cancer-trends/breast-cancer-statistics/
Vici P., Pizzuti L., Natoli C., Gamucci T., Di Lauro L., Barba M., Sergi D., Botti C., Michelotti A., Moscetti L., et al. Triple positive breast cancer: A distinct subtype? Cancer Treat. Rev. 2015;41:69–76. doi: 10.1016/j.ctrv.2014.12.005. PubMed DOI
Rosendahl A.H., Perks C.M., Zeng L., Markkula A., Simonsson M., Rose C., Ingvar C., Holly J.M.P., Jernstrom H. Caffeine and Caffeic Acid Inhibit Growth and Modify Estrogen Receptor and Insulin-like Growth Factor I Receptor Levels in Human Breast Cancer. Clin. Cancer Res. 2015;21:1877–1887. doi: 10.1158/1078-0432.CCR-14-1748. PubMed DOI
Rezaei-Seresht H., Cheshomi H., Falanji F., Movahedi-Motlagh F., Hashemian M., Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J. Phytomedicine. 2019;9:574–586. PubMed PMC
Kabala-Dzik A., Rzepecka-Stojko A., Kubina R., Jastrzebska-Stojko Z., Stojko R., Wojtyczka R.D., Stojko J. Comparison of Two Components of Propolis: Caffeic Acid (CA) and Caffeic Acid Phenethyl Ester (CAPE) Induce Apoptosis and Cell Cycle Arrest of Breast Cancer Cells MDA-MB-231. Molecules. 2017;22:1554. doi: 10.3390/molecules22091554. PubMed DOI PMC
Kabala-Dzik A., Rzepecka-Stojko A., Kubina R., Wojtyczka R.D., Buszman E., Stojko J. Caffeic Acid Versus Caffeic Acid Phenethyl Ester in the Treatment of Breast Cancer MCF-7 Cells: Migration Rate Inhibition. Integr. Cancer Ther. 2018;17:1247–1259. doi: 10.1177/1534735418801521. PubMed DOI PMC
Balupillai A., Nagarajan R.P., Ramasamy K., Govindasamy K., Muthusamy G. Caffeic acid prevents UVB radiation induced photocarcinogenesis through regulation of PTEN signaling in human dermal fibroblasts and mouse skin. Toxicol. Appl. Pharmacol. 2018;352:87–96. doi: 10.1016/j.taap.2018.05.030. PubMed DOI
Ming M., He Y.Y. PTEN in DNA damage repair. Cancer Lett. 2012;319:125–129. doi: 10.1016/j.canlet.2012.01.003. PubMed DOI PMC
Balupillai A., Prasad R.N., Ramasamy K., Muthusamy G., Shanmugham M., Govindasamy K., Gunaseelan S. Caffeic Acid Inhibits UVB-induced Inflammation and Photocarcinogenesis Through Activation of Peroxisome Proliferator-activated Receptor- in Mouse Skin. Photochem. Photobiol. 2015;91:1458–1468. doi: 10.1111/php.12522. PubMed DOI
Yang G., Fu Y., Malakhova M., Kurinov I., Zhu F., Yao K., Li H.T., Chen H.Y., Li W., Lim D.Y., et al. Caffeic Acid Directly Targets ERK1/2 to Attenuate Solar UV-Induced Skin Carcinogenesis. Cancer Prev. Res. 2014;7:1056–1066. doi: 10.1158/1940-6207.CAPR-14-0141. PubMed DOI PMC
Pelinson L.P., Assmann C.E., Palma T.V., da Cruz I.B.M., Pillat M.M., Manica A., Stefanello N., Weis G.C.C., Alves A.D., de Andrade C.M., et al. Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells. Mol. Biol. Rep. 2019;46:2085–2092. doi: 10.1007/s11033-019-04658-1. PubMed DOI
Yang Y., Li Y., Wang K.B., Wang Y., Yin W.Q., Li L. P38/NF-kappa B/Snail Pathway Is Involved in Caffeic Acid-Induced Inhibition of Cancer Stem Cells-Like Properties and Migratory Capacity in Malignant Human Keratinocyte. PLoS ONE. 2013;8:e58915. PubMed PMC
Wu Y., Zhou B.P. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br. J. Cancer. 2010;102:639–644. doi: 10.1038/sj.bjc.6605530. PubMed DOI PMC
web1. [(accessed on 8 August 2022)]. Available online: https://www.wcrf.org/cancer-trends/lung-cancer-statistics/
Min J., Shen H., Xi W., Wang Q., Yin L., Zhang Y.F., Yu Y., Yang Q., Wang Z.N. Synergistic Anticancer Activity of Combined Use of Caffeic Acid with Paclitaxel Enhances Apoptosis of Non-Small-Cell Lung Cancer H1299 Cells in Vivo and in Vitro. Cell. Physiol. Biochem. 2018;48:1433–1442. doi: 10.1159/000492253. PubMed DOI
Papa S., Choy P.M., Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene. 2019;38:2223–2240. doi: 10.1038/s41388-018-0582-8. PubMed DOI PMC
Lin C.L., Chen R.F., Chen J.Y.F., Chu Y.C., Wang H.M., Chou H.L., Chang W.C., Fong Y., Chang W.T., Wu C.Y., et al. Protective Effect of Caffeic Acid on Paclitaxel Induced Anti-Proliferation and Apoptosis of Lung Cancer Cells Involves NF-kappa B Pathway. Int. J. Mol. Sci. 2012;13:6236–6245. doi: 10.3390/ijms13056236. PubMed DOI PMC
Bai X., Li S.T., Liu X.Y., An H.L., Kang X.J., Guo S. Caffeic Acid, an Active Ingredient in Coffee, Combines with DOX for Multitarget Combination Therapy of Lung Cancer. J. Agric. Food Chem. 2022;70:8326–8337. doi: 10.1021/acs.jafc.2c03009. PubMed DOI
Crottes D., Jan L.Y. The multifaceted role of TMEM16A in cancer. Cell Calcium. 2019;82:102050. doi: 10.1016/j.ceca.2019.06.004. PubMed DOI PMC
Gupta B., Johnson N.W., Kumar N. Global Epidemiology of Head and Neck Cancers: A Continuing Challenge. Oncology. 2016;91:13–23. doi: 10.1159/000446117. PubMed DOI
Dziedzic A., Kubina R., Kabala-Dzik A., Wojtyczka R.D., Morawiec T., Buldak R.J. Caffeic Acid Reduces the Viability and Migration Rate of Oral Carcinoma Cells (SCC-25) Exposed to Low Concentrations of Ethanol. Int. J. Mol. Sci. 2014;15:18725–18741. doi: 10.3390/ijms151018725. PubMed DOI PMC
Dziedzic A., Kubina R., Kabala-Dzik A., Tanasiewicz M. Induction of Cell Cycle Arrest and Apoptotic Response of Head and Neck Squamous Carcinoma Cells (Detroit 562) by Caffeic Acid and Caffeic Acid Phenethyl Ester Derivative. Evid. Based Complement. Altern. Med. 2017;2017:6793456. doi: 10.1155/2017/6793456. PubMed DOI PMC
Celinska-Janowicz K., Zareba I., Lazarek U., Teul J., Tomczyk M., Palka J., Miltyk W. Constituents of Propolis: Chrysin, Caffeic Acid, p-Coumaric Acid, and Ferulic Acid Induce PRODH/POX-Dependent Apoptosis in Human Tongue Squamous Cell Carcinoma Cell (CAL-27) Front. Pharmacol. 2018;9:336. doi: 10.3389/fphar.2018.00336. PubMed DOI PMC
Phang J.M., Liu W., Hancock C., Christian K.J. The proline regulatory axis and cancer. Front. Oncol. 2012;2:60. doi: 10.3389/fonc.2012.00060. PubMed DOI PMC
Vu M., Yu J., Awolude O.A., Chuang L. Cervical cancer worldwide. Curr. Probl. Cancer. 2018;42:457–465. doi: 10.1016/j.currproblcancer.2018.06.003. PubMed DOI
Koraneekit A., Limpaiboon T., Sangka A., Boonsiri P., Daduang S., Daduang J. Synergistic effects of cisplatin-caffeic acid induces apoptosis in human cervical cancer cells via the mitochondrial pathways. Oncol. Lett. 2018;15:7397–7402. doi: 10.3892/ol.2018.8256. PubMed DOI PMC
Tyszka-Czochara M., Konieczny P., Majka M. Caffeic Acid Expands Anti-Tumor Effect of Metformin in Human Metastatic Cervical Carcinoma HTB-34 Cells: Implications of AMPK Activation and Impairment of Fatty Acids De Novo Biosynthesis. Int. J. Mol. Sci. 2017;18:462. doi: 10.3390/ijms18020462. PubMed DOI PMC
Zannella V.E., Cojocari D., Hilgendorf S., Vellanki R.N., Chung S., Wouters B.G., Koritzinsky M. AMPK regulates metabolism and survival in response to ionizing radiation. Radiother. Oncol. 2011;99:293–299. doi: 10.1016/j.radonc.2011.05.049. PubMed DOI
Chomanicova N., Gazova A., Adamickova A., Valaskova S., Kyselovic J. The role of AMPK/mTOR signaling pathway in anticancer activity of metformin. Physiol. Res. 2021;70:501–508. doi: 10.33549/physiolres.934618. PubMed DOI PMC
Tyszka-Czochara M., Bukowska-Strakova K., Majka M. Metformin and caffeic acid regulate metabolic reprogramming in human cervical carcinoma SiHa/HTB-35 cells and augment anticancer activity of Cisplatin via cell cycle regulation. Food Chem. Toxicol. 2017;106:260–272. doi: 10.1016/j.fct.2017.05.065. PubMed DOI
Tyszka-Czochara M., Lasota M., Majka M. Caffeic Acid and Metformin Inhibit Invasive Phenotype Induced by TGF-beta1 in C-4I and HTB-35/SiHa Human Cervical Squamous Carcinoma Cells by Acting on Different Molecular Targets. Int. J. Mol. Sci. 2018;19:266. doi: 10.3390/ijms19010266. PubMed DOI PMC
Zheng H., Takahashi H., Murai Y., Cui Z., Nomoto K., Niwa H., Tsuneyama K., Takano Y. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006;26:3579–3583. PubMed
Castro M.F.V., Stefanello N., Assmann C.E., Baldissarelli J., Bagatini M.D., da Silva A.D., da Costa P., Borba L., da Cruz I.B.M., Morsch V.M., et al. Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats. Life Sci. 2021;277:12. doi: 10.1016/j.lfs.2021.119421. PubMed DOI
Xu W.G., Luo Q., Wen X.Y., Xiao M., Mei Q.J. Antioxidant and anti-diabetic effects of caffeic acid in a rat model of diabetes. Trop. J. Pharm. Res. 2020;19:1227–1232. doi: 10.4314/tjpr.v19i6.17. DOI
Orsolic N., Sirovina D., Odeh D., Gajski G., Balta V., Sver L., Jembrek M.J. Efficacy of Caffeic Acid on Diabetes and Its Complications in the Mouse. Molecules. 2021;26:3262. doi: 10.3390/molecules26113262. PubMed DOI PMC
Liu Y., Liu S.K., Wang H., Su W.H. Protective Effect of Caffeic Acid on Streptozotocin Induced Gestational Diabetes Mellitus in Rats: Possible Mechanism. Pak. J. Zool. 2021;53:1045–1052. doi: 10.17582/journal.pjz/20200106060120. DOI
Chang W.C., Kuo P.L., Chen C.W., Wu J.S.B., Shen S.C. Caffeic acid improves memory impairment and brain glucose metabolism via ameliorating cerebral insulin and leptin signaling pathways in high-fat diet-induced hyperinsulinemic rats. Food Res. Int. 2015;77:24–33. doi: 10.1016/j.foodres.2015.04.010. DOI
Cao X.Y., Xia Y., Zeng M., Wang W.Y., He Y., Liu J.L. Caffeic Acid Inhibits the Formation of Advanced Glycation End Products (AGEs) and Mitigates the AGEs-Induced Oxidative Stress and Inflammation Reaction in Human Umbilical Vein Endothelial Cells (HUVECs) Chem. Biodivers. 2019;16:9. doi: 10.1002/cbdv.201900174. PubMed DOI
Fratantonio D., Speciale A., Canali R., Natarelli L., Ferrari D., Saija A., Virgili F., Cimino F. Low nanomolar caffeic acid attenuates high glucose-induced endothelial dysfunction in primary human umbilical-vein endothelial cells by affecting NF-B and Nrf2 pathways. Biofactors. 2017;43:54–62. doi: 10.1002/biof.1312. PubMed DOI
Natarelli L., Ranaldi G., Leoni G., Roselli M., Guantario B., Comitato R., Ambra R., Cimino F., Speciale A., Virgili F., et al. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells. PLoS ONE. 2015;10:19. doi: 10.1371/journal.pone.0142421. PubMed DOI PMC
Toma L., Sanda G.M., Niculescu L.S., Deleanu M., Stancu C.S., Sima A.V. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress. Biofactors. 2017;43:685–697. doi: 10.1002/biof.1373. PubMed DOI
Choudhary S., Mourya A., Ahuja S., Sah S.P., Kumar A. Plausible anti-inflammatory mechanism of resveratrol and caffeic acid against chronic stress-induced insulin resistance in mice. Inflammopharmacology. 2016;24:347–361. doi: 10.1007/s10787-016-0287-y. PubMed DOI
Salau V.F., Erukainure O.L., Ibeji C.U., Koorbanally N.A., Islam M.S. Ferric-Induced Pancreatic Injury Involves Exacerbation of Cholinergic and Proteolytic Activities, and Dysregulation of Metabolic Pathways: Protective Effect of Caffeic Acid. Biol. Trace Elem. Res. 2020;196:517–527. doi: 10.1007/s12011-019-01937-7. PubMed DOI
Tsuda S., Egawa T., Ma X., Oshima R., Kurogi E., Hayashi T. Coffee polyphenol caffeic acid but not chlorogenic acid increases 5’ AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. J. Nutr. Biochem. 2012;23:1403–1409. doi: 10.1016/j.jnutbio.2011.09.001. PubMed DOI
Virtanen K.A., Nuutila P. Brown adipose tissue in humans. Curr. Opin. Lipidol. 2011;22:49–54. doi: 10.1097/MOL.0b013e3283425243. PubMed DOI
Vasileva L.V., Savova M.S., Amirova K.M., Balcheva-Sivenova Z., Ferrante C., Orlando G., Wabitsch M., Georgiev M.I. Caffeic and Chlorogenic Acids Synergistically Activate Browning Program in Human Adipocytes: Implications of AMPK- and PPAR-Mediated Pathways. Int. J. Mol. Sci. 2020;21:9740. doi: 10.3390/ijms21249740. PubMed DOI PMC
Kim H.M., Kim Y., Lee E.S., Huh J.H., Chung C.H. Caffeic acid ameliorates hepatic steatosis and reduces ER stress in high fat diet-induced obese mice by regulating autophagy. Nutrition. 2018;55–56:63–70. doi: 10.1016/j.nut.2018.03.010. PubMed DOI
Mariana B.D., Tiago L.S., Ramon R.P.P.B.d.M., Jamile M.F., Tiago S.M., Richard R.C.M., Hector G.R., Dânya B.L., Alice M.C.M., Maria G.R.d.Q. Caffeic acid reduces lipid accumulation and reactive oxygen species production in adipocytes. Afr. J. Pharm. Pharmacol. 2018;12:263–268. doi: 10.5897/AJPP2018.4937. DOI
Lutfi E., Babin P.J., Gutierrez J., Capilla E., Navarro I. Caffeic acid and hydroxytyrosol have anti-obesogenic properties in zebrafish and rainbow trout models. PLoS ONE. 2017;12:21. doi: 10.1371/journal.pone.0178833. PubMed DOI PMC
Lee J.E., Ge K. Transcriptional and epigenetic regulation of PPARgamma expression during adipogenesis. Cell Biosci. 2014;4:29. doi: 10.1186/2045-3701-4-29. PubMed DOI PMC
Pamukcu B., Lip G.Y., Devitt A., Griffiths H., Shantsila E. The role of monocytes in atherosclerotic coronary artery disease. Ann. Med. 2010;42:394–403. doi: 10.3109/07853890.2010.497767. PubMed DOI
Lee E.S., Park S.H., Kim M.S., Han S.Y., Kim H.S., Kang Y.H. Caffeic Acid Disturbs Monocyte Adhesion onto Cultured Endothelial Cells Stimulated by Adipokine Resistin. J. Agric. Food Chem. 2012;60:2730–2739. doi: 10.1021/jf203774y. PubMed DOI
Moon M.K., Lee Y.J., Kim J.S., Kang D.G., Lee H.S. Effect of Caffeic Acid on Tumor Necrosis Factor-Alpha-Induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells. Biol. Pharm. Bull. 2009;32:1371–1377. doi: 10.1248/bpb.32.1371. PubMed DOI
Mudau M., Genis A., Lochner A., Strijdom H. Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovasc. J. Afr. 2012;23:222–231. doi: 10.5830/CVJA-2011-068. PubMed DOI PMC
Wang Y., Kaur G., Kumar M., Kushwah A.S., Kabra A., Kainth R. Caffeic Acid Prevents Vascular Oxidative Stress and Atherosclerosis against Atherosclerogenic Diet in Rats. Evid. Based Complement. Altern. Med. 2022;2022:8. doi: 10.1155/2022/8913926. PubMed DOI PMC
Vacaresse N., Vieira O., Robbesyn F., Jurgens G., Salvayre R., Negre-Salvayre A. Phenolic antioxidants trolox and caffeic acid modulate the oxidized LDL-induced EGF-receptor activation. Br. J. Pharmacol. 2001;132:1777–1788. doi: 10.1038/sj.bjp.0703981. PubMed DOI PMC
Hernandez F., Lucas J.J., Avila J. GSK3 and tau: Two convergence points in Alzheimer’s disease. J. Alzheimer Dis. 2013;33((Suppl. S1)):S141–S144. doi: 10.3233/JAD-2012-129025. PubMed DOI
Chang W.C., Huang D.W., Lo Y.M., Tee Q.Q., Kuo P., Wu J.S., Huang W.C., Shen Z.C. Protective Effect of Caffeic Acid against Alzheimer’s Disease Pathogenesis via Modulating Cerebral Insulin Signaling, beta-Amyloid Accumulation, and Synaptic Plasticity in Hyperinsulinemic Rats. J. Agric. Food Chem. 2019;67:7684–7693. doi: 10.1021/acs.jafc.9b02078. PubMed DOI
Sul D., Kim H.S., Lee D., Joo S.S., Hwang K.W., Park S.Y. Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci. 2009;84:257–262. doi: 10.1016/j.lfs.2008.12.001. PubMed DOI
Andrade S., Loureiro J.A., Pereira M.C. Caffeic acid for the prevention and treatment of Alzheimer’s disease: The effect of lipid membranes on the inhibition of aggregation and disruption of A beta fibrils. Int. J. Biol. Macromol. 2021;190:853–861. doi: 10.1016/j.ijbiomac.2021.08.198. PubMed DOI
Wang Y.L., Wang Y.T., Li J.F., Hua L.L., Han B., Zhang Y.Z., Yang X.P., Zeng Z.L., Bai H.Y., Yin H.L., et al. Effects of caffeic acid on learning deficits in a model of Alzheimer’s disease. Int. J. Mol. Med. 2016;38:869–875. doi: 10.3892/ijmm.2016.2683. PubMed DOI
Deshmukh R., Kaundal M., Bansal V., Samardeep Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats. Biomed. Pharmacother. 2016;81:56–62. doi: 10.1016/j.biopha.2016.03.017. PubMed DOI
Khan K.A., Kumar N., Nayak P.G., Nampoothiri M., Shenoy R.R., Krishnadas N., Rao C.M., Mudgal J. Impact of caffeic acid on aluminium chloride-induced dementia in rats. J. Pharm. Pharmacol. 2013;65:1745–1752. doi: 10.1111/jphp.12126. PubMed DOI
Kim J.H., Wang Q., Choi J.M., Lee S., Cho E.J. Protective role of caffeic acid in an A beta(25-35)-induced Alzheimer’s disease model. Nutr. Res. Pract. 2015;9:480–488. doi: 10.4162/nrp.2015.9.5.480. PubMed DOI PMC
Brimijoin S. Molecular forms of acetylcholinesterase in brain, nerve and muscle: Nature, localization and dynamics. Prog. Neurobiol. 1983;21:291–322. doi: 10.1016/0301-0082(83)90015-1. PubMed DOI
Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci. 2014;15:9809–9825. doi: 10.3390/ijms15069809. PubMed DOI PMC
Knez D., Coquelle N., Pislar A., Zakelj S., Jukic M., Sova M., Mravljak J., Nachon F., Brazzolotto X., Kos J., et al. Multi-target-directed ligands for treating Alzheimer’s disease: Butyrylcholinesterase inhibitors displaying antioxidant and neuroprotective activities. Eur. J. Med. Chem. 2018;156:598–617. doi: 10.1016/j.ejmech.2018.07.033. PubMed DOI
Oboh G., Agunloye O.M., Akinyemi A.J., Ademiluyi A.O., Adefegha S.A. Comparative Study on the Inhibitory Effect of Caffeic and Chlorogenic Acids on Key Enzymes Linked to Alzheimer’s Disease and Some Pro-oxidant Induced Oxidative Stress in Rats’ Brain-In Vitro. Neurochem. Res. 2013;38:413–419. doi: 10.1007/s11064-012-0935-6. PubMed DOI
Bradley M.A., Markesbery W.R., Lovell M.A. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic. Biol. Med. 2010;48:1570–1576. doi: 10.1016/j.freeradbiomed.2010.02.016. PubMed DOI PMC
Huang Y.J., Jin M.H., Pi R.B., Zhang J.J., Chen M.H., Ouyang Y., Liu A.M., Chao X.J., Liu P.Q., Liu J., et al. Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Neurosci. Lett. 2013;535:146–151. doi: 10.1016/j.neulet.2012.12.051. PubMed DOI
Liang G.J., Shi B., Luo W.N., Yang J.Q. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. Behav. Brain Funct. 2015;11:10. doi: 10.1186/s12993-015-0064-x. PubMed DOI PMC
Pan Y.Q., Zhang P., Yang J.Q., Su Q.A. 5-lipoxygenase expression in a brain damage model induced by chronic oral administration of aluminum. Neural Regen. Res. 2010;5:1634–1638.
Song Y., Wei E.Q., Zhang W.P., Zhang L., Liu J.R., Chen Z. Minocycline protects PC12 cells from ischemic-like injury and inhibits 5-lipoxygenase activation. Neuroreport. 2004;15:2181–2184. doi: 10.1097/00001756-200410050-00007. PubMed DOI
Yang J.Q., Zhou Q.X., Liu B.Z., He B.C. Protection of mouse brain from aluminum-induced damage by caffeic acid. CnsNeurosci. Ther. 2008;14:10–16. doi: 10.1111/j.1755-5949.2007.00031.x. PubMed DOI PMC
Huang D., Zhang L., Yang J.Q., Luo Y., Cui T., Du T.T., Jiang X.H. Evaluation on monoamine neurotransmitters changes in depression rats given with sertraline, meloxicam or/and caffeic acid. Genes Dis. 2019;6:167–175. doi: 10.1016/j.gendis.2018.05.005. PubMed DOI PMC
Dzitoyeva S., Imbesi M., Uz T., Dimitrijevic N., Manev H., Manev R. Caffeic acid attenuates the decrease of cortical BDNF transcript IV mRNA induced by swim stress in wild-type but not in 5-lipoxygenase-deficient mice. J. Neural Transm. 2008;115:823–827. doi: 10.1007/s00702-008-0034-7. PubMed DOI
Lin C.C., Huang T.L. Brain-derived neurotrophic factor and mental disorders. Biomed. J. 2020;43:134–142. doi: 10.1016/j.bj.2020.01.001. PubMed DOI PMC
Maroteaux L., Campanelli J.T., Scheller R.H. Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 1988;8:2804–2815. doi: 10.1523/JNEUROSCI.08-08-02804.1988. PubMed DOI PMC
Ozansoy M., Basak A.N. The central theme of Parkinson’s disease: Alpha-synuclein. Mol. Neurobiol. 2013;47:460–465. doi: 10.1007/s12035-012-8369-3. PubMed DOI
Zhang Y., Wu Q.M., Zhang L., Wang Q., Yang Z.X., Liu J., Feng L.Y. Caffeic acid reduces A53T alpha-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol. Res. 2019;150:14. doi: 10.1016/j.phrs.2019.104538. PubMed DOI
Khan F., Bamunuarachchi N.I., Tabassum N., Kim Y.M. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. J. Agric. Food. Chem. 2021;69:2979–3004. doi: 10.1021/acs.jafc.0c07579. PubMed DOI
Dos Santos J.F.S., Tintino S.R., de Freitas T.S., Campina F.F., Irwin R.D.A., Siqueira-Junior J.P., Coutinho H.D.M., Cunha F.A.B. In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp. Immunol. Microbiol. Infect. Dis. 2018;57:22–28. doi: 10.1016/j.cimid.2018.03.001. PubMed DOI
Kwon Y.I., Apostolidis E., Labbe R.G., Shetty K. Inhibition of Staphylococcus aureusby Phenolic Phytochemicals of Selected Clonal Herbs Species ofLamiaceaeFamily and Likely Mode of Action through Proline Oxidation. Food Biotechnol. 2007;21:71–89. doi: 10.1080/08905430701191205. DOI
Servet C., Ghelis T., Richard L., Zilberstein A., Savoure A. Proline dehydrogenase: A key enzyme in controlling cellular homeostasis. Front. Biosci. (Landmark Ed.) 2012;17:607–620. doi: 10.2741/3947. PubMed DOI
Luis A., Silva F., Sousa S., Duarte A.P., Domingues F. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling. 2014;30:69–79. doi: 10.1080/08927014.2013.845878. PubMed DOI
Sivakumar S., Girija A.S.S., Priyadharsini J.V. Evaluation of the inhibitory effect of caffeic acid and gallic acid on tetR and tetM efflux pumps mediating tetracycline resistance in Streptococcus sp. using computational approach. J. King Saud Univ. Sci. 2020;32:904–909. doi: 10.1016/j.jksus.2019.05.003. DOI
Saavedra M.J., Borges A., Dias C., Aires A., Bennett R.N., Rosa E.S., Simoes M. Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria. Med. Chem. 2010;6:174–183. doi: 10.2174/1573406411006030174. PubMed DOI
Pinho E., Ferreira I.C., Barros L., Carvalho A.M., Soares G., Henriques M. Antibacterial potential of northeastern Portugal wild plant extracts and respective phenolic compounds. Biomed. Res. Int. 2014;2014:814590. doi: 10.1155/2014/814590. PubMed DOI PMC
Utsunomiya H., Ichinosei M., Ikeda K., Uozaki M., Morishita J., Kuwahara T., Koyama A.H., Yamasaki H. Inhibition by caffeic acid of the influenza A virus multiplication in vitro. Int. J. Mol. Med. 2014;34:1020–1024. doi: 10.3892/ijmm.2014.1859. PubMed DOI
Shen J., Wang G.F., Zuo J.P. Caffeic acid inhibits HCV replication via induction of IFN alpha antiviral response through p62-mediated Keap1/Nrf2 signaling pathway. Antivir. Res. 2018;154:166–173. doi: 10.1016/j.antiviral.2018.04.008. PubMed DOI
Wang G.F., Shi L.P., Ren Y.D., Liu Q.F., Liu H.F., Zhang R.J., Li Z., Zhu F.H., He P.L., Tang W., et al. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir. Res. 2009;83:186–190. doi: 10.1016/j.antiviral.2009.05.002. PubMed DOI
Ikeda K., Tsujimoto K., Uozaki M., Nishide M., Suzuki Y., Koyama A.H., Yamasaki H. Inhibition of multiplication of herpes simplex virus by caffeic acid. Int. J. Mol. Med. 2011;28:595–598. PubMed
Langland J., Jacobs B., Wagner C.E., Ruiz G., Cahill T.M. Antiviral activity of metal chelates of caffeic acid and similar compounds towards herpes simplex, VSV-Ebola pseudotyped and vaccinia viruses. Antivir. Res. 2018;160:143–150. doi: 10.1016/j.antiviral.2018.10.021. PubMed DOI
Ogawa M., Shirasago Y., Ando S., Shimojima M., Saijo M., Fukasawa M. Caffeic acid, a coffee-related organic acid, inhibits infection by severe fever with thrombocytopenia syndrome virus in vitro. J. Infect. Chemother. 2018;24:597–601. doi: 10.1016/j.jiac.2018.03.005. PubMed DOI
Ogawa M., Shirasago Y., Tanida I., Kakuta S., Uchiyama Y., Shimojima M., Hanada K., Saijo M., Fukasawa M. Structural basis of antiviral activity of caffeic acid against severe fever with thrombocytopenia syndrome virus. J. Infect. Chemother. 2021;27:397–400. doi: 10.1016/j.jiac.2020.10.015. PubMed DOI