The role of AMPK/mTOR signaling pathway in anticancer activity of metformin
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34062070
PubMed Central
PMC8820546
DOI
10.33549/physiolres.934618
PII: 934618
Knihovny.cz E-zdroje
- MeSH
- apoptóza účinky léků MeSH
- hypoglykemika terapeutické užití MeSH
- lidé MeSH
- metformin škodlivé účinky terapeutické užití MeSH
- nádory farmakoterapie enzymologie patologie MeSH
- přehodnocení terapeutických indikací léčivého přípravku MeSH
- proteinkinasy aktivované AMP metabolismus MeSH
- protinádorové látky škodlivé účinky terapeutické užití MeSH
- signální transdukce MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- hypoglykemika MeSH
- metformin MeSH
- MTOR protein, human MeSH Prohlížeč
- proteinkinasy aktivované AMP MeSH
- protinádorové látky MeSH
- TOR serin-threoninkinasy MeSH
Metformin (MTF) is a widely used drug for the treatment of diabetes mellitus type 2 (DM2) and frequently used as an adjuvant therapy for polycystic ovarian syndrome, metabolic syndrome, and in some cases also tuberculosis. Its protective effect on the cardiovascular system has also been described. Recently, MTF was subjected to various analyzes and studies that showed its beneficial effects in cancer treatment such as reducing cancer cell proliferation, reducing tumor growth, inducing apoptosis, reducing cancer risk in diabetic patients, or reducing likelihood of relapse. One of the MTF's mechanisms of action is the activation of adenosine-monophosphate-activated protein kinase (AMPK). Several studies have shown that AMPK/mammalian target of rapamycin (mTOR) pathway has anticancer effect in vivo and in vitro. The aim of this review is to present the anticancer activity of MTF highlighting the importance of the AMPK/mTOR pathway in the cancer process.
Zobrazit více v PubMed
ABDEL-WAHAB AF, MAHMOUD W, AL-HARIZY R. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019;150:104511. doi: 10.1016/j.phrs.2019.104511. PubMed DOI
BLOCK KI, GYLLENHAAL C, LOWE L, AMEDEI A, AMIN ARMR, AMIN A, AQUILANO K, ARBISER J, ARREOLA A, ARZUMANYAN A, et al. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol. 2015;35:276–304. doi: 10.1016/j.semcancer.2015.09.007. PubMed DOI PMC
CANTORIA MJ, PATEL H, BOROS LG, MEUILLET EJ. Pancreatic cancer-insights into molecular mechanisms and novel approaches to early detection and treatment. London, UK: IntechOpen; 2014. Metformin and pancreatic cancer metabolism. DOI
CICCARESE F, ZULATO E, INDRACCOLO S. LKB1/AMPK Pathway and drug response in cancer: A therapeutic perspective. Oxid Med Cell Longev. 2019:8730816. doi: 10.1155/2019/8730816. PubMed DOI PMC
DELHALLE S, DUVOIX A, SCHNEKENBURGER M, MORCEAU F, DICATO M, DIEDERICH M. An introduction to the molecular mechanisms of apoptosis. Ann NY Acad Sci. 2003;1010:1–8. doi: 10.1196/annals.1299.001. PubMed DOI
DI PIETRO M, VELAZQUES C, MATZKIN ME, FRUNGIERI MB, PENA MG, ZUNIGA I, PASCUALI N, IRUSTA G, BIANCHI MS, PARBORELL F, DALHIA A. Metformin has a direct effect on ovarian cells that is dependent on organic cation transporters. Mol Cell Endocrinol. 2020;499:110591. doi: 10.1016/j.mce.2019.110591. PubMed DOI
DZUIBAK A, WOJCICKA G, WOJTAK A, BELTOWSKI J. Metabolic effect of metformin in the failing heart. Int J Mol Sci. 2018;19:2869. doi: 10.3390/ijms19102869. PubMed DOI PMC
EFFEYAN A, SABATINI DM. mTOR and cancer: Many loops in one pathway. Curr Opin Cell Biol. 2010;22:169–176. doi: 10.1016/j.ceb.2009.10.007. PubMed DOI PMC
FAN H, YU X, ZOU Z, ZHENG W, DENG X, GUO L, JIANG W, ZHAN Q, LU S-H. Metformin suppresses the esophageal carcinogenesis in rats treated with NMBzA through inhibiting AMPK/mTOR signaling pathway. Carcinogenesis. 2019;40:669–679. doi: 10.1093/carcin/bgy160. PubMed DOI
FLORY JH, HENNESSY S, BAILEY CJ, INZUCCHI SE. Reports of actic acidosis attributed to metformin, 2015–2018. Diabetes Care. 2020;43:244–246. doi: 10.2337/dc19-0923. PubMed DOI PMC
FORETZ M, GUIGAS B, BERTRAND L, POLLAK M, VIOLLET B. Metformin from mechanism of action to therapies. Cell Metab. 2014;20:953–966. doi: 10.1016/j.cmet.2014.09.018. PubMed DOI
FU P, CHEN F, PAN Q, ZHAO X, ZHAO C, CHO WC, CHEN H. The different functions and clinical significances of caveolin-1 in human adenocarcinoma and squamous cell carcinoma. Onco Targets and Therapy. 2017;10:819–835. doi: 10.2147/OTT.S123912. PubMed DOI PMC
GALDIERI L, GATLA H, VANCUROVA I, VANCURA A. Activation of AMP-activated protein kinase by metformin induces protein acetylation in prostate and ovarian cancer cells. J Biol Chem. 2016;291:25154–25166. doi: 10.1074/jbc.M116.742247. PubMed DOI PMC
GAO ZY, LIU Z, BI MH, ZHANG JJ, HAN ZQ, HAN X, WANG HY, SUN GP, LIU H. Metformin induces apoptosis via a mitochondria-mediated pathway in human breast cancer cells in vitro. Exp Ther Med. 2016;11:1700–1706. doi: 10.3892/etm.2016.3143. PubMed DOI PMC
GWINN DM, SHACKELFORD DB, EGAN DF, MIHAYLOVA MM, MERY A, VASQUEZ DS, TURK BE, SHAW RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–226. doi: 10.1016/j.molcel.2008.03.003. PubMed DOI PMC
HARDIE DG, HAWLEY SA. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays. 2001;23:1112–1119. doi: 10.1002/bies.10009. PubMed DOI
HARDIE DG, ROSS FA, HAWLEY SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–262. doi: 10.1038/nrm3311. PubMed DOI PMC
HOWELL JJ, HELLBERG K, TURNER M, TALBITT G, KOLAR MJ, ROSS DV, HOXHAJ G, SAGHATELIAN A, SHAW RJ, MANNING BD. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 2017;25:463–471. doi: 10.1016/j.cmet.2016.12.009. PubMed DOI PMC
CHEN K, LI Y, GUO Z, ZENG Y, ZHANG W, WANG H. Metformin: current clinical applications in nondiabetic patients with cancer. Aging (Albany NY) 2020;12:3993–4009. doi: 10.18632/aging.102787. PubMed DOI PMC
JACKULIAK P, KUZMA M, PAYER J. Effect of antidiabetic treatment on bone. Physiol Res. 2019;68(Suppl 2):107–120. doi: 10.33549/physiolres.934297. PubMed DOI
JEON S. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48:e245. doi: 10.1038/emm.2016.81. PubMed DOI PMC
JIA J, BISSA B, BRECHT L, ALLERS L, CHOI SW, GU Y, ZBINDEN M, BURGE MR, TIMMINS G, HALLOWS K, BEHRENDS CH, DERETIC V. AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel galectin-directed ubiquitin signal transduction system. Mol Cell. 2020;77:1–19. doi: 10.1016/j.molcel.2019.12.028. PubMed DOI PMC
KIM WJ. Is 5′-AMP-activated protein kinase both Jekyll and Hyde in bladder cancer? Int neurourol J. 2015;19:55–66. doi: 10.5213/inj.2015.19.2.55. PubMed DOI PMC
KNUDSON CM, KORSMEYER SJ. Bcl-2 and Bax function independenty to regulate cell death. Nat Gen. 1997;16:358–363. doi: 10.1038/ng0897-358. PubMed DOI
LEE J, HONG EM, KIM JH, PARK SW, KOH DH, CHOI MH, JANG HJ, KAE SH. Metformin induces apoptosis and inhibits proliferation through the AMP-activated protein kinase and insulin-like growth facror 1 receptor pathways in the bile duct cancer cells. J Cancer. 2019;10:1734–1744. doi: 10.7150/jca.26380. PubMed DOI PMC
LYONS CL, ROCHE HM. Nutritional modulation of AMPK-impact upon metabolic-inflammation. Int J Mol Sci. 2018;19:3092. doi: 10.3390/ijms19103092. PubMed DOI PMC
MASCARAQUE M, DELGADO-WICKE P, NUEVO-TAPIOLES C, GRACIA-CAZANA T, ABARCA-LACHEN E, GONZALES S, CUEZVA JM, GILABERTE Y, JUARRANZ A. Metformin as an adjuvant to photodynamic therapy in resistant basal cell carcinoma cells. Cancers (Basel) 2020;12:668. doi: 10.3390/cancers12030668. PubMed DOI PMC
MOSCHETTA MG, LEONEL C, MASCHIO-SIGNORINI LB, BORIN TF, GELALETI GB, JARDIM-PERASSI BV, FERREIRA LC, SONEHARA NM, CARVALHO LGS, HELLMEN E, CAMPOS ZUCCARI D. Evaluation of angiogenesis process after metformin and LY294002 treatment in mammary tumor. Anticancer Agents Med Chem. 2019;19:655–666. doi: 10.2174/1871520619666181218164050. PubMed DOI
PODHORECKA M, IBANEZ B, DMOSZYNSKA A. Metformin - its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw. 2017;71:170–175. doi: 10.5604/01.3001.0010.3801. PubMed DOI
RENA G, HARDIE DG, PEARSON E. The mechanisms of action of metformin. Diabetologia. 2017;60:1577–1585. doi: 10.1007/s00125-017-4342-z. PubMed DOI PMC
SANLI T, STEINBERG GR, SINGH G, TSAKIRIDIS T. AMP-activated protein kinase (AMPK) beyond metabolism a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther. 2014;15:156–169. doi: 10.4161/cbt.26726. PubMed DOI PMC
SAXTON RA, SABATINI DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–976. doi: 10.1016/j.cell.2017.02.004. PubMed DOI PMC
SARAEI P, ASADI I, KAKAR MA, MORADI-KOR N. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag Res. 2019;11:3295–3313. doi: 10.2147/CMAR.S200059. PubMed DOI PMC
SCHNEIDER MB, MATSUZAKI H, HAORAH J, ULRICH A, STANDOP J, DING XZ, ADRIAN TE, POUR PM. Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterol. 2001;120:1263–1270. doi: 10.1053/gast.2001.23258. PubMed DOI
STAGE TB, BROSEN K, CHRISTENSEN MM. A comprehensive review of drug-drug interactions with metformin. Clin Pharmacokinet. 2015;54:811–824. doi: 10.1007/s40262-015-0270-6. PubMed DOI
TADAKAWA M, TAKEDA T, LI B, TSUIJI K, YAEGASHI N. The anti-diabetic drug metformin inhibits vascular endothelial growth factor expression via the mammalian target of rapamycin complex 1/hypoxia-inducible factor-1α signaling path-way in ELT-3 cells. Mol Cell Endocrinol. 2015;399:1–8. doi: 10.1016/j.mce.2014.08.012. PubMed DOI
TONINI T, ROSSI F, CLAUDIO P. Molecular basis of angiogenesis and cancer. Oncogene. 2003;22:6549–6556. doi: 10.1038/sj.onc.1206816. PubMed DOI
VACANTE F, SENESI P, MONTESANO A, PAINI S, LUZI L, TERRUZZI I. Metformin counteracts HCC progression and metastasis enhancing KLF6/p21 expression and downregulating the IGF axis. Int J Endocrinol. 2019;2019:7570146. doi: 10.1155/2019/7570146. PubMed DOI PMC
VARA-CIRUELOS D, DANDAPANI M, RUSSELL FM, GRZES KM, ATRIH A, FORETZ M, VIOLLET B, LAMONT DJ, CANTRELL DA, HARDIE DG. Phenformin, But Not Metformin, Delays Development of T Cell Acute Lymphoblastic Leukemia/Lymphoma via Cell-Autonomous AMPK Activation. Cell Rep. 2019;27:690–698. doi: 10.1016/j.celrep.2019.03.067. PubMed DOI PMC
VOGELSTEIN B, PAPADOUPOULOS N, VELCULESCU VE, SHOU S, DIAZ LA, Jr, KINZLER KW. Cancer genome landscapes. Science. 2013;339:1546–1558. doi: 10.1126/science.1235122. PubMed DOI PMC
WHITBURN J, EDWARDS CM, SOORIAKUMARAN P. Metformin and prostate cancer: a new role for an old drug. Curr Urol Rep. 2017;18:46. doi: 10.1007/s11934-017-0693-8. PubMed DOI PMC
XIONG ZS, GING SF, SI W, JIANG T, LI QL, WANG TJ, WU RY, JIANG K. Effect of metformin on cell proliferation, apoptosis, migration and invasion in A172 glioma cells and its mechanisms. Mol Med Rep. 2019;20:887–894. doi: 10.3892/mmr.2019.10369. PubMed DOI PMC
YAMASHITA T, KATO K, FUJIHARA S, IWAMA H, MORISHITA A, YAMANA H, KOBAYASHI K, KAMADA H, CHIYO T, KOBARA H, TSUTSUI K, OKANO K, SUZUI Y, MASAKI T. Anti-diabetic drug metformin inhibits cell proliferation and tumor growth in gallbladder cancer via G0/G1 cell cycle arrest. Anti-cancer drugs. 2020;31:231–240. doi: 10.1097/CAD.0000000000000870. PubMed DOI
YANG L, MA B, SUN G, DONG CH, MA B. Antiproliferative and antiangiogenic effects of metformin on multidrug-resistant MCF-7 cells. Int J Clin Exp Med. 2018;11:6776–6783.
ZAIDI S, GANDHI J, JOSHI G, SMITH NL, KHAN SA. The anticancer potential of metformin on prostate cancer. Prostate Cancer Prostatic Dis. 2019;22:351–361. doi: 10.1038/s41391-018-0085-2. PubMed DOI
ZHANG K, WANG J, WANG J, LUH F, LIU X, YANG L, LIU Y-R, SU L, YANG Y-CHSH, CHU P, YEN Y. LKB1 deficiency promotes proliferation and invasion of glioblastoma trough activation of mTOR and focal adhesion kinase signaling pathways. Am J Cancer Res. 2019;9:1650–1663. PubMed PMC
ZHAO J, MA Y, ZHANG Y, FU B, WU X, LI Q, CAI G, CHEN X, BAY X-Y. Low-dose 2-deoxyglucose and metformin synergically inhibit proliferation of human polycystic kidney cells by modulating glucose metabolism. Cell Death Discov. 2019;5:76. doi: 10.1038/s41420-019-0156-8. PubMed DOI PMC
ZI F, ZI H, LI Y, HE J, SHI Q, CAI Z. Metformin and cancer: An existing drug for cancer prevention and therapy (Review) Oncol Lett. 2018;15:683–690. doi: 10.3892/ol.2017.7412. PubMed DOI PMC
ZONCU R, EFEYAN A, SABATINI DM. mTOR: form growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35. doi: 10.1038/nrm3025. PubMed DOI PMC
Caffeic Acid and Diseases-Mechanisms of Action