Simple analytical devices suitable for the analysis of various biochemical and immunechemical markers are highly desirable and can provide laboratory diagnoses outside standard hospitals. This study focuses on constructing an easily reproducible do-it-yourself ELISA plate reader biosensor device, assembled from generally available and inexpensive parts. The colorimetric biosensor was based on standard 96-well microplates, 3D-printed parts, and a smartphone camera as a detector was utilized here as a tool to replace the ELISA method, and its function was illustrated in the assay of TNFα as a model immunochemical marker. The assay provided a limit of detection of 19 pg/mL when the B channel of the RGB color model was used for calibration. The assay was well correlated with the ELISA method, and no significant matrix effect was observed for standard biological samples or interference of proteins expected in a sample. The results of this study will inform the development of simple analytical devices easily reproducible by 3D printing and found on generally available electronics.
Urine test strips for urinalysis are a common diagnostic tool with minimal costs and are used in various situations including homecare and hospitalization. The coloration scaled by the naked eye is simple, but it is suitable for semiquantitative analysis only. In this paper, a colorimetric assay is developed based on a smartphone digital camera and urine test strips. Assays of pH, albumin, glucose, and lipase activity were performed as a tool for the diagnosis of aciduria, alkaluria, glycosuria, proteinuria, and leukocyturia. The RGB color channels were analyzed in the colorimetric assay, and the assay exerted good sensitivity, and all the particular diagnoses proved to be reliable. The limits of detection for glucose (0.11 mmol/L), albumin (0.15 g/L), and lipase (2.50 U/μL) were low enough to cover the expected physiological concentration, and the range for pH was also satisfactory. The urine test strips with a camera as an output detector proved applicability to spiked urine samples, and the results were also well in comparison to the standard assays which confirms the practical relevance of the presented findings.
- Publication type
- Journal Article MeSH
Environmental screening is essential due to the increased occurrence of harmful substances in the environment. Open Meter Duo (OMD) is an open-source field photo/fluorimeter that uses an RGB diode that imitates a color according to the selected wavelength and uses a UV LED from the security kit diode as an excitation light source. The prepared PCB shield with a 3D-printed aperture was connected to Arduino UNO R4 WiFi. This system was used for the fluorescent detection of cholinesterase activity with the indoxyl acetate method. Carbofuran-a toxic pesticide-and donepezil-a drug used to treat Alzheimer's disease-were tested as model inhibitors of cholinesterase activity. The limit of detection of indoxyl acetate was 11.6 μmol/L, and the IC50 values of the inhibitors were evaluated. This system is optimized for wireless use in field analysis with added cloud support and power source. The time of analysis was 5 min for the fluorimetric assay and 20 min for the optional photometric assay. The time of field operation was approximately 4 h of continuous measurement. This system is ready to be used as a cheap and easy control platform for portable use in drug control and point-of-care testing.
- MeSH
- Alzheimer Disease * MeSH
- Cholinesterase Inhibitors therapeutic use MeSH
- Cholinesterases therapeutic use MeSH
- Donepezil therapeutic use MeSH
- Fluorometry MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Triticale (X Triticosecale Wittmack), a wheat-rye small grain crop hybrid, combines wheat and rye attributes in one hexaploid genome. It is characterized by high adaptability to adverse environmental conditions: drought, soil acidity, salinity and heavy metal ions, poorer soil quality, and waterlogging. So that its cultivation is prospective in a changing climate. Here, we describe RGB on-ground phenotyping of field-grown eighteen triticale market-available cultivars, made in naturally changing light conditions, in two consecutive winter cereals growing seasons: 2018-2019 and 2019-2020. The number of ears was counted on top-down images with an accuracy of 95% and mean average precision (mAP) of 0.71 using advanced object detection algorithm YOLOv4, with ensemble modeling of field imaging captured in two different illumination conditions. A correlation between the number of ears and yield was achieved at the statistical importance of 0.16 for data from 2019. Results are discussed from the perspective of modern breeding and phenotyping bottleneck.
- MeSH
- Edible Grain genetics MeSH
- Prospective Studies MeSH
- Soil MeSH
- Plant Breeding MeSH
- Triticale * MeSH
- Publication type
- Journal Article MeSH
Excessive use of pesticides could potentially harm the environment for a long time. The reason for this is that the banned pesticide is still likely to be used incorrectly. Carbofuran and other banned pesticides that remain in the environment may also have a negative effect on human beings. In order to provide a better chance for effective environmental screening, this thesis describes a prototype of a photometer tested with cholinesterase to potentially detect pesticides in the environment. The open-source portable photodetection platform uses a color-programmable red, green and blue light-emitting diode (RGB LED) as a light source and a TSL230R light frequency sensor. Acetylcholinesterase from Electrophorus electricus (AChE) with high similarity to human AChE was used for biorecognition. The Ellman method was selected as a standard method. Two analytical approaches were applied: (1) subtraction of the output values after a certain period of time and (2) comparison of the slope values of the linear trend. The optimal preincubation time for carbofuran with AChE was 7 min. The limits of detection for carbofuran were 6.3 nmol/L for the kinetic assay and 13.5 nmol/L for the endpoint assay. The paper demonstrates that the open alternative for commercial photometry is equivalent. The concept based on the OS3P/OS3P could be used as a large-scale screening system.
- MeSH
- Acetylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Cholinesterases MeSH
- Carbofuran * MeSH
- Humans MeSH
- Pesticides * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Multispectral imaging is used in various applications including astronomy, industry and agriculture. In retinal imaging, the single-shot multispectral image stack is typically acquired and analyzed. This multispectral analysis can provide information on various structural or metabolic properties. This paper describes the multispectral improvement of a video-ophthalmoscope, which can acquire retinal video sequences of the optic nerve head and peripapillary area using various spectral light illumination. The description of the multispectral video imaging is provided and several applications are described. These applications include multispectral retinal photoplethysmography, visualization of spontaneous vein pulsation and multispectral RGB image generation.
In some applications of thermography, spatial orientation of the thermal infrared information can be desirable. By the photogrammetric processing of thermal infrared (TIR) images, it is possible to create 2D and 3D results augmented by thermal infrared information. On the augmented 2D and 3D results, it is possible to locate thermal occurrences in the coordinate system and to determine their scale, length, area or volume. However, photogrammetric processing of TIR images is difficult due to negative factors which are caused by the natural character of TIR images. Among the negative factors are the lower resolution of TIR images compared to RGB images and lack of visible features on the TIR images. To eliminate these negative factors, two methods of photogrammetric co-processing of TIR and RGB images were designed. Both methods require a fixed system of TIR and RGB cameras and for each TIR image a corresponding RGB image must be captured. One of the methods was termed sharpening and the result of this method is mainly an augmented orthophoto, and an augmented texture of the 3D model. The second method was termed reprojection and the result of this method is a point cloud augmented by thermal infrared information. The details of the designed methods, as well as the experiments related to the methods, are presented in this article.
- MeSH
- Photogrammetry * MeSH
- Thermography * methods MeSH
- Publication type
- Journal Article MeSH
Automated analysis of small and optically variable plant organs, such as grain spikes, is highly demanded in quantitative plant science and breeding. Previous works primarily focused on the detection of prominently visible spikes emerging on the top of the grain plants growing in field conditions. However, accurate and automated analysis of all fully and partially visible spikes in greenhouse images renders a more challenging task, which was rarely addressed in the past. A particular difficulty for image analysis is represented by leaf-covered, occluded but also matured spikes of bushy crop cultivars that can hardly be differentiated from the remaining plant biomass. To address the challenge of automated analysis of arbitrary spike phenotypes in different grain crops and optical setups, here, we performed a comparative investigation of six neural network methods for pattern detection and segmentation in RGB images, including five deep and one shallow neural network. Our experimental results demonstrate that advanced deep learning methods show superior performance, achieving over 90% accuracy by detection and segmentation of spikes in wheat, barley and rye images. However, spike detection in new crop phenotypes can be performed more accurately than segmentation. Furthermore, the detection and segmentation of matured, partially visible and occluded spikes, for which phenotypes substantially deviate from the training set of regular spikes, still represent a challenge to neural network models trained on a limited set of a few hundreds of manually labeled ground truth images. Limitations and further potential improvements of the presented algorithmic frameworks for spike image analysis are discussed. Besides theoretical and experimental investigations, we provide a GUI-based tool (SpikeApp), which shows the application of pre-trained neural networks to fully automate spike detection, segmentation and phenotyping in images of greenhouse-grown plants.
Riziko vzniku osteoporózy signifikantně narůstá s věkem. S tím je spjat i nárůst rizika fraktur jako nejzávažnější komplikace, která u pacientů ve vyšším věku vede k signifikantnímu nárůstu mortality a morbidity a k významnému snížení kvality života. Teriparatid je prvním anabolickým přípravkem v léčbě osteoporózy. Vstup Forstea na trh v roce 2003 znamenal začátek nové éry v léčbě osteoporózy. Mnoho studií prokázalo pozitivní efekt teriparatidu při intermitentním podávání na nárůst kostní denzity a prevenci obratlových i neobratlových zlomenin, ekonomické náklady na léčbu každého pacienta ale představují významnou zátěž zdravotního systému. Vstup biosimilárního teriparatidu na trh může tyto náklady významně snížit. Biosimilární teriparatid RGB-10 na základě rozsáhlých fyzikálně-chemických a biologických testů prokázal významnou podobnost přípravku RGB-10 na kvalitativní úrovni, dále prokázal stejnou farmakokinetiku i farmakodynamiku jako originální léčivo. Statistická analýza potvrdila formální bioekvivalenci mezi oběma přípravky. Byl prokázán ekvivalentní účinek na nárůst denzity kostního minerálu po 12 měsících léčby. Vzhledem k vysoké shodnosti obou přípravků a obdobnému nárůstu denzity lze očekávat i obdobný efekt na snížení rizika zlomenin. Bezpečnost léčby obou přípravků včetně imunogenicity je obdobná. Na základě vysoké míry podobnosti preklinických dat a průkazu naprosté bioekvivalence byl přípravek RGB-10 (Terrosa) v roce 2017 schválen Evropskou lékovou agenturou k léčbě ve stejných indikacích jako teriparatid.
The risk of osteoporosis increases significantly with age. This is associated with an increase in the risk of fractures as the most serious complication, which in elderly patients leads to a significant increase in mortality and morbidity and a significant reduction in quality of life. Teriparatide is the first anabolic agent in the treatment of osteoporosis. Forsteo's entry into the market in 2003 marked the beginning of a new era in the treatment of osteoporosis. Many studies have shown a positive effect of teriparatide when administered intermittently on the increase in bone density and the prevention of vertebral and non-vertebral fractures, but the economic cost of treating each patient represents a significant burden on the health system. The market entry of biosimilar teriparatide can significantly reduce these costs. Biosimilar teriparatide RGB-10, based on extensive physicochemical and biological tests, demonstrated significant similarity of RGB-10 at a qualitative level, as well as the same pharmacokinetics and pharmacodynamics as the parent drug. Statistical analysis confirmed formal bioequivalence between the two preparations. An equivalent effect on the increase in bone mineral density after 12 months of treatment has been demonstrated. Thanks to a similar increase in density in both preparations, a similar effect can be expected to reduce the risk of fractures. The safety of treatment with both preparations, including their immunogenicity, is similar. Based on the high degree of similarity of preclinical data and the demonstration of complete bioequivalence, RGB-10 (Terrosa) was approved in 2017 by the European Medicines Agency for treatment in the same indications as teriparatide.
- Keywords
- RGB-10,
- MeSH
- Biosimilar Pharmaceuticals * administration & dosage pharmacokinetics adverse effects MeSH
- Adult MeSH
- Fractures, Bone epidemiology MeSH
- Injections, Subcutaneous MeSH
- Humans MeSH
- Osteoporosis drug therapy complications MeSH
- Randomized Controlled Trials as Topic MeSH
- Risk MeSH
- Therapeutic Equivalency MeSH
- Teriparatide * administration & dosage pharmacokinetics pharmacology blood adverse effects MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
Cíl: Karcinom prostaty je nejčastěji vyskytující se zhoubné nádorové onemocnění mužů. Jeho výskyt se geograficky výrazně liší a narůstá s věkem. Pro rychlou diagnostiku jsou hledány vhodné nádorové markery. Velmi slibným kandidátem je aminokyselina sarkosin (SAR), která je zvýšena v moči u zhoubného nádoru. Cílem této práce je vývoj jednoduché, rychlé a spolehlivé metody pro detekci SAR v lidské moči. Materiál a metody: Vzorky umělé moči (15 typů) byly připraveny podle dostupných protokolů. Elektrochemická analýza byla provedena potenciometricky a voltametricky. Teplotní testy stability sarkosin oxidázy (SOX) byly provedeny při teplotách –5, 25, 30, 35, 40, 45 a 60 °C. Lyofilizace byla provedena po dobu 72 h (0,1 mbar, –80 °C). Na začátku a na konci experimentu byl test hodnocen vizuálně. Získané fotografie byly podrobeny matematické analýze (hodnocení barevné intenzity signálu). Výsledky: Složení moči je velmi variabilní a obsahuje celou řadu odpadních metabolitů, léčiv a dalších interferentů. Umělá moč je vhodnou matricí pro studium změn aktivity SOX. Aktivita SOX (1 U/ml) byla sledována (Trinderovou reakcí) jako hydrolýza sarkosinu (60 min, 125 µM SAR, 0,4 mM AAP). V experimentu se pozoroval vliv přídavku interferentů (Cd, Pb, Zn a léky), kdy se inhibice SOX pohybovala v rozmezí 10–20 %. Enzym SOX byl zahříván, mražen a lyofilizován. Výsledky ukazují, že enzym je stabilní při teplotách 5–60 °C (pokles signálu o 10 % za 200 h). Teploty nad 60 °C vedou k inaktivaci enzymu (pokles signálu o 90 % při 120 min). Nízké teploty (–5 °C až –20 °C) nevedly po 5 týdnech k poklesu signálu. Vizuální výsledky jsou sumarizovány jako průměrná hodnota denzity RGB signálu v dané studované skupině vzorků (n = 10). Získané výsledky ukazují, že průměrná variabilita RGB signálu mezi jednotlivými testovanými vzorky byla 7,4 %. Z těchto hodnot byla určena ROC křivka jednotlivých experimentů (n = 5). Pomocí ROC křivek byla vypočítána senzitivita (od 0,59 do 0,83) a specificita (1) podle druhu umělých močí. ROC křivky byly z 26,7 % hodnoceny jako výborné, z 66,6 % jako velmi dobré z 6,6 % jako dobré a žádná jako nevyhovující. Závěr: Byla provedena studie stanovení pro aminokyselinu sarkosin za využití enzymatické reakce. Vizuální vyhodnocení testu ukázalo 100% úspěšnost identifikace přítomnosti sarkosinu v umělé moči. Získaná data ukazují na potenciál metody pro vizuální hodnocení přítomnosti sarkosinu v moči.
Aim: Prostate carcinoma is the most common malignant tumor in men. Its occurrence varies considerably geographically and increases with age. For the rapid diagnosis, suitable tumor markers are sought. A very promising candidate is the amino acid sarcosine (SAR), which is increased in the urine from patients with tumor. The aim of this work was to develop a simple, rapid, and reliable method for the detection of SAR in human urine. Material and methods: Artificial urine samples (15 types) were prepared according to available protocols. An electrochemical analysis was performed potentiometrically and voltammetrically. Temperature stability tests of sarcosine oxidase (SOX) were performed at –5, 25, 30, 35, 40, 45, and 60 °C. Lyophilization was carried out for 72 hours (0.1 mbar, –80 °C). At the beginning and at the end of the experiment, the test was evaluated visually. The obtained photographs were subjected to mathematical analysis (evaluation of the color intensity of the signal). Results: The urine composition is very variable, it can contain a variety of waste metabolites, drugs, and other interferents. Artificial urine is a suitable matrix for studying changes in SOX activity. SOX activity (1 U/mL) was monitored by Trinder reaction as sarcosine hydrolysis (60 min, 125 μM SAR, 0.4 mM AAP). The effect of the addition of interferents (Cd, Pb, Zn, and drugs) was observed in the experiment, with SOX inhibition ranging from 10 to 20 %. The SOX enzyme was heated, freeze-dried, and lyophilized. The results showed that the enzyme was stable at temperatures from 5 to 60 °C (signal drop by 10% in 200 hours). Temperatures above 60 °C led to inactivation of the enzyme (signal drop by 90% at 120 min). Low temperatures (–5 °C to –20 °C) did not lead to a signal decrease after 5 weeks. The visual results were summarized as the average value of the RGB signal density in the studied sample group (n = 10). The results obtained showed that the average variability of the RGB signal among tested samples was 7.4%. From these values, the ROC curve of individual experiments (n = 5) was determined. Using ROC curves, the sensitivity (from 0.59 to 0.83) and the specificity (1) were calculated by the type of artificial urine. The ROC curves were evaluated as follows: excellent – 26.6%, very good – 66.6%, and good curves – 6.6%; no curve was unsatisfactory. Conclusion: A study of stability in the detection of the amino acid sarcosine using the enzymatic reaction was performed. The visual evaluation of the test exhibited a success rate of 100% in identifying the sarcosine presence in artificial urine. The data obtained show the potential of the method for visual evaluation of the presence of sarcosine in the urine.
- Keywords
- vizuální test,
- MeSH
- Biosensing Techniques MeSH
- Humans MeSH
- Biomarkers, Tumor MeSH
- Prostatic Neoplasms * diagnosis MeSH
- Sarcosine analysis urine MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH