A Butyrylcholinesterase Camera Biosensor Tested for Carbofuran and Paraoxon Assay
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35432544
PubMed Central
PMC9010193
DOI
10.1155/2022/2623155
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Biosensors containing cholinesterase are analytical devices suitable for the assay of neurotoxic compounds. In the research on biosensors, a new platform has appeared some years ago. It is the digital photography and scoring of coloration (photogrammetry). In this paper, a colorimetric biosensor is constructed using 3D-printed multiwell pads treated with indoxylacetate as a chromogenic substrate and gold nanoparticles with the immobilized enzyme butyrylcholinesterase. A smartphone camera served for photogrammetry. The biosensor was tested for the assay of carbofuran and paraoxon ethyl as two types of covalently binding inhibitors: irreversible and pseudoirreversible. The biosensor exerted good sensitivity to the inhibitors and was able to detect carbofuran with a limit of detection for carbofuran 7.7 nmol/l and 17.6 nmol/l for paraoxon ethyl. A sample sized 25 μl was suitable for the assay lasting approximately 70 minutes. Up to 121 samples can be measured contemporary using one multiwell pad. The received data fully correlated with the standard spectrophotometry. The colorimetric biosensor exerts promising specifications and appears to be competitive to the other analytical procedures working on the principle of cholinesterase inhibition. Low-cost, simple, and portable design represent an advantage of the assay of the biosensor. Despite the overall simplicity, the biosensor can fully replace the standard spectroscopic methods.
Zobrazit více v PubMed
Pohanka M. Small camera as a handheld colorimetric tool in the analytical chemistry. Chemical Papers . 2017;71(9):1553–1561. doi: 10.1007/s11696-017-0166-z. DOI
Pohanka M. Colorimetric hand-held sensors and biosensors with a small digital camera as signal recorder, a review. Reviews in Analytical Chemistry . 2020;39(1):20–30. doi: 10.1515/revac-2020-0111. DOI
Li Y., Tan J., Huang L., Chen Y., Lin Q. A portable visual sensor by molecularly imprinted hydrogels for HRP recognition. Current Analytical Chemistry . 2020;16(6):800–808. doi: 10.2174/1573411015666190723151351. DOI
Wongthanyakram J., Harfield A., Masawat P. A smart device-based digital image colorimetry for immediate and simultaneous determination of curcumin in turmeric. Canadian Journal of Anaesthesia . 2019;166:p. 8. doi: 10.1016/j.compag.2019.104981. DOI
Calabria D., Zangheri M., Trozzi I., et al. Smartphone-based chemiluminescent origami mu PAD for the rapid assessment of glucose blood levels. Biosensors and Bioelectronics . 2021;11(10):p. 13. doi: 10.3390/bios11100381. PubMed DOI PMC
Calabria D., Guardigli M., Severi P., et al. A smartphone-based chemosensor to evaluate antioxidants in agri-food matrices by in situ AuNP formation. Sensors . 2021;21(16):p. 14. doi: 10.3390/s21165432. PubMed DOI PMC
El-Naggar A. E. R., Abdalla M. S., El-Sebaey A. S., Badawy S. M. Clinical findings and cholinesterase levels in children of organophosphates and carbamates poisoning. European Journal of Pediatrics . 2009;168(8):951–956. doi: 10.1007/s00431-008-0866-z. PubMed DOI
Rotenberg M., Shefi M., Dany S., Dore I., Tirosh M., Almog S. Differentiation between organophosphate and carbamate poisoning. Clinica Chimica Acta; International Journal of Clinical Chemistry . 1995;234(1-2):11–21. doi: 10.1016/0009-8981(94)05969-y. PubMed DOI
Saritas A., Cakir Z., Aslan S. Organophosphate and carbamate toxicity. Eurasian Journal of Medicine . 2007;39(1):55–59.
Grigorev V. Y., Rasdolsky A. N., Grigoreva L. D., Tinkov O. V. Structural fractal analysis of the active site of acetylcholinesterase in complexes with huperzine A, galantamine, and donepezil. Molecular Informatics . 2021;40(11):p. 6. doi: 10.1002/minf.202100127. PubMed DOI
Pohanka M. Inhibitors of cholinesterases in the pharmacology, the current trends. Mini Reviews in Medicinal Chemistry . 2019;20(15):1532–1542. PubMed
Zhou S., Huang G. Synthesis and activities of acetylcholinesterase inhibitors. Chemical Biology and Drug Design . 2021;98(6):997–1006. doi: 10.1111/cbdd.13958. PubMed DOI
Bilal S., Sami A. J., Hayat A., Rehman M. F. U. Assessment of pesticide induced inhibition of Apis mellifera (honeybee) acetylcholinesterase by means of N-doped carbon dots/BSA nanocomposite modified electrochemical biosensor. Bioelectrochemistry . 2022;144:p. 12. doi: 10.1016/j.bioelechem.2021.107999. PubMed DOI
Zhang L., Qiao C. F., Cai X. Y., et al. Microcalorimetry-guided pore-microenvironment optimization to improve sensitivity of Ni-MOF electrochemical biosensor for chiral galantamine. Chemical Engineering Journal . 2021;426:p. 11. doi: 10.1016/j.cej.2021.130730. DOI
Zhao X., Zhang L., Yan X., et al. A near-infrared light triggered fluormetric biosensor for sensitive detection of acetylcholinesterase activity based on NaErF4: 0.5% Ho3+@NaYF4 upconversion nano-probe. Talanta . 2021;235:p. 8. PubMed
Rafat N., Satoh P., Worden R. M. Electrochemical biosensor for markers of neurological esterase inhibition. Biosensors and Bioelectronics . 2021;11(11):p. 20. doi: 10.3390/bios11110459. PubMed DOI PMC
Kratasyuk V. A., Kolosova E. M., Sutormin O. S., et al. Software for matching standard activity enzyme biosensors for soil pollution analysis. Sensors . 2021;21(3):p. 10. doi: 10.3390/s21031017. PubMed DOI PMC
Lonshakova-Mukina V. I., Esimbekova E. N., Kratasyuk V. A. Thermal inactivation of butyrylcholinesterase in starch and gelatin gels. Catalysts . 2021;11(4):p. 10. doi: 10.3390/catal11040492. DOI
Qu Z. Y., Yu T., Liu Y. Z., Bi L. H. Determination of butyrylcholinesterase activity based on thiamine luminescence modulated by MnO2 nanosheets. Talanta . 2021;224:p. 6. doi: 10.1016/j.talanta.2020.121831. PubMed DOI
Soldatkin O. O., Soldatkina O. V., Piliponskiy I. I., et al. Application of gold nanoparticles for improvement of analytical characteristics of conductometric enzyme biosensors. Applied Nanoscience . 2022;9 doi: 10.1007/s13204-021-01807-6. DOI
Pohanka M. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples. Chemical Papers . 2015;69(8):1044–1049. doi: 10.1515/chempap-2015-0117. DOI
Pohanka M. Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors . 2015;15(6):13752–13762. doi: 10.3390/s150613752. PubMed DOI PMC
Pohanka M., Drtinova L. Spectrophotometric methods based on 2,6-dichloroindophenol acetate and indoxylacetate for butyrylcholinesterase activity assay in plasma. Talanta . 2013;106:281–285. doi: 10.1016/j.talanta.2012.10.085. PubMed DOI
Hubaux A., Vos G. Decision and detection limits for calibration curves. Analytical Chemistry . 1970;42(8):849–855. doi: 10.1021/ac60290a013. DOI
O’Neill D. T., Rochette E. A., Ramsey P. J. Method detection limit determination and application of a convenient headspace analysis method for methyl tert-butyl ether in water. Analytical Chemistry . 2002;74(22):5907–5911. PubMed
Lin J. Y., Jiang X. X., Yu J. R., Wei X. P., Li J. P. A novel biosensor of acetylcholinesterase immobilized in metal organic framework based on gold nanoflower for detection of glyphosate. Chinese Journal of Analytical Chemistry . 2021;49(11):1834–1844.
Yang Y. X., Liu Q., Zhao Y. S., et al. Electrochemical biosensor based on CuPt alloy NTs-AOE for the ultrasensitive detection of organophosphate pesticides. Nanotechnology . 2022;33(10):p. 11. doi: 10.1088/1361-6528/ac38e5. PubMed DOI
Zhao M. Q., Wang M., Zhang X. G., et al. Recognition elements based on the molecular biological techniques for detecting pesticides in food: a review. Critical Reviews in Food Science and Nutrition . 2022;24 PubMed
Li Y., Li Y., Yu X., Sun Y. Electrochemical determination of carbofuran in tomatoes by a concanavalin A (con A) polydopamine (PDA)-reduced graphene oxide (RGO)-gold nanoparticle (GNP) glassy carbon electrode (GCE) with immobilized acetylcholinesterase (AChE) Analytical Letters . 2019;52(14):2283–2299. doi: 10.1080/00032719.2019.1609490. DOI
Soulis D., Trigazi M., Tsekenis G., Chandrinou C., Klinakis A., Zergioti I. Facile and low-cost SPE modification towards ultra-sensitive organophosphorus and carbamate pesticide detection in olive oil. Molecules . 2020;25(21):p. 19. doi: 10.3390/molecules25214988. PubMed DOI PMC
Yang Y. X., Zhou Y., Liang Y. X., Wu R. CoO NPs/c-CNTs nanocomposite as electrochemical sensor for sensitive and selective determination of the carbofuran pesticide in fruits and vegetables. International Journal of Electrochemical Science . 2021;16(6):p. 12. doi: 10.20964/2021.06.26. DOI
Rhouati A., Istamboulie G., Cortina-Puig M., Marty J. L., Noguer T. Selective spectrophotometric detection of insecticides using cholinesterases, phosphotriesterase and chemometric analysis. Enzyme and Microbial Technology . 2010;46(3-4):212–216. doi: 10.1016/j.enzmictec.2009.09.006. DOI
Zhu Y. A., Wang M., Zhang X. G., et al. Acetylcholinesterase immobilized on magnetic mesoporous silica nanoparticles coupled with fluorescence analysis for rapid detection of carbamate pesticides. ACS Applied Nano Materials . 2022;12 doi: 10.1021/acsanm.1c03884. DOI