The Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress Is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34177973
PubMed Central
PMC8231708
DOI
10.3389/fpls.2021.628167
Knihovny.cz E-zdroje
- Klíčová slova
- 2D-DIGE, Brassica napus, RT-qPCR, microspore, osmotic stress, screening,
- Publikační typ
- časopisecké články MeSH
The present study aims to investigate the response of rapeseed microspore-derived embryos (MDE) to osmotic stress at the proteome level. The PEG-induced osmotic stress was studied in the cotyledonary stage of MDE of two genotypes: Cadeli (D) and Viking (V), previously reported to exhibit contrasting leaf proteome responses under drought. Two-dimensional difference gel electrophoresis (2D-DIGE) revealed 156 representative protein spots that have been selected for MALDI-TOF/TOF analysis. Sixty-three proteins have been successfully identified and divided into eight functional groups. Data are available via ProteomeXchange with identifier PXD024552. Eight selected protein accumulation trends were compared with real-time quantitative PCR (RT-qPCR). Biomass accumulation in treated D was significantly higher (3-fold) than in V, which indicates D is resistant to osmotic stress. Cultivar D displayed resistance strategy by the accumulation of proteins in energy metabolism, redox homeostasis, protein destination, and signaling functional groups, high ABA, and active cytokinins (CKs) contents. In contrast, the V protein profile displayed high requirements of energy and nutrients with a significant number of stress-related proteins and cell structure changes accompanied by quick downregulation of active CKs, as well as salicylic and jasmonic acids. Genes that were suitable for gene-targeting showed significantly higher expression in treated samples and were identified as phospholipase D alpha, peroxiredoxin antioxidant, and lactoylglutathione lyase. The MDE proteome profile has been compared with the leaf proteome evaluated in our previous study. Different mechanisms to cope with osmotic stress were revealed between the genotypes studied. This proteomic study is the first step to validate MDE as a suitable model for follow-up research on the characterization of new crossings and can be used for preselection of resistant genotypes.
Zobrazit více v PubMed
Abass M., Morris P. C. (2013). The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J. Plant Physiol. 170, 1353–1359. 10.1016/j.jplph.2013.04.009 PubMed DOI
Abreu I., Farinha A., Negrao S., Goncalves N., Fonseca C., Rodrigues M., et al. . (2013). Coping with abiotic stress: proteome changes for crop improvement. J. Proteom. 93, 145–168. 10.1016/j.jprot.2013.07.014 PubMed DOI
Ahmadi B., Ahmadi M., da Silva J. A. T. (2018). Microspore embryogenesis in Brassica: calcium signaling, epigenetic modification, and programmed cell death. Planta 248, 1339–1350. 10.1007/s00425-018-2996-5 PubMed DOI
Almeida A. M., Parreira J. R., Santos R., Duque A. S., Francisco R., Tome D. F., et al. . (2012). A proteomics study of the induction of somatic embryogenesis in Medicago truncatula using 2DE and MALDI-TOF/TOF. Physiol. Plantarum 146, 236–249. 10.1111/j.1399-3054.2012.01633.x PubMed DOI
Askari-Khorasgani O., Pessarakli M. (2019). Manipulation of plant methylglyoxal metabolic and signaling pathways for improving tolerance to drought stress. J. Plant Nutr. 42, 1268–1275. 10.1080/01904167.2019.1589502 DOI
Bandehagh A., Salekdeh G. H., Toorchi M., Mohammadi A., Komatsu S. (2011). Comparative proteomic analysis of canola leaves under salinity stress. Proteomics 11, 1965–1975. 10.1002/pmic.201000564 PubMed DOI
Belmonte M. F., Ambrose S. J., Ross A. R. S., Abrams S. R., Stasolla C. (2006). Improved development of microspore-derived embryo cultures of Brassica napus cv Topaz following changes in glutathione metabolism. Physiol. Plantarum 127, 690–700. 10.1111/j.1399-3054.2006.00707.x DOI
Boonman A., Prinsen E., Gilmer F., Schurr U., Peeters A. J. M., Voesenek L., et al. . (2007). Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol. 143, 1841–1852. 10.1104/pp.106.094631 PubMed DOI PMC
Brauc S., De Vooght E., Claeys M., Hofte M., Angenon G. (2011). Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana. J. Plant Physiol. 168, 1813–1819. 10.1016/j.jplph.2011.05.012 PubMed DOI
Caraux G., Pinloche S. (2005). PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21, 1280–1281. 10.1093/bioinformatics/bti141 PubMed DOI
Cegielska-Taras T., Pniewski T., Szala L. (2008). Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J. Appl. Genet. 49, 343–347. 10.1007/BF03195632 PubMed DOI
Cerny M., Kuklova A., Hoehenwarter W., Fragner L., Novak O., Rotkova G., et al. . (2013). Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J. Exp. Bot. 64, 4193–4206. 10.1093/jxb/ert227 PubMed DOI PMC
Chan J., Pauls K. P. (2007). Brassica napus Rop GTPases and their expression in microspore cultures. Planta 225, 469–484. 10.1007/s00425-006-0362-5 PubMed DOI
Chen H. H., Chu P., Zhou Y. L., Ding Y., Li Y., Liu J., et al. . (2016). Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. Plant J. 88, 608–619. 10.1111/tpj.13286 PubMed DOI
Chu P. Y. G., Yang Q., Zhai L. N., Zhang C., Zhang F. Q., Guan R. Z. (2015). iTRAQ-basedquantitative proteomics analysis of Brassica napus leaves reveals pathwaysassociated with chlorophyll deficiency. J. Proteomics. 113, 244–259. 10.1016/j.jprot.2014.10.005 PubMed DOI
Claeys H., Van Landeghem S., Dubois M., Maleux K., Inze D. (2014). What is stress? Dose-response effects in commonly used in vitro stress assays. Plant Physiol. 165, 519–527. 10.1104/pp.113.234641 PubMed DOI PMC
Cui S., Hu J., Guo S., Wang J., Cheng Y., Dang X., et al. . (2012). Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration. J. Exp. Bot. 63, 711–726. 10.1093/jxb/err296 PubMed DOI PMC
Cutler S. R., Rodriguez P. L., Finkelstein R. R., Abrams S. R. (2010). Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679. 10.1146/annurev-arplant-042809-112122 PubMed DOI
Daurova A., Daurov D., Volkov D., Karimov A., Abai Z., Raimbek D., et al. . (2020). Mutagenic treatment of microspore-derived embryos of turnip rape (Brassica rapa) to increase oleic acid content. Plant Breeding 139, 916–922. 10.1111/pbr.12830 DOI
de la Torre F., Canas R. A., Pascual M. B., Avila C., Canovas F. M. (2014a). Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. J. Exp. Bot. 65, 5527–5534. 10.1093/jxb/eru240 PubMed DOI
de la Torre F., El-Azaz J., Avila C., Canovas F. M. (2014b). Deciphering the role of aspartate and prephenate aminotransferase activities in plastid nitrogen metabolism. Plant Physiol. 164, 92–104. 10.1104/pp.113.232462 PubMed DOI PMC
de Ollas C., Dodd I. C. (2016). Physiological impacts of ABA-JA interactions under water-limitation. Plant Mol. Biol. 91, 641–650. 10.1007/s11103-016-0503-6 PubMed DOI PMC
Demartini D. R., Jain R., Agrawal G., Thelen J. J. (2011). Proteomic comparison of plastids from developing embryos and leaves of Brassica napus. J. Proteome Res. 10, 2226–2237. 10.1021/pr101047y PubMed DOI
Denance N., Szurek B., Noel L. D. (2014). Emerging functions of nodulin-like proteins in non-nodulating plant species. Plant Cell Physiol. 55, 469–474. 10.1093/pcp/pct198 PubMed DOI
Devouge V., Rogniaux H., Nesi N., Tessier D., Gueguen J., Larre C. (2007). Differential proteomic analysis of four near-isogenic Brassica napus varieties bred for their erucic acid and glucosinolate contents. J. Proteome Res. 6, 1342–1353. 10.1021/pr060450b PubMed DOI
Distefano A. M., Valinas M. A., Scuffi D., Lamattina L., ten Have A., Garcia-Mata C., et al. . (2015). Phospholipase D delta knock-out mutants are tolerant to severe drought stress. Plant Signal. Behav. 10:1089371. 10.1080/15592324.2015.1089371 PubMed DOI PMC
Djilianov D. L., Dobrev P. I., Moyankova D. P., Vankova R., Georgieva D. T., Gajdosova S., et al. . (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species haberlea rhodopensis. J. Plant Growth Regul. 32, 564–574. 10.1007/s00344-013-9323-y DOI
Dobre P., Vankova R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. plant salt toler. Methods Mol. Biol. 913, 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI
Dobrev P., Kaminek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. 950, 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI
Doskocilova A., Plihal O., Volc J., Chumova J., Kourova H., Halada P., et al. . (2011). A nodulin/glutamine synthetase-like fusion protein is implicated in the regulation of root morphogenesis and in signalling triggered by flagellin. Planta 234, 459–476. 10.1007/s00425-011-1419-7 PubMed DOI
Duan P. G., Rao Y. C., Zeng D. L., Yang Y. L., Xu R., Zhang B. L., et al. . (2014). SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J. 77, 547–557. 10.1111/tpj.12405 PubMed DOI
Fatma M., Masood A., Per T. S., Rasheed F., Khan N. A. (2016). Interplay between nitric oxide and sulfur assimilation in salt tolerance in plants. Crop J. 4, 153–161. 10.1016/j.cj.2016.01.009 DOI
Fernandez A. P., Strand A. (2008). Retrograde signaling and plant stress: plastid signals initiate cellular stress responses. Curr. Opin. Plant Biol. 11, 509–513. 10.1016/j.pbi.2008.06.002 PubMed DOI
Fernandez-Garcia N., Hernandez M., Casado-Vela J., Bru R., Elortza F., Hedden P., et al. . (2011). Changes to the proteome and targeted metabolites of xylem sap in Brassica oleracea in response to salt stress. Plant Cell Environ. 34, 821–836. 10.1111/j.1365-3040.2011.02285.x PubMed DOI
Ferreira F. J., Guo C., Coleman J. R. (2008). Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol. 147, 585–594. 10.1104/pp.108.118661 PubMed DOI PMC
Ferrie A. M. R., Caswell K. L. (2011). Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Culture 104, 301–309. 10.1007/s11240-010-9800-y DOI
Frenck G., van der Linden L., Mikkelsen T. N., Brix H., Jorgensen R. B. (2011). Increased CO2 does not compensate for negative effects on yield caused by higher temperature and O-3 in Brassica napus L. Eur. J. Agronomy 35, 127–134. 10.1016/j.eja.2011.05.004 DOI
Gabrisova D., Klubicova K., Danchenko M., Gomory D., Berezhna V. V., Skultety L., et al. . (2016). Do cupins have a function beyond being seed storage proteins?. Front. Plant Sci. 6:1215. 10.3389/fpls.2015.01215 PubMed DOI PMC
Gan L., Zhang C.-Y., Wang X.-D., Wang H., Long Y., Yin Y.-T., et al. . (2013). Proteomic and comparative genomic analysis of two brassica napus lines differing in oil content. J. Proteome Res. 12, 4965–4978. 10.1021/pr4005635 PubMed DOI
Gawronski P., Witon D., Vashutina K., Bederska M., Betlinski B., Rusaczonek A., et al. . (2014). Mitogen-activated protein kinase 4 is a salicylic acid-independent regulator of growth but not of photosynthesis in arabidopsis. Mol. Plant 7, 1151–1166. 10.1093/mp/ssu060 PubMed DOI
Germana M. A. (2011). Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 30, 839–857. 10.1007/s00299-011-1061-7 PubMed DOI
Greenbaum D., Colangelo C., Williams K., Gerstein M. (2003). Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4:117. 10.1186/gb-2003-4-9-117 PubMed DOI PMC
Guerra-Guimaraes L., Tenente R., Pinheiro C., Chaves I., Silva M. D., Cardoso F. M. H., et al. . (2015). Proteomic analysis of apoplastic fluid of Coffea arabica leaves highlights novel biomarkers for resistance against Hemileia vastatrix. Front. Plant Sci. 6:478. 10.3389/fpls.2015.00478 PubMed DOI PMC
Hasanuzzaman M., Nahar K., Hossain M. S., Al Mahmud J., Rahman A., Inafuku M., et al. . (2017). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int. J. Mol. Sci. 18:200. 10.3390/ijms18010200 PubMed DOI PMC
Heyno E., Alkan N., Fluhr R. (2013). A dual role for plant quinone reductases in host-fungus interaction. Physiol. Plantarum 149, 340–353. 10.1111/ppl.12042 PubMed DOI
Holdorf M. M., Owen H. A., Lieber S. R., Yuan L., Adams N., Dabney-Smith C., et al. . (2012). Arabidopsis ETHE1 encodes a sulfur dioxygenase that is essential for embryo and endosperm development. Plant Physiol. 160, 226–236. 10.1104/pp.112.201855 PubMed DOI PMC
Honig M., Plihalova L., Husickova A., Nisler J., Dolezal K. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 19:4045. 10.3390/ijms19124045 PubMed DOI PMC
Hu Z.-Y., Hua W., Huang S.-M., Wang H.-Z. (2011). Complete chloroplast genome sequence of rapeseed (Brassica napus L.) and its evolutionary implications. Genet. Resour. Crop Evol. 58, 875–887. 10.1007/s10722-010-9626-9 DOI
Huener N. P. A., Bode R., Dahal K., Hollis L., Rosso D., Krol M., et al. . (2012). Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited. Front. Plant Sci. 3:255. 10.3389/fpls.2012.00255 PubMed DOI PMC
Janda M., Jezkova L., Novakova M., Valentova O., Burketova L., Sasek V. (2015). Identification of phospholipase D genes in Brassica napus and their transcription after phytohormone treatment and pathogen infection. Biol. Plant. 59, 581–590. 10.1007/s10535-015-0513-2 DOI
Kaczmarek Z., Adamska E., Cegielska T., Szala L. (2008). The use of statistical methods to evaluate winter oilseed rape doubled haploids for industrial purposes. Industrial Crops Products 27, 348–353. 10.1016/j.indcrop.2007.11.012 DOI
Kampouridis A., Ziese-Kubon K., Nurhasanah, Ecke W. (2016). Identification and evaluation of intervarietal substitution lines of rapeseed (Brassica napus L.) with donor segments affecting the direct embryo to plant conversion rate of microspore-derived embryos. Euphytica 211, 215–229. 10.1007/s10681-016-1732-0 DOI
Katsuhara M., Sasano S., Horie T., Matsumoto T., Rhee J., Shibasaka M. (2014). Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol. 31, 213–U173. 10.5511/plantbiotechnology.14.0421a DOI
Kaur C., Ghosh A., Pareek A., Sopory S. K., Singla-Pareek S. L. (2014). Glyoxalases and stress tolerance in plants. Biochem. Soc. Trans. 42, 485–499. 10.1042/BST20130242 PubMed DOI
Kim S. Y., Jung Y. J., Shin M. R., Park J. H., Nawkar G. M., Maibam P., et al. . (2012). Molecular and functional properties of three different peroxiredoxin isotypes in Chinese cabbage. Mol. Cells 33, 27–33. 10.1007/s10059-012-2166-8 PubMed DOI PMC
Kitashiba H., Taguchi K., Kaneko I., Inaba K., Yokoi S., Takahata Y., et al. . (2016). Identification of loci associated with embryo yield in microspore culture of Brassica rapa by segregation distortion analysis. Plant Cell Rep. 35, 2197–2204. 10.1007/s00299-016-2029-4 PubMed DOI
Klima M., Vyvadilova M., Kucera V. (2008). Chromosome doubling effects of selected antimitotic agents in Brassica napus microspore culture. Czech J. Genet. Plant Breed. 44, 30–36. 10.17221/1328-CJGPB DOI
Klinghammer M., Tenhaken R. (2007). Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls. J. Exp. Bot. 58, 3609–3621. 10.1093/jxb/erm209 PubMed DOI
Klodmann J., Braun H.-P. (2011). Proteomic approach to characterize mitochondrial complex I from plants. Phytochemistry 72, 1071–1080. 10.1016/j.phytochem.2010.11.012 PubMed DOI
Koh J., Chen G., Yoo M.-J., Zhu N., Dufresne D., Erickson J. E., et al. . (2015). Comparative proteomic analysis of brassica napus in response to drought stress. J. Proteome Res. 14, 3068–3081. 10.1021/pr501323d PubMed DOI
Kosova K., Vitamvas P., Planchon S., Renaut J., Vankova R., Prasil I. T. (2013). Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J. Proteome Res. 12, 4830–4845. 10.1021/pr400600g PubMed DOI
Kosova K., Vitamvas P., Prasil I. T., Renaut J. (2011). Plant proteome changes under abiotic stress - Contribution of proteomics studies to understanding plant stress response. J. Proteom. 74, 1301–1322. 10.1016/j.jprot.2011.02.006 PubMed DOI
Kosova K., Vitamvas P., Urban M. O., Klima M., Roy A., Prasil I. T. (2015). Biological networks underlying abiotic stress tolerance in temperate crops-a proteomic perspective. Int. J. Mol. Sci. 16, 20913–20942. 10.3390/ijms160920913 PubMed DOI PMC
Krussel L., Junemann J., Wirtz M., Birke H., Thornton J. D., Browning L. W., et al. . (2014). The mitochondrial sulfur dioxygenase ethylmalonic encephalopathy protein1 is required for amino acid catabolism during carbohydrate starvation and embryo development in arabidopsis. Plant Physiol. 165, 92–104. 10.1104/pp.114.239764 PubMed DOI PMC
Kubala S., Garnczarska M., Wojtyla L., Clippe A., Kosmala A., Zmienko A., et al. . (2015). Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci. 231, 94–113. 10.1016/j.plantsci.2014.11.008 PubMed DOI
Limami A. M., Glevarec G., Ricoult C., Cliquet J. B., Planchet E. (2008). Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress. J. Exp. Bot. 59, 2325–2335. 10.1093/jxb/ern102 PubMed DOI PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25, 402–408. 10.1006/meth.2001.1262 PubMed DOI
Luo J. L., Tang S. H., Peng X. J., Yan X. H., Zeng X. H., Li J., et al. . (2015). Elucidation of cross-talk and specificity of early response mechanisms to salt and PEG-simulated drought stresses in brassica napus using comparative proteomic analysis. PLoS ONE 10:138974. 10.1371/journal.pone.0138974 PubMed DOI PMC
Mackova H., Hronkova M., Dobra J., Tureckova V., Novak O., Lubovska Z., et al. . (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 64, 2805–2815. 10.1093/jxb/ert131 PubMed DOI PMC
Malik M. R., Wang F., Dirpaul J. M., Zhou N., Polowick P. L., Ferrie A. M. R., et al. . (2007). Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol. 144, 134–154. 10.1104/pp.106.092932 PubMed DOI PMC
Manda P., Freeman M. G., Bridges S. M., Jankun-Kelly T. J., Nanduri B., McCarthy F. M., et al. . (2010). GOModeler- A tool for hypothesis-testing of functional genomics datasets. Bmc Bioinform. 11:29. 10.1186/1471-2105-11-S6-S29 PubMed DOI PMC
McCarthy F. M., Wang N., Magee G. B., Nanduri B., Lawrence M. L., Camon E. B., et al. . (2006). AgBase: a functional genomics resource for agriculture. Bmc Genomics 7:229. 10.1186/1471-2164-7-229 PubMed DOI PMC
Mittler R., Blumwald E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annu. Rev. Plant Biol. 61, 443–462. 10.1146/annurev-arplant-042809-112116 PubMed DOI
Miura K., Tada Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 5:4. 10.3389/fpls.2014.00004 PubMed DOI PMC
Mohammadi P. P., Moieni A., Komatsu S. (2012). Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids‘ 43, 2137–2152. 10.1007/s00726-012-1299-6 PubMed DOI
Najafabadi F. P., Shariatpanahi M. E., Ahmadi B., Sima N. K., Alizadeh B., Oroojloo M. (2015). Effects of heat shock and 2, 4-D treatment on morphological and physiological characteristics of microspores and microspore-derived doubled haploid plants in Brassica napus L. Iran. J. Biotechnol. 13, 31–38. 10.15171/ijb.1148 PubMed DOI PMC
Orsel M., Moison M., Clouet V., Thomas J., Leprince F., Canoy A.-S., et al. . (2014). Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence. J. Exp. Bot. 65, 3927–3947. 10.1093/jxb/eru041 PubMed DOI PMC
Prem D., Solis M. T., Barany I., Rodriguez-Sanz H., Risueno M. C., Testillano P. S. (2012). A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. Bmc Plant Biol. 12:127. 10.1186/1471-2229-12-127 PubMed DOI PMC
Reboul R., Geserick C., Pabst M., Frey B., Wittmann D., Luetz-Meindl U., et al. . (2011). Down-regulation of UDP-glucuronic acid biosynthesis leads to swollen plant cell walls and severe developmental defects associated with changes in pectic polysaccharides. J. Biol. Chem. 286, 39982–39992. 10.1074/jbc.M111.255695 PubMed DOI PMC
Rivero R. M., Kojima M., Gepstein A., Sakakibara H., Mittler R., Gepstein S., et al. . (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. U.S.A. 104, 19631–19636. 10.1073/pnas.0709453104 PubMed DOI PMC
Rodriguez-Sanz H., Solis M. T., Lopez M. F., Gomez-Cadenas A., Risueno M. C., Testillano P. S. (2015). Auxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napus. Plant Cell Physiol. 56, 1401–1417. 10.1093/pcp/pcv058 PubMed DOI
Rowe J. H., Topping J. F., Liu J. L., Lindsey K. (2016). Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol. 211, 225–239. 10.1111/nph.13882 PubMed DOI PMC
Rowlett R. S. (2010). Structure and catalytic mechanism of the beta-carbonic anhydrases. Biochim. Biophys. Acta-Proteins Proteomics 1804, 362–373. 10.1016/j.bbapap.2009.08.002 PubMed DOI
Schiessl S. V., Quezada-Martinez D., Orantes-Bonilla M., Snowdon R. (2020). Transcriptomics reveal high regulatory diversity of drought tolerance strategies in a biennial oil crop. Plant Sci. 297:110515. 10.1016/j.plantsci.2020.110515 PubMed DOI
Sehrawat A., Deswal R. (2014). S-nitrosylation analysis in brassica juncea apoplast highlights the importance of nitric oxide in cold-stress signaling. J. Proteome Res. 13, 2599–2619. 10.1021/pr500082u PubMed DOI
Shaikhali J., Heiber I., Seidel T., Stroher E., Hiltscher H., Birkmann S., et al. . (2008). The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. Bmc Plant Biol. 8:48. 10.1186/1471-2229-8-48 PubMed DOI PMC
Shen Y., Zhang Y., Zou J., Meng J., Wang J. (2015). Comparative proteomic study on Brassica hexaploid and its parents provides new insights into the effects of polyploidization. J. Proteomics 112, 274–284. 10.1016/j.jprot.2014.10.006 PubMed DOI
Shokri-Gharelo R., Noparvar P. M. (2018). Molecular response of canola to salt stress: insights on tolerance mechanisms. Peerj 6:4822. 10.7717/peerj.4822 PubMed DOI PMC
Silveira N. M., Frungillo L., Marcos F. C. C., Pelegrino M. T., Miranda M. T., Seabra A. B., et al. . (2016). Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. Planta 244, 181–190. 10.1007/s00425-016-2501-y PubMed DOI
Su H. N., Chen G., Yang L. M., Zhang Y. Y., Wang Y., Fang Z. Y., et al. . (2020). Proteomic variations after short-term heat shock treatment reveal differentially expressed proteins involved in early microspore embryogenesis in cabbage (Brassica oleracea). Peerj 8:23. 10.7717/peerj.8897 PubMed DOI PMC
Subramanian B., Bansal V. K., Kav N. N. V. (2005). Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. J. Agric. Food Chem. 53, 313–324. 10.1021/jf048922z PubMed DOI
Thalineau E., Truong H. N., Berger A., Fournier C., Boscari A., Wendehenne D., et al. . (2016). Cross-regulation between N metabolism and nitric oxide (NO) signaling during plant immunity. Front. Plant Sci. 7:472. 10.3389/fpls.2016.00472 PubMed DOI PMC
Thomas E., Wenzel G. (1975). Embryogenesis from microspores of Brassica-Napus. J. Plant Breed. 74, 77–81.
Tripathi B. N., Bhatt I., Dietz K. J. (2009). Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235, 3–15. 10.1007/s00709-009-0032-0 PubMed DOI
Tsuwamoto R., Fukuoka H., Takahata Y. (2007). Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta 225, 641–652. 10.1007/s00425-006-0388-8 PubMed DOI
Urban M. O., Vasek J., Klima M., Krtkova J., Kosova K., Prasil I. T., et al. . (2017). Proteomic and physiological approach reveals drought-induced changes in rapeseeds: Water-saver and water-spender strategy. J. Proteom. 152, 188–205. 10.1016/j.jprot.2016.11.004 PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., et al. . (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:research0034.1. 10.1186/gb-2002-3-7-research0034 PubMed DOI PMC
Verslues P. E., Agarwal M., Katiyar-Agarwal S., Zhu J. H., Zhu J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45, 523–539. 10.1111/j.1365-313X.2005.02593.x PubMed DOI
Wang L. L., Zhang P., Qin Z. W., Zhou X. Y. (2014). Proteomic analysis of fruit bending in cucumber (Cucumis sativus L.). J. Integrat. Agri. 13, 963–974. 10.1016/S2095-3119(13)60406-2 DOI
Wang L. M., Jin X., Li Q. B., Wang X. C., Li Z. Y., Wu X. M. (2016). Comparative proteomics reveals that phosphorylation of beta carbonic anhydrase 1 might be important for adaptation to drought stress in Brassica napus. Sci. Rep. 6:39024. 10.1038/srep39024 PubMed DOI PMC
Wang W., Scali M., Vignani R., Spadafora A., Sensi E., Mazzuca S., et al. . (2003). Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24, 2369–2375. 10.1002/elps.200305500 PubMed DOI
Warren C. R. (2008). Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO(2) transfer. J. Exp. Bot. 59, 1475–1487. 10.1093/jxb/erm245 PubMed DOI
Whittle C. A., Malik M. R., Li R., Krochko J. E. (2010). Comparative transcript analyses of the ovule, microspore, and mature pollen in Brassica napus. Plant Mol. Biol. 72, 279–299. 10.1007/s11103-009-9567-x PubMed DOI
Yadollahi A., Abdollahi M. R., Moieni A., Danaee M. (2011). Effects of carbon source, polyethylene glycol and abscisic acid on secondary embryo induction and maturation in rapeseed (Brassica napus L.) microspore-derived embryos. Acta Physiol. Plantarum 33, 1905–1912. 10.1007/s11738-011-0738-4 DOI
Yanagawa Y., Yoda H., Osaki K., Amano Y., Aono M., Seo S., et al. . (2016). Mitogen-activated protein kinase 4-like carrying an MEY motif instead of a TXY motif is involved in ozone tolerance and regulation of stomatal closure in tobacco. J. Exp. Bot. 67, 3471–3479. 10.1093/jxb/erw173 PubMed DOI PMC
Yin H., Li S., Zhao X., Bai X., Du Y. (2008). Isolation and characterization of an oilseed rape SKP1 gene BnSKP1 involved on defense in Brassica napus. J. Biotechnol. 136, S227–S227. 10.1016/j.jbiotec.2008.07.480 DOI
Zhang J. (2014). Salinity affects the proteomics of rice roots and leaves. Proteomics 14, 1711–1712. 10.1002/pmic.201400289 PubMed DOI
Zhang Y. T., Ali U., Zhang G. F., Yu L. Q., Fang S., Iqbal S., et al. . (2019). Transcriptome analysis reveals genes commonly responding to multiple abiotic stresses in rapeseed. Mol. Breed. 39:158. 10.1007/s11032-019-1052-x DOI
Zhao J. (2015). Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. J. Exp. Bot. 66, 1721–1736. 10.1093/jxb/eru540 PubMed DOI PMC
Zhu M., Dai S., Zhu N., Booy A., Simons B., Yi S., et al. . (2012). Methyl jasmonate responsive proteins in brassica napus guard cells revealed by iTRAQ-based quantitative proteomics. J. Proteome Res. 11, 3728–3742. 10.1021/pr300213k PubMed DOI
Zhu M., Simons B., Zhu N., Oppenheimer D. G., Chen S. (2010). Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. J. Proteomics 73, 790–805. 10.1016/j.jprot.2009.11.002 PubMed DOI