A nodulin/glutamine synthetase-like fusion protein is implicated in the regulation of root morphogenesis and in signalling triggered by flagellin

. 2011 Sep ; 234 (3) : 459-76. [epub] 20110430

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21533644

The nodulin/glutamine synthetase-like protein (NodGS) that we identified proteomically in Arabidopsis thaliana is a fusion protein composed of an N-terminal amidohydrolase domain that shares homology with nodulins and a C-terminal domain of prokaryotic glutamine synthetase type I. The protein is homologous to the FluG protein, a morphogenetic factor in fungi. Although genes encoding NodGS homologues are present in many plant genomes, their products have not yet been characterized. The Arabidopsis NodGS was present in an oligomeric form of ~700-kDa, mainly in the cytosol, and to a lesser extent in the microsomal membrane fraction. The oligomeric NodGS was incorporated into large heterogeneous protein complexes >700 kDa and partially co-immunoprecipitated with γ-tubulin. In situ and in vivo microscopic analyses revealed a NodGS signal in the cytoplasm, with endomembranes, particularly in the perinuclear area. NodGS had no detectable glutamine synthetase activity. Downregulation of NodGS by RNAi resulted in plants with a short main root, reduced meristematic activity and disrupted development of the root cap. Y2H analysis and publicly available microarray data indicated a role for NodGS in biotic stress signalling. We found that flagellin enhanced the expression of the NodGS protein, which was then preferentially localized in the nuclear periphery. Our results point to a role for NodGS in root morphogenesis and microbial elicitation. These data might help in understanding the family of NodGS/FluG-like fusion genes that are widespread in prokaryotes, fungi and plants.

Zobrazit více v PubMed

Mol Plant Microbe Interact. 2002 Jul;15(7):630-6 PubMed

J Struct Biol. 2006 Dec;156(3):469-79 PubMed

New Phytol. 2008;179(3):643-662 PubMed

Plant Methods. 2009 Feb 27;5:3 PubMed

Plant Cell. 2003 Feb;15(2):465-80 PubMed

Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5322-7 PubMed

Nucleic Acids Res. 2001 May 1;29(9):e45 PubMed

Plant J. 2005 Jul;43(1):153-63 PubMed

Cell Res. 2008 Dec;18(12):1190-8 PubMed

Plant Physiol. 2005 Sep;139(1):5-17 PubMed

Ann Bot. 2006 May;97(5):875-81 PubMed

Mol Plant Microbe Interact. 1999 Jun;12(6):544-55 PubMed

Plant J. 1998 Dec;16(6):735-43 PubMed

J Mol Evol. 2000 Feb;50(2):116-22 PubMed

Genes Dev. 1994 Mar 15;8(6):641-51 PubMed

Science. 1990 Nov 16;250(4983):948-54 PubMed

Genetics. 2001 Jul;158(3):1027-36 PubMed

Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):803-8 PubMed

Nature. 1999 Nov 4;402(6757):86-90 PubMed

Plant Cell. 1998 Nov;10(11):1927-40 PubMed

Plant Cell. 2001 Aug;13(8):1929-43 PubMed

Anal Biochem. 2004 Apr 1;327(1):114-8 PubMed

Plant Physiol. 2003 Oct;133(2):462-9 PubMed

Cell Biol Int. 2003;27(3):167-9 PubMed

Science. 1999 Jul 30;285(5428):751-3 PubMed

Nature. 2010 Mar 18;464(7287):418-22 PubMed

Mol Plant Microbe Interact. 1996 May;9(4):233-42 PubMed

Plant Cell. 2008 Dec;20(12):3467-79 PubMed

Biosci Biotechnol Biochem. 2009 Nov;73(11):2452-9 PubMed

Cell Biol Int. 1993 Sep;17(9):847-56 PubMed

Plant Cell. 2005 Dec;17(12):3489-99 PubMed

Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3718-23 PubMed

Plant Cell. 2006 Feb;18(2):340-9 PubMed

J Bacteriol. 2001 Oct;183(20):5826-33 PubMed

Plant Cell. 2006 May;18(5):1199-212 PubMed

Nature. 2002 Feb 28;415(6875):977-83 PubMed

Arch Microbiol. 2006 Dec;186(6):447-58 PubMed

New Phytol. 2011 Jan;189(1):347-55 PubMed

Nucleic Acids Res. 2007 Jan;35(Database issue):D841-5 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace