Protein Binder (ProBi) as a New Class of Structurally Robust Non-Antibody Protein Scaffold for Directed Evolution
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-17398S
Czech Science Foundation
RVO 86652036
Czech Academy of Sciences
LM2015043, LM2018127
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
33514045
PubMed Central
PMC7911045
DOI
10.3390/v13020190
PII: v13020190
Knihovny.cz E-zdroje
- Klíčová slova
- computational saturation, directed evolution, interleukin-10, protein engineering, protein scaffold, ribosome display,
- MeSH
- databáze proteinů MeSH
- interleukin-10 metabolismus MeSH
- konformace proteinů MeSH
- počítačová simulace MeSH
- proteinové inženýrství MeSH
- proteiny chemie genetika metabolismus MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- ribozomy metabolismus MeSH
- řízená evoluce molekul metody MeSH
- sekvence aminokyselin MeSH
- stabilita proteinů MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-10 MeSH
- proteiny MeSH
- rekombinantní proteiny MeSH
Engineered small non-antibody protein scaffolds are a promising alternative to antibodies and are especially attractive for use in protein therapeutics and diagnostics. The advantages include smaller size and a more robust, single-domain structural framework with a defined binding surface amenable to mutation. This calls for a more systematic approach in designing new scaffolds suitable for use in one or more methods of directed evolution. We hereby describe a process based on an analysis of protein structures from the Protein Data Bank and their experimental examination. The candidate protein scaffolds were subjected to a thorough screening including computational evaluation of the mutability, and experimental determination of their expression yield in E. coli, solubility, and thermostability. In the next step, we examined several variants of the candidate scaffolds including their wild types and alanine mutants. We proved the applicability of this systematic procedure by selecting a monomeric single-domain human protein with a fold different from previously known scaffolds. The newly developed scaffold, called ProBi (Protein Binder), contains two independently mutable surface patches. We demonstrated its functionality by training it as a binder against human interleukin-10, a medically important cytokine. The procedure yielded scaffold-related variants with nanomolar affinity.
Zobrazit více v PubMed
Bryson J.W., Desjarlais J.R., Handel T.M., DeGrado W.F. From coiled coils to small globular proteins: Design of a native-like three-helix bundle. Protein Sci. 1998;7:1404–1414. doi: 10.1002/pro.5560070617. PubMed DOI PMC
Khoury G.A., Smadbeck J., Kieslich C.A., Floudas C.A. Protein folding and de novo protein design for biotechnological applications. Trends Biotechnol. 2014;32:99–109. doi: 10.1016/j.tibtech.2013.10.008. PubMed DOI PMC
Burnside D., Schoenrock A., Moteshareie H., Hooshyar M., Basra P., Hajikarimlou M., Dick K., Barnes B., Kazmirchuk T., Jessulat M., et al. In Silico Engineering of Synthetic Binding Proteins from Random Amino Acid Sequences. iScience. 2019;11:375–387. doi: 10.1016/j.isci.2018.11.038. PubMed DOI PMC
Kortemme T., Baker D. Computational design of protein-protein interactions. Curr. Opin. Chem. Biol. 2004;8:91–97. doi: 10.1016/j.cbpa.2003.12.008. PubMed DOI
Mikulecky P., Cerny J., Biedermannova L., Petrokova H., Kuchar M., Vondrasek J., Maly P., Sebo P., Schneider B. Increasing affinity of interferon-gamma receptor 1 to interferon-gamma by computer-aided design. BioMed Res. Int. 2013;2013:752514. doi: 10.1155/2013/752514. PubMed DOI PMC
Smith G.P., Petrenko V.A. Phage Display. Chem. Rev. 1997;97:391–410. doi: 10.1021/cr960065d. PubMed DOI
Hosse R.J., Rothe A., Power B.E. A new generation of protein display scaffolds for molecular recognition. Protein Sci. 2006;15:14–27. doi: 10.1110/ps.051817606. PubMed DOI PMC
Brender J.R., Shultis D., Khattak N.A., Zhang Y. An Evolution-Based Approach to De Novo Protein Design. Methods Mol. Biol. 2017;1529:243–264. PubMed PMC
Goldenzweig A., Goldsmith M., Hill S.E., Gertman O., Laurino P., Ashani Y., Dym O., Unger T., Albeck S., Prilusky J., et al. Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability. Mol. Cell. 2016;63:337–346. doi: 10.1016/j.molcel.2016.06.012. PubMed DOI PMC
Musil M., Stourac J., Bendl J., Brezovsky J., Prokop Z., Zendulka J., Martinek T., Bednar D., Damborsky J. FireProt: Web server for automated design of thermostable proteins. Nucleic Acids Res. 2017;45:W393–W399. doi: 10.1093/nar/gkx285. PubMed DOI PMC
Zahradnik J., Kolarova L., Peleg Y., Kolenko P., Svidenska S., Charnavets T., Unger T., Sussman J.L., Schneider B. Flexible regions govern promiscuous binding of IL-24 to receptors IL-20R1 and IL-22R1. FEBS J. 2019;286:3858–3873. doi: 10.1111/febs.14945. PubMed DOI
Banta S., Dooley K., Shur O. Replacing antibodies: Engineering new binding proteins. Annu. Rev. Biomed. Eng. 2013;15:93–113. doi: 10.1146/annurev-bioeng-071812-152412. PubMed DOI
Yu X., Yang Y.P., Dikici E., Deo S.K., Daunert S. Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis. Annu. Rev. Anal. Chem. 2017;10:293–320. doi: 10.1146/annurev-anchem-061516-045205. PubMed DOI PMC
Skerra A. Engineered protein scaffolds for molecular recognition. J. Mol. Recognit. 2000;13:167–187. doi: 10.1002/1099-1352(200007/08)13:4<167::AID-JMR502>3.0.CO;2-9. PubMed DOI
Hey T., Fiedler E., Rudolph R., Fiedler M. Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol. 2005;23:514–522. doi: 10.1016/j.tibtech.2005.07.007. PubMed DOI
Simeon R., Chen Z. In vitro-engineered non-antibody protein therapeutics. Protein Cell. 2018;9:3–14. doi: 10.1007/s13238-017-0386-6. PubMed DOI PMC
Nord K., Gunneriusson E., Ringdahl J., Stahl S., Uhlen M., Nygren P.A. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat. Biotechnol. 1997;15:772–777. doi: 10.1038/nbt0897-772. PubMed DOI
Binz H.K., Amstutz P., Pluckthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 2005;23:1257–1268. doi: 10.1038/nbt1127. PubMed DOI
Skerra A. Alternative non-antibody scaffolds for molecular recognition. Curr. Opin. Biotechnol. 2007;18:295–304. doi: 10.1016/j.copbio.2007.04.010. PubMed DOI
Barinka C., Ptacek J., Richter A., Novakova Z., Morath V., Skerra A. Selection and characterization of Anticalins targeting human prostate-specific membrane antigen (PSMA) Protein Eng. Des. Select. 2016;29:105–115. doi: 10.1093/protein/gzv065. PubMed DOI
Bedford R., Tiede C., Hughes R., Curd A., McPherson M.J., Peckham M., Tomlinson D.C. Alternative reagents to antibodies in imaging applications. Biophys. Rev. 2017;9:299–308. doi: 10.1007/s12551-017-0278-2. PubMed DOI PMC
Rothe C., Skerra A. Anticalin((R)) Proteins as Therapeutic Agents in Human Diseases. BioDrugs. 2018;32:233–243. doi: 10.1007/s40259-018-0278-1. PubMed DOI PMC
Kosztyu P., Kuchar M., Cerny J., Barkocziova L., Maly M., Petrokova H., Czernekova L., Liskova V., Raskova Kafkova L., Knotigova P., et al. Proteins mimicking epitope of HIV-1 virus neutralizing antibody induce virus-neutralizing sera in mice. EBioMedicine. 2019;47:247–256. doi: 10.1016/j.ebiom.2019.07.015. PubMed DOI PMC
Vazquez-Lombardi R., Phan T.G., Zimmermann C., Lowe D., Jermutus L., Christ D. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov. Today. 2015;20:1271–1283. doi: 10.1016/j.drudis.2015.09.004. PubMed DOI
Azhar A., Ahmad E., Zia Q., Rauf M.A., Owais M., Ashraf G.M. Recent advances in the development of novel protein scaffolds based therapeutics. Int. J. Biol. Macromol. 2017;102:630–641. doi: 10.1016/j.ijbiomac.2017.04.045. PubMed DOI
Ahmad J.N., Li J., Biedermannova L., Kuchar M., Sipova H., Semeradtova A., Cerny J., Petrokova H., Mikulecky P., Polinek J., et al. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G. Proteins. 2012;80:774–789. doi: 10.1002/prot.23234. PubMed DOI
Kuchar M., Vankova L., Petrokova H., Cerny J., Osicka R., Pelak O., Sipova H., Schneider B., Homola J., Sebo P., et al. Human interleukin-23 receptor antagonists derived from an albumin-binding domain scaffold inhibit IL-23-dependent ex vivo expansion of IL-17-producing T-cells. Proteins. 2014;82:975–989. doi: 10.1002/prot.24472. PubMed DOI PMC
Kruziki M.A., Bhatnagar S., Woldring D.R., Duong V.T., Hackel B.J. A 45-Amino-Acid Scaffold Mined from the PDB for High-Affinity Ligand Engineering. Chem. Biol. 2015;22:946–956. doi: 10.1016/j.chembiol.2015.06.012. PubMed DOI PMC
Alsultan A.M., Chin D.Y., Howard C.B., de Bakker C.J., Jones M.L., Mahler S.M. Beyond Antibodies: Development of a Novel Protein Scaffold Based on Human Chaperonin 10. Sci. Rep. 2016;5:37348. doi: 10.1038/srep37348. PubMed DOI PMC
Berman H.M., Battistuz T., Bhat T.N., Bluhm W.F., Bourne P.E., Burkhardt K., Feng Z., Gilliland G.L., Iype L., Jain S., et al. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002;58 Pt 6:899–907. doi: 10.1107/S0907444902003451. PubMed DOI
El Kasmi K.C., Smith A.M., Williams L., Neale G., Panopoulos A.D., Watowich S.S., Hacker H., Foxwell B.M., Murray P.J. Cutting edge: A transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway. J. Immunol. 2007;179:7215–7219. doi: 10.4049/jimmunol.179.11.7215. PubMed DOI
Asadullah K., Sterry W., Volk H.D. Interleukin-10 therapy—Review of a new approach. Pharmacol. Rev. 2003;55:241–269. doi: 10.1124/pr.55.2.4. PubMed DOI
Liu Y., de Waal Malefyt R., Briere F., Parham C., Bridon J.M., Banchereau J., Moore K.W., Xu J. The EBV IL-10 homologue is a selective agonist with impaired binding to the IL-10 receptor. J. Immunol. 1997;158:604–613. PubMed
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Okonechnikov K., Golosova O., Fursov M., Ugene Team Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI
Schymkowitz J., Borg J., Stricher F., Nys R., Rousseau F., Serrano L. The FoldX web server: An online force field. Nucleic Acids Res. 2005;33:W382–W388. doi: 10.1093/nar/gki387. PubMed DOI PMC
Mikulecky P., Zahradnik J., Kolenko P., Cerny J., Charnavets T., Kolarova L., Necasova I., Pham P.N., Schneider B. Crystal structure of human interferon-gamma receptor 2 reveals the structural basis for receptor specificity. Acta Crystallogr. D Struct. Biol. 2016;72 Pt 9:1017–1025. doi: 10.1107/S2059798316012237. PubMed DOI PMC
Kabsch W. Xds. Acta Crystallogr. D Biol. Crystallogr. 2010;66 Pt 2:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Evans P.R., Murshudov G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 2013;69 Pt 7:1204–1214. doi: 10.1107/S0907444913000061. PubMed DOI PMC
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A., et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67 Pt 4:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40 Pt 4:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC
Horejsi Z., Stach L., Flower T.G., Joshi D., Flynn H., Skehel J.M., O’Reilly N.J., Ogrodowicz R.W., Smerdon S.J., Boulton S.J. Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep. 2014;7:19–26. doi: 10.1016/j.celrep.2014.03.013. PubMed DOI PMC
Murshudov G.N., Skubak P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., Winn M.D., Long F., Vagin A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011;67 Pt 4:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66 Pt 4:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B., et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. doi: 10.1002/pro.3330. PubMed DOI PMC
Dreier B., Pluckthun A. Ribosome display: A technology for selecting and evolving proteins from large libraries. Methods Mol. Biol. 2011;687:283–306. PubMed
Zahnd C., Amstutz P., Pluckthun A. Ribosome display: Selecting and evolving proteins in vitro that specifically bind to a target. Nat. Methods. 2007;4:269–279. doi: 10.1038/nmeth1003. PubMed DOI
Lam S.Y., Yeung R.C., Yu T.H., Sze K.H., Wong K.B. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. PLoS Biol. 2011;9:e1001027. doi: 10.1371/journal.pbio.1001027. PubMed DOI PMC
Armstrong E.H., Goswami D., Griffin P.R., Noy N., Ortlund E.A. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor beta/delta (FABP5-PPARbeta/delta) signaling pathway. J. Biol. Chem. 2014;289:14941–14954. doi: 10.1074/jbc.M113.514646. PubMed DOI PMC
Cheung Y.Y., Lam S.Y., Chu W.K., Allen M.D., Bycroft M., Wong K.B. Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii—Structural insights into enzymatic catalysis, thermostability, and dimerization. Biochemistry. 2005;44:4601–4611. doi: 10.1021/bi047832k. PubMed DOI
Kumagai A., Ando R., Miyatake H., Greimel P., Kobayashi T., Hirabayashi Y., Shimogori T., Miyawaki A. A bilirubin-inducible fluorescent protein from eel muscle. Cell. 2013;153:1602–1611. doi: 10.1016/j.cell.2013.05.038. PubMed DOI
Vorup-Jensen T., Ostermeier C., Shimaoka M., Hommel U., Springer T.A. Structure and allosteric regulation of the alpha X beta 2 integrin I domain. Proc. Natl. Acad. Sci. USA. 2003;100:1873–1878. doi: 10.1073/pnas.0237387100. PubMed DOI PMC
Buchko G.W., Ni S., Robinson H., Welsh E.A., Pakrasi H.B., Kennedy M.A. Characterization of two potentially universal turn motifs that shape the repeated five-residues fold—Crystal structure of a lumenal pentapeptide repeat protein from Cyanothece 51142. Protein Sci. 2006;15:2579–2595. doi: 10.1110/ps.062407506. PubMed DOI PMC
McKay D.B., Xi L., Barthel K.K.B., Cech T.R. Structure and function of steroid receptor RNA activator protein, the proposed partner of SRA noncoding RNA. J. Mol. Biol. 2014;426:1766–1785. doi: 10.1016/j.jmb.2014.01.006. PubMed DOI PMC
Kanagawa M., Satoh T., Ikeda A., Nakano Y., Yagi H., Kato K., Kojima-Aikawa K., Yamaguchi Y. Crystal structures of human secretory proteins ZG16p and ZG16b reveal a Jacalin-related beta-prism fold. Biochem. Biophys. Res. Commun. 2011;404:201–205. doi: 10.1016/j.bbrc.2010.11.093. PubMed DOI
Becker A.K., Mikolajek H., Paulsson M., Wagener R., Werner J.M. A structure of a collagen VI VWA domain displays N and C termini at opposite sides of the protein. Structure. 2014;22:199–208. doi: 10.1016/j.str.2013.06.028. PubMed DOI PMC
Groves M.A., Osbourn J.K. Applications of ribosome display to antibody drug discovery. Expert Opin. Biol. Ther. 2005;5:125–135. doi: 10.1517/14712598.5.1.125. PubMed DOI
Pluckthun A. Ribosome display: A perspective. Methods Mol. Biol. 2012;805:3–28. PubMed
Bohm G., Muhr R., Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 1992;5:191–195. doi: 10.1093/protein/5.3.191. PubMed DOI
Lefevre F., Remy M.H., Masson J.M. Alanine-stretch scanning mutagenesis: A simple and efficient method to probe protein structure and function. Nucleic Acids Res. 1997;25:447–448. doi: 10.1093/nar/25.2.447. PubMed DOI PMC
Weiss G.A., Watanabe C.K., Zhong A., Goddard A., Sidhu S.S. Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc. Natl. Acad. Sci. USA. 2000;97:8950–8954. doi: 10.1073/pnas.160252097. PubMed DOI PMC
Morrison K.L., Weiss G.A. Combinatorial alanine-scanning. Curr. Opin. Chem. Biol. 2001;5:302–307. doi: 10.1016/S1367-5931(00)00206-4. PubMed DOI
Miknis Z.J., Magracheva E., Li W., Zdanov A., Kotenko S.V., Wlodawer A. Crystal structure of human interferon-lambda1 in complex with its high-affinity receptor interferon-lambdaR1. J. Mol. Biol. 2010;404:650–664. doi: 10.1016/j.jmb.2010.09.068. PubMed DOI PMC
Jerabek-Willemsen M., Wienken C.J., Braun D., Baaske P., Duhr S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 2011;9:342–353. doi: 10.1089/adt.2011.0380. PubMed DOI PMC
Moretti R., Lyskov S., Das R., Meiler J., Gray J.J. Web-accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE) Protein Sci. 2018;27:259–268. doi: 10.1002/pro.3313. PubMed DOI PMC
Hibbert E.G., Dalby P.A. Directed evolution strategies for improved enzymatic performance. Microb. Cell Factories. 2005;4:29. doi: 10.1186/1475-2859-4-29. PubMed DOI PMC
Bloom J.D., Arnold F.H. In the light of directed evolution: Pathways of adaptive protein evolution. Proc. Natl. Acad. Sci. USA. 2009;106((Suppl. 1)):9995–10000. doi: 10.1073/pnas.0901522106. PubMed DOI PMC
Packer M.S., Liu D.R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 2015;16:379–394. doi: 10.1038/nrg3927. PubMed DOI
Xiao H., Bao Z., Zhao H. High Throughput Screening and Selection Methods for Directed Enzyme Evolution. Ind. Eng. Chem. Res. 2015;54:4011–4020. doi: 10.1021/ie503060a. PubMed DOI PMC
Moraga I., Spangler J.B., Mendoza J.L., Gakovic M., Wehrman T.S., Krutzik P., Garcia K.C. Synthekines are surrogate cytokine and growth factor agonists that compel signaling through non-natural receptor dimers. eLife. 2017;6:e22882. doi: 10.7554/eLife.22882. PubMed DOI PMC
Regulation of IL-24/IL-20R2 complex formation using photocaged tyrosines and UV light