Flexible regions govern promiscuous binding of IL-24 to receptors IL-20R1 and IL-22R1
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/16_013/0001777
MEYS, Ministry of education, youth, and sports of the Czech Republic - International
CZ.1.05/1.1.00/02.0109
MEYS, Ministry of education, youth, and sports of the Czech Republic - International
LM2015043
MEYS, Ministry of education, youth, and sports of the Czech Republic - International
RVO 86652036
Akademie Věd České Republiky - International
16-20507S
Grantová Agentura České Republiky - International
PubMed
31152679
DOI
10.1111/febs.14945
Knihovny.cz E-zdroje
- Klíčová slova
- IL-24, interleukin 24, promiscuity of receptor binding, protein design, protein stability,
- MeSH
- HeLa buňky MeSH
- interleukiny metabolismus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- receptory interleukinů metabolismus MeSH
- signální transdukce MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-20 receptor MeSH Prohlížeč
- interleukin-22 receptor MeSH Prohlížeč
- interleukin-24 MeSH Prohlížeč
- interleukiny MeSH
- receptory interleukinů MeSH
Interleukin 24 (IL-24) is a cytokine with the potential to be an effective treatment for autoimmune diseases and cancer. However, its instability and difficulties in its production have hampered detailed biological and biophysical studies. We approached the challenges of IL-24 production by using the PROSS algorithm to design more stable variants of IL-24. We used homology models built from the sequences and known structures of IL-20 and IL-19 and predicted and produced several extensively mutated IL-24 variants that were highly stable and produced in large yields; one of them was crystallized (IL-24B, PDB ID 6GG1; 3D Interactive at http://proteopedia.org/w/Journal: FEBS_Journal:1). The mutated variants, however, lost most of their binding capacity to the extracellular parts of cognate receptors. While the affinity to the receptor 2 (IL-20R2) was preserved, the variants lost affinity to IL-20R1 and IL-22R1 (shared receptors 1). Back engineering of the variants revealed that reintroduction of a single IL-24 wild-type residue (T198) to the patch interacting with receptors 1 restored 80% of the binding affinity and signaling capacity, accompanied by an acceptable drop in the protein stability by 9 °C. Multiple sequence alignment explains the stabilizing effect of the mutated residues in the IL-24 variants by their presence in the related and more stable cytokines IL-20 and IL-19. Our homology-based approach can enhance existing methods for protein engineering and represents a viable alternative to study and produce difficult proteins for which only in silico structural information is available, estimated as >40% of all important drug targets.
Zobrazit více v PubMed
Cohen-Khait R, Dym O, Hamer-Rogotner S & Schreiber G (2017) Promiscuous protein binding as a function of protein stability. Structure 25, 1867-1874.e3.
Alhindi T, Zhang Z, Ruelens P, Coenen H, Degroote H, Iraci N & Geuten K (2017) Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network. Scientif Rep 7, 44948.
Garcia-Seisdedos H, Empereur-Mot C, Elad N & Levy ED (2017) Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244-247.
Aharoni A, Gaidukov L, Khersonsky O, Mc GS, Roodveldt C & Tawfik DS (2005) The ‘evolvability’ of promiscuous protein functions. Nat Genet 37, 73-76.
Magliery TJ (2015) Protein stability: computation, sequence statistics, and new experimental methods. Curr Opin Struct Biol 33, 161-168.
Wijma HJ, Floor RJ & Janssen DB (2013) Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr Opin Struct Biol 23, 588-594.
Ferdjani S, Ionita M, Roy B, Dion M, Djeghaba Z, Rabiller C & Tellier C (2011) Correlation between thermostability and stability of glycosidases in ionic liquid. Biotechnol Lett 33, 1215-1219.
Polizzi KM, Bommarius AS, Broering JM & Chaparro-Riggers JF (2007) Stability of biocatalysts. Curr Opin Struct Biol 11, 220-225.
Fowler DM & Fields S (2014) Deep mutational scanning: a new style of protein science. Nat Methods 11, 801-807.
Capriotti E, Fariselli P & Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33, W306-W310.
Borgo B & Havranek JJ (2012) Automated selection of stabilizing mutations in designed and natural proteins. Proc Natl Acad Sci USA 109, 1494-1499.
Der BS, Kluwe C, Miklos AE, Jacak R, Lyskov S, Gray JJ, Georgiou G, Ellington AD & Kuhlman B (2013) Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability. PLoS One 8, e64363.
Jacak R, Leaver-Fay A & Kuhlman B (2012) Computational protein design with explicit consideration of surface hydrophobic patches. Proteins 80, 825-838.
Goldenzweig A, Goldsmith M, Hill SE, Gertman O, Laurino P, Ashani Y, Dym O, Unger T, Albeck S, Prilusky J, Lieberman RL, Aharoni A, Silman I, Sussman JL, Tawfik DS & Fleishman SJ (2016) Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol Cell 63, 337-346.
Musil M, Stourac J, Bendl J, Brezovsky J, Prokop Z, Zendulka J, Martinek T, Bednar D & Damborsky J (2017) FireProt: web server for automated design of thermostable proteins. Nucleic Acids Res 45, W393-W399.
Mikulecký P, Černý J, Biedermannová L, Petroková H, Kuchař M, Vondrášek J, Malý P, Šebo P & Schneider B (2013) Increasing affinity of interferon-γ receptor 1 to interferon-γ by computer-aided design. Biomed Res Int 2013, 752514.
Černý J, Biedermannová L, Mikulecký P, Zahradník J, Charnavets T, Šebo P & Schneider B (2015) Redesigning protein cavities as a strategy for increasing affinity in protein-protein interaction: interferon- γ receptor 1 as a model. Biomed Res Int 2015, 716945.
Kellogg EH, Leaver-Fay A & Baker D (2011) Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79, 830-838.
Guerois R, Nielsen JE & Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320, 369-387.
Jiang H, Lin JJ, Su ZZ, Goldstein NI & Fisher PB (1995) Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11, 2477-2486.
Soo C, Shaw WW, Freymiller E, Longaker MT, Bertolami CN, Chiu R, Tieu A & Ting K (1999) Cutaneous rat wounds express c49a, a novel gene with homology to the human melanoma differentiation associated gene, mda-7. J Cell Biochem 74, 1-10.
Zhang R, Tan Z & Liang P (2000) Identification of a novel ligand-receptor pair constitutively activated by ras oncogenes. J Biol Chem 275, 24436-24443.
Fisher PB (2005) Is mda-7/IL-24 a “Magic Bullet” for cancer? Cancer Res 65, 10128-10138.
Lebedeva IV, Sauane M, Gopalkrishnan RV, Sarkar D, Su Z, Gupta P, Nemunaitis J, Cunningham C, Yacoub A, Dent P & Fisher PB (2005) mda-7/IL-24: Exploiting cancer's achilles’ heel. Mol Therap 11, 4-18.
Kreis S, Philippidou D, Margue C, Rolvering C, Haan C, Dumoutier L, Renauld JC & Behrmann I (2007) Recombinant interleukin-24 lacks apoptosis-inducing properties in melanoma cells. PLoS One 2, e1300.
Kreis S, Philippidou D, Margue C & Behrmann I (2008) IL-24: a classic cytokine and/or a potential cure for cancer? J Cell Mol Med 12, 2505-2510.
Dumoutier L, Leemans C, Lejeune D, Kotenko SV & Renauld JC (2001) Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167, 3545-3549.
Wang M & Liang P (2005) Interleukin-24 and its receptors. Immunology 114, 166-170.
Rutz S, Wang X & Ouyang W (2014) The IL-20 subfamily of cytokines-from host defence to tissue homeostasis. Nat Rev Immunol 14, 783-795.
Pletnev S, Magracheva E, Kozlov S, Tobin G, Kotenko SV, Wlodawer A & Zdanov A (2003) Characterization of the recombinant extracellular domains of human interleukin-20 receptors and their complexes with interleukin-19 and interleukin-20. Biochemistry 42, 12617-12624.
Logsdon NJ, Deshpande A, Harris BD, Rajashankar KR & Walter MR (2012) Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc Natl Acad Sci USA 109, 12704-12709.
Oral HB, Kotenko SV, Yilmaz M, Mani O, Zumkehr J, Blaser K, Akdis CA & Akdis M (2006) Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26. Eur J Immunol 36, 380-388.
Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O'Mahony L, Palomares O, Rhyner C, Ouaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M & Akdis CA (2011) Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases J Allergy Clin Immunol 127, 701-21.e1-70.
Kumari S, Bonnet MC, Ulvmar MH, Wolk K, Karagianni N, Witte E, Uthoff-Hachenberg C, Renauld JC, Kollias G, Toftgard R, Sabat R, Pasparakis M & Haase I (2013) Tumor necrosis factor receptor signaling in keratinocytes triggers interleukin-24-dependent psoriasis-like skin inflammation in mice. Immunity 39, 899-911.
Jin SH, Choi D, Chun YJ & Noh M (2014) Keratinocyte-derived IL-24 plays a role in the positive feedback regulation of epidermal inflammation in response to environmental and endogenous toxic stressors. Toxicol Appl Pharmacol 280, 199-206.
Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S & Fujiyama Y (2009) Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J Immunol 183, 687-695.
Fonseca-Camarillo G, Furuzawa-Carballeda J, Granados J & Yamamoto-Furusho JK (2014) Expression of interleukin (IL)-19 and IL-24 in inflammatory bowel disease patients: a cross-sectional study. Clin Exp Immunol 177, 64-75.
Ma Y, Chen H, Wang Q, Luo F, Yan J & Zhang XL (2009) IL-24 protects against Salmonella typhimurium infection by stimulating early neutrophil Th1 cytokine production, which in turn activates CD8+ T cells. Eur J Immunol 39, 3357-3368.
Zhang J, Lv X, Xu R, Tao X, Dong Y, Sun A & Wei D (2015) Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli. Appl Microbiol Biotechnol 99, 6705-6713.
Somody JC, MacKinnon SS & Windemuth A (2017) Structural coverage of the proteome for pharmaceutical applications. Drug Discov Today 22, 1792-1799.
Yang J, Zhang W, Liu K, Jing S, Guo G, Luo P & Zou Q (2007) Expression, purification, and characterization of recombinant human interleukin 24 in Escherichia coli. Protein Expr Purif 53, 339-345.
Xiao B, Li W, Yang J, Guo G, Mao XH & Zou QM (2009) RGD-IL-24, a novel tumor-targeted fusion cytokine: expression, purification and functional evaluation. Mol Biotechnol 41, 138-144.
Xie Y, Sheng W, Xiang J, Ye Z, Zhu Y, Chen X & Yang J (2008) Recombinant human IL-24 suppresses lung carcinoma cell growth via induction of cell apoptosis and inhibition of tumor angiogenesis. Cancer Biother Radiopharm 23, 310-320.
Amirzada MI, Yu M, Gong X, Chen Y, Zhu R, Lei J & Jin J (2014) Cost-effective production of recombinant human interleukin 24 by lactose induction and a two-step denaturing and one-step refolding method. J Ind Microbiol Biotechnol 41, 135-142.
Wang X, Bai C, Zhang J, Sun A, Wang X & Wei D (2014) Improving the mda-7/IL-24 refolding and purification process using optimized culture conditions based on the structure characteristics of inclusion bodies. Biores Bioprocess 1, 21.
Traxlmayr MW & Obinger C (2012) Directed evolution of proteins for increased stability and expression using yeast display. Arch Biochem Biophys 526, 174-180.
Bordoli L & Schwede T (2012) Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. Methods Mol Biol (Clifton, NJ). 857, 107-136.
Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U & Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc BioinformaticsChapter 5, Unit-5.6.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC & Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Computat Chem 25, 1605-1612.
Yang J & Zhang Y (2015) Protein Structure and Function Prediction Using I-TASSER. Curr Protoc Bioinformatics 52, 5.8.1-15.
Frey S & Gorlich D (2014) A new set of highly efficient, tag-cleaving proteases for purifying recombinant proteins. J Chrom A 1337, 95-105.
Frey S & Gorlich D (2014) Purification of protein complexes of defined subunit stoichiometry using a set of orthogonal, tag-cleaving proteases. J Chrom A 1337, 106-115.
Lubkowski J, Sonmez C, Smirnov SV, Anishkin A, Kotenko SV & Wlodawer A (2018) Crystal Structure of the Labile Complex of IL-24 with the Extracellular Domains of IL-22R1 and IL-20R2. J Immunol, ji1800726.
Chang C, Magracheva E, Kozlov S, Fong S, Tobin G, Kotenko S, Wlodawer A & Zdanov A (2003) Crystal structure of interleukin-19 defines a new subfamily of helical cytokines. The J Biol Chem 278, 3308-3313.
Xu T, Logsdon NJ & Walter MR (2005) Structure of insect-cell-derived IL-22. Acta Crystallogr D 61, 942-950.
Bleicher L, de Moura PR, Watanabe L, Colau D, Dumoutier L, Renauld J-C & Polikarpov I (2008) Crystal structure of the IL-22/IL-22R1 complex and its implications for the IL-22 signaling mechanism. FEBS Lett 582, 2985-2992.
Xiang Z (2006) Advances in homology protein structure modeling. Curr Protein Pept Sci 7, 217-227.
Luthy R, Bowie JU & Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356, 83-85.
Laskowski RA, MacArthur MW, Moss DS & Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26, 283-291.
Peleg Y & Unger T (2008) Application of high-throughput methodologies to the expression of recombinant proteins in E. coli. Methods Mol Biol 426, 197-208.
Erijman A, Dantes A, Bernheim R, Shifman JM & Peleg Y (2011) Transfer-PCR (TPCR): a highway for DNA cloning and protein engineering. J Struct Biol 175, 171-177.
Erijman A, Shifman JM & Peleg Y (2014) A single-tube assembly of DNA using the transfer-PCR (TPCR) platform. Methods Mol Biol 1116, 89-101.
Peleg Y & Unger T (2014) Application of the Restriction-Free (RF) cloning for multicomponents assembly. Methods Mol Biol 1116, 73-87.
Zahradník J, Kolářová L, Pařízková H, Kolenko P & Schneider B (2018) Interferons type II and their receptors R1 and R2 in fish species: Evolution, structure, and function. Fish Shellfish Immunol 79, 140-152.
Bond SR & Naus CC (2012) RF-Cloning.org: an online tool for the design of restriction-free cloning projects. Nucleic Acids Res 40, W209-W213.
Bohm G, Muhr R & Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5, 191-195.
Pompach P, Man P, Kavan D, Hofbauerova K, Kumar V, Bezouska K, Havlicek V & Novak P (2009) Modified electrophoretic and digestion conditions allow a simplified mass spectrometric evaluation of disulfide bonds. J Mass Spectrom 44, 1571-1578.
Mikulecky P, Zahradnik J, Kolenko P, Cerny J, Charnavets T, Kolarova L, Necasova I, Pham PN & Schneider B (2016) Crystal structure of human interferon-gamma receptor 2 reveals the structural basis for receptor specificity. Acta Crystallogr D 72, 1017-1025.
Kabsch W (2010) XDS. Acta Crystallogr D Struct Biol 66, 125-32.
Evans PR (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D 67, 282-292.
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A & Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D 67, 235-242.
Long F, Vagin AA, Young P & Murshudov GN (2008) BALBES: a molecular-replacement pipeline. Acta Crystallogr D 64, 125-132.
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F & Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67, 355-367.
Emsley P, Lohkamp B, Scott WG & Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66, 486-501.
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS & Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66, 12-21.
Regulation of IL-24/IL-20R2 complex formation using photocaged tyrosines and UV light
A Protein-Engineered, Enhanced Yeast Display Platform for Rapid Evolution of Challenging Targets
Community-Wide Experimental Evaluation of the PROSS Stability-Design Method