A Protein-Engineered, Enhanced Yeast Display Platform for Rapid Evolution of Challenging Targets
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34809429
PubMed Central
PMC8689690
DOI
10.1021/acssynbio.1c00395
Knihovny.cz E-zdroje
- Klíčová slova
- binding protein, fluorescent protein, protein engineering, secretory pathway,
- MeSH
- proteinové inženýrství * metody MeSH
- proteiny metabolismus MeSH
- Saccharomyces cerevisiae * genetika metabolismus MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny MeSH
Here, we enhanced the popular yeast display method by multiple rounds of DNA and protein engineering. We introduced surface exposure-tailored reporters, eUnaG2 and DnbALFA, creating a new platform of C and N terminal fusion vectors. The optimization of eUnaG2 resulted in five times brighter fluorescence and 10 °C increased thermostability than UnaG. The optimized DnbALFA has 10-fold the level of expression of the starting protein. Following this, different plasmids were developed to create a complex platform allowing a broad range of protein expression organizations and labeling strategies. Our platform showed up to five times better separation between nonexpressing and expressing cells compared with traditional pCTcon2 and c-myc labeling, allowing for fewer rounds of selection and achieving higher binding affinities. Testing 16 different proteins, the enhanced system showed consistently stronger expression signals over c-myc labeling. In addition to gains in simplicity, speed, and cost-effectiveness, new applications were introduced to monitor protein surface exposure and protein retention in the secretion pathway that enabled successful protein engineering of hard-to-express proteins. As an example, we show how we optimized the WD40 domain of the ATG16L1 protein for yeast surface and soluble bacterial expression, starting from a nonexpressing protein. As a second example, we show how using the here-presented enhanced yeast display method we rapidly selected high-affinity binders toward two protein targets, demonstrating the simplicity of generating new protein-protein interactions. While the methodological changes are incremental, it results in a qualitative enhancement in the applicability of yeast display for many applications.
Institute of Biotechnology CAS v v i Prumyslova 595 Vestec 252 50 Prague region Czech Republic
Weizmann Institute of Science Herzl St 234 Rehovot 7610001 Israel
Zobrazit více v PubMed
Schreuder M. P.; Brekelmans S.; Van Den Ende H.; Klis F. M. Targeting of a heterologous protein to the cell wall of PubMed DOI
Hetrick K. J.; Walker M. C.; van der Donk W. A. Development and Application of Yeast and Phage Display of Diverse Lanthipeptides. ACS Cent. Sci. 2018, 4, 458–467. 10.1021/acscentsci.7b00581. PubMed DOI PMC
Cohen-Khait R.; Dym O.; Hamer-Rogotner S.; Schreiber G. (2017) Promiscuous Protein Binding as a Function of Protein Stability. Structure London England 1993, 25, 1867–1874. PubMed
Uchański T.; Zögg T.; Yin J.; Yuan D.; Wohlkönig A.; Fischer B.; Rosenbaum D. M.; Kobilka B. K.; Pardon E.; Steyaert J. An improved yeast surface display platform for the screening of nanobody immune libraries. Sci. Rep. 2019, 9, 382. 10.1038/s41598-018-37212-3. PubMed DOI PMC
Zhang K.; Nelson K. M.; Bhuripanyo K.; Grimes K. D.; Zhao B.; Aldrich C. C.; Yin J. Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display. Chem. Biol. 2013, 20, 92–101. 10.1016/j.chembiol.2012.10.020. PubMed DOI PMC
Niyonzima N.; Lambert A. R.; Werther R.; De Silva Feelixge H.; Roychoudhury P.; Greninger A. L.; Stone D.; Stoddard B. L.; Jerome K. R. Tuning DNA binding affinity and cleavage specificity of an engineered gene-targeting nuclease via surface display, flow cytometry and cellular analyses. Protein Eng. Des. Sel. 2017, 30, 503–522. 10.1093/protein/gzx037. PubMed DOI PMC
Benatuil L.; Perez J. M.; Belk J.; Hsieh C. M. An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng. Des. Sel. 2010, 23, 155–159. 10.1093/protein/gzq002. PubMed DOI
Swers J. S.; Kellogg B. A.; Wittrup K. D. Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display. Nucleic Acids Res. 2004, 32, 36e. 10.1093/nar/gnh030. PubMed DOI PMC
Chao G.; Lau W. L.; Hackel B. J.; Sazinsky S. L.; Lippow S. M.; Wittrup K. D. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 2006, 1, 755–768. 10.1038/nprot.2006.94. PubMed DOI
Boder E. T.; Wittrup K. D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 1997, 15, 553–557. 10.1038/nbt0697-553. PubMed DOI
Wang Z.; Mathias A.; Stavrou S.; Neville D. M. Jr. A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities. Protein Eng. Des. Sel. 2005, 18, 337–343. 10.1093/protein/gzi036. PubMed DOI
Gai S. A.; Wittrup K. D. Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol. 2007, 17, 467–473. 10.1016/j.sbi.2007.08.012. PubMed DOI PMC
Simeon R.; Chen Z. In vitro-engineered non-antibody protein therapeutics. Protein & cell 2018, 9, 3–14. 10.1007/s13238-017-0386-6. PubMed DOI PMC
Mata-Fink J.; Kriegsman B.; Yu H. X.; Zhu H.; Hanson M. C.; Irvine D. J.; Wittrup K. D. Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J. Mol. Biol. 2013, 425, 444–456. 10.1016/j.jmb.2012.11.010. PubMed DOI PMC
Cohen-Khait R.; Schreiber G. Low-stringency selection of TEM1 for BLIP shows interface plasticity and selection for faster binders. Proc. Natl. Acad. Sci. U. 2016, 113, 14982–14987. 10.1073/pnas.1613122113. PubMed DOI PMC
Traxlmayr M. W.; Obinger C. Directed evolution of proteins for increased stability and expression using yeast display. Arch. Biochem. Biophys. 2012, 526, 174–180. 10.1016/j.abb.2012.04.022. PubMed DOI
Mei M.; Zhou Y.; Peng W.; Yu C.; Ma L.; Zhang G.; Yi L. Application of modified yeast surface display technologies for non-Antibody protein engineering. Microbiol. Res. 2017, 196, 118–128. 10.1016/j.micres.2016.12.002. PubMed DOI
Szczupak A.; Alfonta L.. The Use of Yeast Surface Display in Biofuel Cells. In Yeast Surface Display: Methods, Protocols, and Applications; (Liu B., Ed.), Springer: New York, New York, NY, 2015, 261–268. PubMed
Colby D. W.; Kellogg B. A.; Graff C. P.; Yeung Y. A.; Swers J. S.; Wittrup K. D. Engineering antibody affinity by yeast surface display. Meth. Enzymol. 2004, 388, 348–358. 10.1016/S0076-6879(04)88027-3. PubMed DOI
van den Ent F.; Löwe J. RF cloning: A restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods 2006, 67, 67–74. 10.1016/j.jbbm.2005.12.008. PubMed DOI
Wyatt R. G.; Okamoto G. A.; Feigin R. D. Stability of Antibiotics in parental solutions. Pediatrics 1972, 49, 22–29. PubMed
Peleg Y.; Unger T. Application of the Restriction-Free (RF) cloning for multicomponents assembly. Methods Mol. Biol. 2014, 1116, 73–87. 10.1007/978-1-62703-764-8_6. PubMed DOI
Davey H. M.; Hexley P. Red but not dead? Membranes of stressed PubMed DOI
Shaner N. C.; Lambert G. G.; Chammas A.; Ni Y.; Cranfill P. J.; Baird M. A.; Sell B. R.; Allen J. R.; Day R. N.; Israelsson M.; Davidson M. W.; Wang J. A bright monomeric green fluorescent protein derived from PubMed DOI PMC
Huang D.; Shusta E. V. Secretion and Surface Display of Green Fluorescent Protein Using the Yeast PubMed
Kumagai A.; Ando R.; Miyatake H.; Greimel P.; Kobayashi T.; Hirabayashi Y.; Shimogori T.; Miyawaki A. A Bilirubin-Inducible Fluorescent Protein from Eel Muscle. Cell 2013, 153, 1602–1611. 10.1016/j.cell.2013.05.038. PubMed DOI
Chapman S.; Faulkner C.; Kaiserli E.; Garcia-Mata C.; Savenkov E. I.; Roberts A. G.; Oparka K. J.; Christie J. M. The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc. Natl. Acad. Sci. U. 2008, 105, 20038–20043. 10.1073/pnas.0807551105. PubMed DOI PMC
Sheehan M. M.; Magaraci M. S.; Kuznetsov I. A.; Mancini J. A.; Kodali G.; Moser C. C.; Dutton P. L.; Chow B. Y. Rational Construction of Compact de Novo-Designed Biliverdin-Binding Proteins. Biochemistry 2018, 57, 6752–6756. 10.1021/acs.biochem.8b01076. PubMed DOI PMC
Rumyantsev K. A.; Shcherbakova D. M.; Zakharova N. I.; Emelyanov A. V.; Turoverov K. K.; Verkhusha V. V. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence. Sci. Rep. 2016, 5, 18348. 10.1038/srep18348. PubMed DOI PMC
Rodriguez E. A.; Tran G. N.; Gross L. A.; Crisp J. L.; Shu X.; Lin J. Y.; Tsien R. Y. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat. Methods 2016, 13, 763–769. 10.1038/nmeth.3935. PubMed DOI PMC
Fuenzalida-Werner J. P.; Janowski R.; Mishra K.; Weidenfeld I.; Niessing D.; Ntziachristos V.; Stiel A. C. Crystal structure of a biliverdin-bound phycobiliprotein: Interdependence of oligomerization and chromophorylation. J. Struct. Biol. 2018, 204, 519–522. 10.1016/j.jsb.2018.09.013. PubMed DOI
Shcherbakova D. M.; Verkhusha V. V. Near-infrared fluorescent proteins for multicolor PubMed DOI PMC
Oliinyk O. S.; Shemetov A. A.; Pletnev S.; Shcherbakova D. M.; Verkhusha V. V. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. Nat. Commun. 2019, 10, 279. 10.1038/s41467-018-08050-8. PubMed DOI PMC
Braun M. B.; Traenkle B.; Koch P. A.; Emele F.; Weiss F.; Poetz O.; Stehle T.; Rothbauer U. Peptides in headlock – a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy. Sci. Rep. 2016, 6, 19211. 10.1038/srep19211. PubMed DOI PMC
Götzke H.; Kilisch M.; Martínez-Carranza M.; Sograte-Idrissi S.; Rajavel A.; Schlichthaerle T.; Engels N.; Jungmann R.; Stenmark P.; Opazo F.; Frey S. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat. Commun. 2019, 10, 4403. 10.1038/s41467-019-12301-7. PubMed DOI PMC
Kaishima M.; Ishii J.; Matsuno T.; Fukuda N.; Kondo A. Expression of varied GFPs in PubMed DOI PMC
Drew D.; Newstead S.; Sonoda Y.; Kim H.; von Heijne G.; Iwata S. GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in PubMed DOI PMC
Yeh J. T. H.; Nam K.; Yeh J. T. H.; Perrimon N. eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells. Sci.Rep. 2017, 7, 41619–41619. 10.1038/srep41619. PubMed DOI PMC
Goldenzweig A.; Goldsmith M.; Hill S. E.; Gertman O.; Laurino P.; Ashani Y.; Dym O.; Unger T.; Albeck S.; Prilusky J.; Lieberman R. L.; Aharoni A.; Silman I.; Sussman J. L.; Tawfik D. S.; Fleishman S. J. Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability. Mol. Cell 2016, 63, 337–346. 10.1016/j.molcel.2016.06.012. PubMed DOI PMC
Zahradnik J.; Kolarova L.; Peleg Y.; Kolenko P.; Svidenska S.; Charnavets T.; Unger T.; Sussman J. L.; Schneider B. Flexible regions govern promiscuous binding of IL-24 to receptors IL-20R1 and IL-22R1. FEBS J. 2019, 286, 3858–3873. 10.1111/febs.14945. PubMed DOI
Erijman A.; Dantes A.; Bernheim R.; Shifman J. M.; Peleg Y. Transfer-PCR (TPCR): a highway for DNA cloning and protein engineering. J. Struct. Biol. 2011, 175, 171–177. 10.1016/j.jsb.2011.04.005. PubMed DOI
Magliery T. J. Protein stability: computation, sequence statistics, and new experimental methods. Curr. Opin. Struct. Biol. 2015, 33, 161–168. 10.1016/j.sbi.2015.09.002. PubMed DOI PMC
Gupta R.; Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symp. Biocomp. 2002, 310–322. PubMed
Baran D.; Pszolla M. G.; Lapidoth G. D.; Norn C.; Dym O.; Unger T.; Albeck S.; Tyka M. D.; Fleishman S. J. Principles for computational design of binding antibodies. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10900–10905. 10.1073/pnas.1707171114. PubMed DOI PMC
Rakestraw J. A.; Sazinsky S. L.; Piatesi A.; Antipov E.; Wittrup K. D. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in PubMed DOI PMC
Townsley F. M.; Frigerio G.; Pelham H. R. Retrieval of HDEL proteins is required for growth of yeast cells. J. Cell Biol. 1994, 127, 21–28. 10.1083/jcb.127.1.21. PubMed DOI PMC
Frey S.; Görlich D. A new set of highly efficient, tag-cleaving proteases for purifying recombinant proteins. J. Chromatogr. A 2014, 1337, 95–105. 10.1016/j.chroma.2014.02.029. PubMed DOI
Boyko K. M.; Gorbacheva M. A.; Korzhenevskiy D. A.; Alekseeva M. G.; Mavletova D. A.; Zakharevich N. V.; Elizarov S. M.; Rudakova N. N.; Danilenko V. N.; Popov V. O. Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from PubMed DOI
Tron C. M.; McNae I. W.; Nutley M.; Clarke D. J.; Cooper A.; Walkinshaw M. D.; Baxter R. L.; Campopiano D. J. Structural and functional studies of the biotin protein ligase from PubMed DOI
Lim S.; Glasgow J. E.; Filsinger Interrante M.; Storm E. M.; Cochran J. R. Dual display of proteins on the yeast cell surface simplifies quantification of binding interactions and enzymatic bioconjugation reactions. Biotechnol. J. 2017, 12, 1600696 10.1002/biot.201600696. PubMed DOI PMC
Bajagic M.; Archna A.; Büsing P.; Scrima A. Structure of the WD40-domain of human ATG16L1. Protein Sci. 2017, 26, 1828–1837. 10.1002/pro.3222. PubMed DOI PMC
Hamaoui D.; Cossé M. M.; Mohan J.; Lystad A. H.; Wollert T.; Subtil A. The Chlamydia effector CT622/TaiP targets a nonautophagy related function of ATG16L1. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 26784–26794. 10.1073/pnas.2005389117. PubMed DOI PMC
Schymkowitz J.; Borg J.; Stricher F.; Nys R.; Rousseau F.; Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005, 33, W382–W388. 10.1093/nar/gki387. PubMed DOI PMC
Gera N.; Hussain M.; Wright R. C.; Rao B. M. Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. J. Mol. Biol. 2011, 409, 601–616. 10.1016/j.jmb.2011.04.020. PubMed DOI
Hosse R. J.; Rothe A.; Power B. E. A new generation of protein display scaffolds for molecular recognition. Prot. Sci. 2006, 15, 14–27. 10.1110/ps.051817606. PubMed DOI PMC
Kruziki M. A.; Bhatnagar S.; Woldring D. R.; Duong V. T.; Hackel B. J. A 45-Amino-Acid Scaffold Mined from the PDB for High-Affinity Ligand Engineering. Chem. Biol. 2015, 22, 946–956. 10.1016/j.chembiol.2015.06.012. PubMed DOI PMC
Ye K.; Shibasaki S.; Ueda M.; Murai T.; Kamasawa N.; Osumi M.; Shimizu K.; Tanaka A. Construction of an engineered yeast with glucose-inducible emission of green fluorescence from the cell surface. Appl. Microbiol. Biotechnol. 2000, 54, 90–96. 10.1007/s002539900307. PubMed DOI
Kunze I.; Hensel G.; Adler K.; Bernard J.; Neubohn B.; Nilsson C.; Stoltenburg R.; Kohlwein S. D.; Kunze G. The green fluorescent protein targets secretory proteins to the yeast vacuole. Biochim. Biophys. Acta, Bioenerg. 1999, 1410, 287–298. 10.1016/S0005-2728(99)00006-7. PubMed DOI
Li J.; Xu H.; Bentley W. E.; Rao G. Impediments to secretion of green fluorescent protein and its fusion from PubMed DOI
Eiden-Plach A.; Zagorc T.; Heintel T.; Carius Y.; Breinig F.; Schmitt M. J. Viral Preprotoxin Signal Sequence Allows Efficient Secretion of Green Fluorescent Protein by PubMed DOI PMC
Roh J. Y.; Koo B. C.; Kwon M. S.; Kim M.; Kim N.-H.; Kim T. Modification of enhanced green fluorescent protein for secretion out of cells. Biotechnol. Bioprocess Eng. 2013, 18, 1135–1141. 10.1007/s12257-013-0333-1. DOI
Grzeschik J.; Hinz S. C.; Könning D.; Pirzer T.; Becker S.; Zielonka S.; Kolmar H. A simplified procedure for antibody engineering by yeast surface display: Coupling display levels and target binding by ribosomal skipping. Biotechnol. J. 2017, 12, 1600454 10.1002/biot.201600454. PubMed DOI
McMahon C.; Baier A. S.; Pascolutti R.; Wegrecki M.; Zheng S.; Ong J. X.; Erlandson S. C.; Hilger D.; Rasmussen S. G. F.; Ring A. M.; Manglik A.; Kruse A. C. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. 2018, 25, 289–296. 10.1038/s41594-018-0028-6. PubMed DOI PMC
Zahradník J.; Marciano S.; Shemesh M.; Zoler E.; Harari D.; Chiaravalli J.; Meyer B.; Rudich Y.; Li C.; Marton I.; Dym O.; Elad N.; Lewis M. G.; Andersen H.; Gagne M.; Seder R. A.; Douek D. C.; Schreiber G. SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat. Microbiol. 2021, 6, 1188–1198. 10.1038/s41564-021-00954-4. PubMed DOI
Bloom J. D.; Labthavikul S. T.; Otey C. R.; Arnold F. H. Protein stability promotes evolvability. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 5869–5874. 10.1073/pnas.0510098103. PubMed DOI PMC
Tokuriki N.; Tawfik D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 2009, 19, 596–604. 10.1016/j.sbi.2009.08.003. PubMed DOI
Wilson D. S.; Keefe A. D.; Szostak J. W. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 3750–3755. 10.1073/pnas.061028198. PubMed DOI PMC
Syedbasha M.; Linnik J.; Santer D.; O’Shea D.; Barakat K.; Joyce M.; Khanna N.; Tyrrell D. L.; Houghton M.; Egli A. An ELISA Based Binding and Competition Method to Rapidly Determine Ligand-receptor Interactions. JoVE 2016, e53575 10.3791/53575. PubMed DOI PMC
Schreiber G.; Fleishman S. J. Computational design of protein-protein interactions. Curr. Opin. Struct. Biol. 2013, 23, 903–910. 10.1016/j.sbi.2013.08.003. PubMed DOI
Gietz R. D.; Woods R. A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002, 350, 87–96. 10.1016/S0076-6879(02)50957-5. PubMed DOI
Zahradník J.; Kolářová L.; Pařízková H.; Kolenko P.; Schneider B. Interferons type II and their receptors R1 and R2 in fish species: Evolution, structure, and function. Fish Shellfish Immunol. 2018, 79, 140–152. 10.1016/j.fsi.2018.05.008. PubMed DOI
Cossé M. M.; Barta M. L.; Fisher D. J.; Oesterlin L. K.; Niragire B.; Perrinet S.; Millot G. A.; Hefty P. S.; Subtil A. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Chlamydia trachomatis Infectivity and Growth. Front. Cell. Infect. Microbiol. 2018, 8, 145. 10.3389/fcimb.2018.00145. PubMed DOI PMC
Sofronescu A. G.; Loebs T.; Zhu Y. Effects of temperature and light on the stability of bilirubin in plasma samples. Clin. Chim. Acta 2012, 413, 463–466. 10.1016/j.cca.2011.10.036. PubMed DOI
Starr T. N.; Greaney A. J.; Hilton S. K.; Ellis D.; Crawford K. H. D.; Dingens A. S.; Navarro M. J.; Bowen J. E.; Tortorici M. A.; Walls A. C.; King N. P.; Veesler D.; Bloom J. D. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 2020, 182, 1295–1310.e20. 10.1016/j.cell.2020.08.012. PubMed DOI PMC
Pettersen E. F.; Goddard T. D.; Huang C. C.; Couch G. S.; Greenblatt D. M.; Meng E. C.; Ferrin T. E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. 10.1002/jcc.20084. PubMed DOI
Kozakov D.; Hall D. R.; Xia B.; Porter K. A.; Padhorny D.; Yueh C.; Beglov D.; Vajda S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017, 12, 255–278. 10.1038/nprot.2016.169. PubMed DOI PMC
Multiple mutations of SARS-CoV-2 Omicron BA.2 variant orchestrate its virological characteristics
Regulation of IL-24/IL-20R2 complex formation using photocaged tyrosines and UV light
Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant
Building the SynBio community in the Czech Republic from the bottom up: You get what you give
Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant