Regulation of IL-24/IL-20R2 complex formation using photocaged tyrosines and UV light

. 2023 ; 10 () : 1214235. [epub] 20230707

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37484532

Human interleukin 24 (IL-24) is a multifunctional cytokine that represents an important target for autoimmune diseases and cancer. Since the biological functions of IL-24 depend on interactions with membrane receptors, on-demand regulation of the affinity between IL-24 and its cognate partners offers exciting possibilities in basic research and may have applications in therapy. As a proof-of-concept, we developed a strategy based on recombinant soluble protein variants and genetic code expansion technology to photocontrol the binding between IL-24 and one of its receptors, IL-20R2. Screening of non-canonical ortho-nitrobenzyl-tyrosine (NBY) residues introduced at several positions in both partners was done by a combination of biophysical and cell signaling assays. We identified one position for installing NBY, tyrosine70 of IL-20R2, which results in clear impairment of heterocomplex assembly in the dark. Irradiation with 365-nm light leads to decaging and reconstitutes the native tyrosine of the receptor that can then associate with IL-24. Photocaged IL-20R2 may be useful for the spatiotemporal control of the JAK/STAT phosphorylation cascade.

Zobrazit více v PubMed

Aaronson D. S., Horvath C. M. (2002). A road map for those who don't know JAK-STAT. Science 296 (5573), 1653–1655. 10.1126/science.1071545 PubMed DOI

Acevedo-Rocha C. G., Li A., D’Amore L., Hoebenreich S., Sanchis J., Lubrano P., et al. (2021). Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics. Nat. Commun. 12 (1), 1621. 10.1038/s41467-021-21833-w PubMed DOI PMC

Akdis M., Burgler S., Crameri R., Eiwegger T., Fujita H., Gomez E., et al. (2011). Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 127 (3), 701–721.e1-70. 10.1016/j.jaci.2010.11.050 PubMed DOI

Alexander C. G., Wanner R., Johnson C. M., Breitsprecher D., Winter G., Duhr S., et al. (2014). Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings. Biochimica Biophysica Acta (BBA) - Proteins Proteomics 1844 (12), 2241–2250. 10.1016/j.bbapap.2014.09.016 PubMed DOI PMC

Amiram M., Haimovich A. D., Fan C., Wang Y.-S., Aerni H.-R., Ntai I., et al. (2015). Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33 (12), 1272–1279. 10.1038/nbt.3372 PubMed DOI PMC

Andoh A., Shioya M., Nishida A., Bamba S., Tsujikawa T., Kim-Mitsuyama S., et al. (2009). Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J. Immunol. 183 (1), 687–695. 10.4049/jimmunol.0804169 PubMed DOI

Arbely E., Torres-Kolbus J., Deiters A., Chin J. W. (2012). Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. J. Am. Chem. Soc. 134 (29), 11912–11915. 10.1021/ja3046958 PubMed DOI

Baumann T., Hauf M., Richter F., Albers S., Möglich A., Ignatova Z., et al. (2019). Computational aminoacyl-tRNA synthetase library design for photocaged tyrosine. Int. J. Mol. Sci. 20 (9), 2343. 10.3390/ijms20092343 PubMed DOI PMC

Bose M., Groff D., Xie J., Brustad E., Schultz P. G. (2005). The incorporation of a photoisomerizable amino acid into proteins in E. coli . J. Am. Chem. Soc. 128 (2), 388–389. 10.1021/ja055467u PubMed DOI

Bowman G. R., Geissler P. L. (2012). Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc. Natl. Acad. Sci. 109 (29), 11681–11686. 10.1073/pnas.1209309109 PubMed DOI PMC

Bridge T., Shaikh S. A., Thomas P., Botta J., McCormick P. J., Sachdeva A. (2019). Site‐specific encoding of photoactivity in antibodies enables light‐mediated antibody–antigen binding on live cells. Angew. Chem. Int. Ed. 58 (50), 17986–17993. 10.1002/anie.201908655 PubMed DOI PMC

Bridge T., Wegmann U., Crack J. C., Orman K., Shaikh S. A., Farndon W., et al. (2023). Site-specific encoding of photoactivity and photoreactivity into antibody fragments. Nat. Chem. Biol. 19, 740–749. 10.1038/s41589-022-01251-9 PubMed DOI PMC

Carrasco-López C., Zhao E. M., Gil A. A., Alam N., Toettcher J. E., Avalos J. L. (2020). Development of light-responsive protein binding in the monobody non-immunoglobulin scaffold. Nat. Commun. 11 (1), 4045. 10.1038/s41467-020-17837-7 PubMed DOI PMC

Chada S., Mhashilkar A. M., Ramesh R., Mumm J. B., Sutton R. B., Bocangel D., et al. (2004). Bystander activity of Ad-mda7: Human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Mol. Ther. 10 (6), 1085–1095. 10.1016/j.ymthe.2004.08.020 PubMed DOI

Chada S., Mhashilkar A. M., Liu Y., Nishikawa T., Bocangel D., Zheng M., et al. (2005). mda-7 gene transfer sensitizes breast carcinoma cells to chemotherapy, biologic therapies and radiotherapy: correlation with expression of bcl-2 family members. Cancer Gene Ther. 13 (5), 490–502. 10.1038/sj.cgt.7700915 PubMed DOI

Chaudhari A. S., Chatterjee A., Domingos C. A. O., Andrikopoulos P. C., Liu Y., Andersson I., et al. (2023). Genetically encoded non‐canonical amino acids reveal asynchronous dark reversion of chromophore, backbone and side‐chains in EL222. Protein Sci. 32, e4590. 10.1002/pro.4590 PubMed DOI PMC

Cheung J. W., Kinney W. D., Wesalo J. S., Reed M., Nicholson E. M., Deiters A., et al. (2023). Genetic encoding of a photocaged histidine for light‐control of protein activity. ChemBioChem 24, e202200721. 10.1002/cbic.202200721 PubMed DOI PMC

Cho O., Lee J.-W., Kim H.-S., Jeong Y.-J., Heo T.-H. (2023). Chelerythrine, a novel small molecule targeting IL-2, inhibits melanoma progression by blocking the interaction between IL-2 and its receptor. Life Sci. 320, 121559. 10.1016/j.lfs.2023.121559 PubMed DOI

Courtney T., Deiters A. (2018). Recent advances in the optical control of protein function through genetic code expansion. Curr. Opin. Chem. Biol. 46, 99–107. 10.1016/j.cbpa.2018.07.011 PubMed DOI PMC

Cunningham C. C., Chada S., Merritt J. A., Tong A., Senzer N., Zhang Y., et al. (2005). Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol. Ther. 11 (1), 149–159. 10.1016/j.ymthe.2004.09.019 PubMed DOI

Darnell J. E., Kerr l. M., Stark G. R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264 (5164), 1415–1421. 10.1126/science.8197455 PubMed DOI

de Marco A., Berrow N., Lebendiker M., Garcia-Alai M., Knauer S. H., Lopez-Mendez B., et al. (2021). Quality control of protein reagents for the improvement of research data reproducibility. Nat. Commun. 12 (1), 2795. 10.1038/s41467-021-23167-z PubMed DOI PMC

de Melo C. B., Uto-Konomi A., Miyauchi K., Ozaki N., Motomura Y., Suzuki Y., et al. (2012). Dysregulation of suppressor of cytokine signaling 3 in keratinocytes causes skin inflammation mediated by interleukin-20 receptor-related cytokines. PLoS ONE 7 (7), e40343. 10.1371/journal.pone.0040343 PubMed DOI PMC

De Paula V. S., Jude K. M., Nerli S., Glassman C. R., Garcia K. C., Sgourakis N. G. (2020). Interleukin-2 druggability is modulated by global conformational transitions controlled by a helical capping switch. Proc. Natl. Acad. Sci. 117 (13), 7183–7192. 10.1073/pnas.2000419117 PubMed DOI PMC

Deiters A., Groff D., Ryu Y., Xie J., Schultz P. G. (2006). A genetically encoded photocaged tyrosine. Angew. Chem. Int. Ed. 45 (17), 2728–2731. 10.1002/anie.200600264 PubMed DOI

Dumoutier L., Leemans C., Lejeune D., Kotenko S. V., Renauld J.-C. (2001). Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J. Immunol. 167 (7), 3545–3549. 10.4049/jimmunol.167.7.3545 PubMed DOI

Gautier A., Nguyen D. P., Lusic H., An W., Deiters A., Chin J. W. (2010). Genetically encoded photocontrol of protein localization in mammalian cells. J. Am. Chem. Soc. 132 (12), 4086–4088. 10.1021/ja910688s PubMed DOI

Gil A. A., Carrasco-López C., Zhu L., Zhao E. M., Ravindran P. T., Wilson M. Z., et al. (2020). Optogenetic control of protein binding using light-switchable nanobodies. Nat. Commun. 11 (1), 4044. 10.1038/s41467-020-17836-8 PubMed DOI PMC

Goldenzweig A., Goldsmith M., Hill S. E., Gertman O., Laurino P., Ashani Y., et al. (2016). Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol. Cell 63 (2), 337–346. 10.1016/j.molcel.2016.06.012 PubMed DOI PMC

Hauf M., Richter F., Schneider T., Faidt T., Martins B. M., Baumann T., et al. (2017). Photoactivatable mussel-based underwater adhesive proteins by an expanded genetic code. ChemBioChem 18 (18), 1819–1823. 10.1002/cbic.201700327 PubMed DOI

Hoorens M. W. H., Szymanski W. (2018). Reversible, spatial and temporal control over protein activity using light. Trends Biochem. Sci. 43 (8), 567–575. 10.1016/j.tibs.2018.05.004 PubMed DOI

Hopkins R., Esposito D., Gillette W. (2010). Widening the bottleneck: Increasing success in protein expression and purification. J. Struct. Biol. 172 (1), 14–20. 10.1016/j.jsb.2010.07.005 PubMed DOI PMC

Hu X., li J., Fu M., Zhao X., Wang W. (2021). The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 6 (1), 402. 10.1038/s41392-021-00791-1 PubMed DOI PMC

Huličiak M., Biedermanová L., Berdár D., Herynek Š., Kolářová L., Tomala J., et al. (2023). Combined in vitro and cell‐based selection display method producing specific binders against IL‐9 receptor in high yields. FEBS J. 290, 2993–3005. 10.1111/febs.16726 PubMed DOI

Israeli B., Strugach D. S., Gelkop S., Weber S., Gozlan D. S., Amiram M. (2021). Genetically encoding light‐responsive protein‐polymers using translation machinery for the multi‐site incorporation of photo‐switchable unnatural amino acids. Adv. Funct. Mater. 31 (44), 2011276. 10.1002/adfm.202011276 DOI

Iyer S. S., Cheng G. (2012). Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Reviews™ Immunol. 32 (1), 23–63. 10.1615/CritRevImmunol.v32.i1.30 PubMed DOI PMC

Jankovic B., Gulzar A., Zanobini C., Bozovic O., Wolf S., Stock G., et al. (2019). Photocontrolling protein–peptide interactions: From minimal perturbation to complete unbinding. J. Am. Chem. Soc. 141 (27), 10702–10710. 10.1021/jacs.9b03222 PubMed DOI

Jedlitzke B., Mootz H. D. (2022). A light‐activatable photocaged variant of the ultra‐high affinity ALFA‐tag nanobody. ChemBioChem 23 (12), e202200079. 10.1002/cbic.202200079 PubMed DOI PMC

Jedlitzke B., Yilmaz Z., Dörner W., Mootz H. D. (2019). Photobodies: Light‐Activatable single‐domain antibody fragments. Angew. Chem. Int. Ed. 59 (4), 1506–1510. 10.1002/anie.201912286 PubMed DOI PMC

Jerabek-Willemsen M., André T., Wanner R., Roth H. M., Duhr S., Baaske P., et al. (2014). MicroScale thermophoresis: Interaction analysis and beyond. J. Mol. Struct. 1077, 101–113. 10.1016/j.molstruc.2014.03.009 DOI

Joest E. F., Winter C., Wesalo J. S., Deiters A., Tampé R. (2021). Light-guided intrabodies for on-demand in situ target recognition in human cells. Chem. Sci. 12 (16), 5787–5795. 10.1039/d1sc01331a PubMed DOI PMC

Kesgin‐Schaefer S., Heidemann J., Puchert A., Koelbel K., Yorke B. A., Huse N., et al. (2019). Crystal structure of a domain‐swapped photoactivatable sfGFP variant provides evidence for GFP folding pathway. FEBS J. 286 (12), 2329–2340. 10.1111/febs.14797 PubMed DOI

Kielbassa C., Roza L., Epe B. (1997). Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18 (4), 811–816. 10.1093/carcin/18.4.811 PubMed DOI

Kneuttinger A. C. (2022). A guide to designing photocontrol in proteins: Methods, strategies and applications. Biol. Chem. 403 (5-6), 573–613. 10.1515/hsz-2021-0417 PubMed DOI

Koch N. G., Baumann T., Nickling J. H., Dziegielewski A., Budisa N. (2022). Engineered bacterial host for genetic encoding of physiologically stable protein nitration. Front. Mol. Biosci. 9, 992748. 10.3389/fmolb.2022.992748 PubMed DOI PMC

Kolářová L., Zahradník J., Huličiak M., Mikulecký P., Peleg Y., Shemesh M., et al. (2021). De novo developed protein binders mimicking Interferon lambda signaling. FEBS J. 289 (9), 2672–2684. 10.1111/febs.16300 PubMed DOI

Kragstrup T. W., Otkjaer K., Holm C., Jørgensen A., Hokland M., Iversen L., et al. (2008). The expression of IL-20 and IL-24 and their shared receptors are increased in rheumatoid arthritis and spondyloarthropathy. Cytokine 41 (1), 16–23. 10.1016/j.cyto.2007.10.004 PubMed DOI

Lemke E. A., Summerer D., Geierstanger B. H., Brittain S. M., Schultz P. G. (2007). Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat. Chem. Biol. 3 (12), 769–772. 10.1038/nchembio.2007.44 PubMed DOI

Liu S., Hur Y. H., Cai X., Cong Q., Yang Y., Xu C., et al. (2023). A tissue injury sensing and repair pathway distinct from host pathogen defense. Cell 186 (10), 2127–2143.e22. 10.1016/j.cell.2023.03.031 PubMed DOI PMC

Lu H., Zhou Q., He J., Jiang Z., Peng C., Tong R., et al. (2020). Recent advances in the development of protein–protein interactions modulators: Mechanisms and clinical trials. Signal Transduct. Target. Ther. 5 (1), 213. 10.1038/s41392-020-00315-3 PubMed DOI PMC

Lubkowski J., Sonmez C., Smirnov S. V., Anishkin A., Kotenko S. V., Wlodawer A. (2018). Crystal structure of the labile complex of IL-24 with the extracellular domains of IL-22r1 and IL-20r2. J. Immunol. 201 (7), 2082–2093. 10.4049/jimmunol.1800726 PubMed DOI PMC

Lucchi R., Bentanachs J., Oller-Salvia B. (2021). The masking game: Design of activatable antibodies and mimetics for selective therapeutics and cell control. ACS Central Sci. 7 (5), 724–738. 10.1021/acscentsci.0c01448 PubMed DOI PMC

Luo J., Uprety R., Naro Y., Chou C., Nguyen D. P., Chin J. W., et al. (2014). Genetically encoded optochemical probes for simultaneous fluorescence reporting and light activation of protein function with two-photon excitation. J. Am. Chem. Soc. 136 (44), 15551–15558. 10.1021/ja5055862 PubMed DOI PMC

Luo J., Torres‐Kolbus J., Liu J., Deiters A. (2017). Genetic encoding of photocaged tyrosines with improved light‐activation properties for the optical control of protease function. ChemBioChem 18 (14), 1442–1447. 10.1002/cbic.201700147 PubMed DOI

Luo J., Samanta S., Convertino M., Dokholyan N. V., Deiters A. (2018). Reversible and tunable photoswitching of protein function through genetic encoding of azobenzene amino acids in mammalian cells. ChemBioChem 19 (20), 2178–2185. 10.1002/cbic.201800226 PubMed DOI PMC

Ma Y., Chen H.-D., Wang Y., Wang Q., Li Y., Zhao Y., et al. (2011). Interleukin 24 as a novel potential cytokine immunotherapy for the treatment of Mycobacterium tuberculosis infection. Microbes Infect. 13 (12-13), 1099–1110. 10.1016/j.micinf.2011.06.012 PubMed DOI

Manandhar M., Chun E., Romesberg F. E. (2021). Genetic code expansion: Inception, development, commercialization. J. Am. Chem. Soc. 143 (13), 4859–4878. 10.1021/jacs.0c11938 PubMed DOI

Marty M. T., Baldwin A. J., Marklund E. G., Hochberg G. K. A., Benesch J. L. P., Robinson C. V. (2015). Bayesian deconvolution of mass and ion mobility spectra: From binary interactions to polydisperse ensembles. Anal. Chem. 87 (8), 4370–4376. 10.1021/acs.analchem.5b00140 PubMed DOI PMC

Menezes M. E., Bhoopathi P., Pradhan A. K., Emdad L., Das S. K., Guo C., et al. (2018). Role of MDA-7/IL-24 a multifunction protein in human diseases. Adv. Cancer Res. 138, 143–182. 10.1016/bs.acr.2018.02.005 PubMed DOI PMC

Micsonai A., Moussong É., Wien F., Boros E., Vadászi H., Murvai N., et al. (2022). BeStSel: Webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res. 50 (W1), W90–W98. 10.1093/nar/gkac345 PubMed DOI PMC

Mock J., Pellegrino C., Neri D. (2020). A universal reporter cell line for bioactivity evaluation of engineered cytokine products. Sci. Rep. 10 (1), 3234. 10.1038/s41598-020-60182-4 PubMed DOI PMC

Myrhammar A., Rosik D., Karlström A. E. (2020). Photocontrolled reversible binding between the protein A-derived Z domain and immunoglobulin G. Bioconjugate Chem. 31 (3), 622–630. 10.1021/acs.bioconjchem.9b00786 PubMed DOI

Nguyen D. P., Mahesh M., Elsässer S. J., Hancock S. M., Uttamapinant C., Chin J. W. (2014). Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J. Am. Chem. Soc. 136 (6), 2240–2243. 10.1021/ja412191m PubMed DOI PMC

O'Shea J. M., Goutou A., Brydon J., Sethna C. R., Wood C. W., Greiss S. (2022). Generation of photocaged nanobodies for intracellular applications in an animal using genetic code expansion and computationally guided protein engineering. ChemBioChem 23 (16), e202200321. 10.1002/cbic.202200321 PubMed DOI PMC

Parrish-Novak J., Xu W., Brender T., Yao L., Jones C., West J., et al. (2002). Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J. Biol. Chem. 277 (49), 47517–47523. 10.1074/jbc.M205114200 PubMed DOI

Pattyn E., Van Ostade X., Schauvliege L., Verhee A., Kalai M., Vandekerckhove J., et al. (1999). Dimerization of the interferon type I receptor IFNaR2–2 is sufficient for induction of interferon effector genes but not for full antiviral activity. J. Biol. Chem. 274 (49), 34838–34845. 10.1074/jbc.274.49.34838 PubMed DOI

Peleg Y., Unger T. (2012). “Resolving bottlenecks for recombinant protein expression in E. coli ,” in Chemical genomics and proteomics, 173–186. PubMed

Pellegrini S., John J., Shearer M., Kerr I. M., Stark G. R. (1989). Use of a selectable marker regulated by alpha interferon to obtain mutations in the signaling pathway. Mol. Cell. Biol. 9 (11), 4605–4612. 10.1128/mcb.9.11.4605-4612.1989 PubMed DOI PMC

Pham P. N., Huličiak M., Biedermannová L., Černý J., Charnavets T., Fuertes G., et al. (2021). Protein binder (ProBi) as a new class of structurally robust non-antibody protein scaffold for directed evolution. Viruses 13 (2), 190. 10.3390/v13020190 PubMed DOI PMC

Reetz M. T. (2013). The importance of additive and non-additive mutational effects in protein engineering. Angew. Chem. Int. Ed. 52 (10), 2658–2666. 10.1002/anie.201207842 PubMed DOI

Reis G., Moreira Silva E. A. S., Medeiros Silva D. C., Thabane L., Campos V. H. S., Ferreira T. S., et al. (2023). Early treatment with pegylated interferon lambda for covid-19. N. Engl. J. Med. 388 (6), 518–528. 10.1056/NEJMoa2209760 PubMed DOI PMC

Rogers J. M., Passioura T., Suga H. (2018). Nonproteinogenic deep mutational scanning of linear and cyclic peptides. Proc. Natl. Acad. Sci. 115 (43), 10959–10964. 10.1073/pnas.1809901115 PubMed DOI PMC

Rutz S., Wang X., Ouyang W. (2014). The IL-20 subfamily of cytokines — From host defence to tissue homeostasis. Nat. Rev. Immunol. 14 (12), 783–795. 10.1038/nri3766 PubMed DOI

Stael S., Miller L. P., Fernández-Fernández Á. D., Van Breusegem F. (2022). “Detection of damage-activated metacaspase activity by western blot in plants,” in Plant proteases and plant cell death, 127–137. PubMed

Starr T. N., Thornton J. W. (2016). Epistasis in protein evolution. Protein Sci. 25 (7), 1204–1218. 10.1002/pro.2897 PubMed DOI PMC

Su Z., Emdad L., Sauane M., Lebedeva I. V., Sarkar D., Gupta P., et al. (2005). Unique aspects of mda-7/IL-24 antitumor bystander activity: Establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene 24 (51), 7552–7566. 10.1038/sj.onc.1208911 PubMed DOI

Traupe H. (2017). Psoriasis and the interleukin-10 family: Evidence for a protective genetic effect, but not an easy target as a drug. Br. J. Dermatology 176 (6), 1438–1439. 10.1111/bjd.15158 PubMed DOI

Wagner C. R., Huang Z., Singleton S. F., Benkovic S. J. (1995). Molecular basis for nonadditive mutational effects in Escherichia coli dihydrofolate reductase. Biochemistry 34 (48), 15671–15680. 10.1021/bi00048a011 PubMed DOI

Wang M., Liang P. (2005). Interleukin-24 and its receptors. Immunology 114 (2), 166–170. 10.1111/j.1365-2567.2005.02094.x PubMed DOI PMC

Wang M., Tan Z., Zhang R., Kotenko S. V., Liang P. (2002). Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22r1/IL-20r2 and IL-20r1/IL-20r2. J. Biol. Chem. 277 (9), 7341–7347. 10.1074/jbc.M106043200 PubMed DOI

Wang M., Tan Z., Thomas E. K., Liang P. (2004). Conservation of the genomic structure and receptor-mediated signaling between human and rat IL-24. Genes & Immun. 5 (5), 363–370. 10.1038/sj.gene.6364101 PubMed DOI

Wang J., Liu Y., Liu Y., Zheng S., Wang X., Zhao J., et al. (2019). Time-resolved protein activation by proximal decaging in living systems. Nature 569 (7757), 509–513. 10.1038/s41586-019-1188-1 PubMed DOI

Wang J., Liu Y., Liu Y., Wang C., Chen P. R. (2021). CAGE‐prox: A unified approach for time‐resolved protein activation in living systems. Curr. Protoc. 1 (6), e180. 10.1002/cpz1.180 PubMed DOI

Wu N., Deiters A., Cropp T. A., King D., Schultz P. G. (2004). A genetically encoded photocaged amino acid. J. Am. Chem. Soc. 126 (44), 14306–14307. 10.1021/ja040175z PubMed DOI

Yilmaz Z., Jedlitzke B., Mootz H. D. (2022). “Design and preparation of photobodies: Light-activated single-domain antibody fragments,” in Single-domain antibodies, 409–424. PubMed

Zahradník J., Kolářová L., Peleg Y., Kolenko P., Svidenská S., Charnavets T., et al. (2019). Flexible regions govern promiscuous binding ofIL‐24 to receptorsIL‐20R1 andIL‐22R1. FEBS J. 286 (19), 3858–3873. 10.1111/febs.14945 PubMed DOI

Zahradník J., Dey D., Marciano S., Kolářová L., Charendoff C. I., Subtil A., et al. (2021a). A protein-engineered, enhanced yeast display platform for rapid evolution of challenging targets. ACS Synth. Biol. 10 (12), 3445–3460. 10.1021/acssynbio.1c00395 PubMed DOI PMC

Zahradník J., Marciano S., Shemesh M., Zoler E., Harari D., Chiaravalli J., et al. (2021b). SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat. Microbiol. 6 (9), 1188–1198. 10.1038/s41564-021-00954-4 PubMed DOI

Zhang X., Pan Y., Kang S., Gu L. (2022). Combinatorial approaches for efficient design of photoswitchable protein-protein interactions as in vivo actuators. Front. Bioeng. Biotechnol. 10, 844405. 10.3389/fbioe.2022.844405 PubMed DOI PMC

Zhou W., Hankinson C. P., Deiters A. (2020). Optical control of cellular ATP levels with a photocaged adenylate Kinase. ChemBioChem 21 (13), 1832–1836. 10.1002/cbic.201900757 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...