De novo developed protein binders mimicking Interferon lambda signaling
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34826176
DOI
10.1111/febs.16300
Knihovny.cz E-resources
- Keywords
- IFN-λ, IL-29, cytokine signaling, cytokines, directed evolution, interferon lambda, protein scaffolds, yeast display,
- MeSH
- Antiviral Agents metabolism MeSH
- Cytokines metabolism MeSH
- Interferons * metabolism MeSH
- Interleukins * metabolism MeSH
- Humans MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antiviral Agents MeSH
- Cytokines MeSH
- Interferons * MeSH
- Interleukins * MeSH
We hereby describe the process of design and selection of nonantibody protein binders mimicking cytokine signaling. We chose to mimic signaling of IFN-λ1, type 3 interferon (also known as IL-29) for its novelty and the importance of its biological functions. All four known interferons λ signal through binding to the extracellular domains of IL-28 receptor 1 (IL-28R1) and IL-10 receptor 2 (IL-10R2). Our binders were therefore trained to bind both receptors simultaneously. The bifunctional binder molecules were developed by yeast display, a method of directed evolution. The signaling capacity of the bivalent binders was tested by measuring phosphorylation of the JAK/STAT signaling pathway and production of mRNA of six selected genes naturally induced by IFN- λ1 in human cell lines. The newly developed bivalent binders offer opportunities to study cytokine-related biological functions and modulation of the cell behavior by receptor activation on the cell surfaces alternative to the use of natural IFN-λ.
Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
See more in PubMed
Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K & Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 76, 106-110.
Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A & Raghava GPS (2017) THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One 12, e0181748.
Fosgerau K & Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20, 122-128.
Leader B, Baca QJ & Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7, 21-39.
Vazquez-Lombardi R, Phan TG, Zimmermann C, Lowe D, Jermutus L & Christ D (2015) Challenges and opportunities for non-antibody scaffold drugs. Drug Discov Today 20, 1271-1283.
Simeon R & Chen Z (2018) In vitro-engineered non-antibody protein therapeutics. Protein Cell 9, 3-14.
Levy JH & O’Donnell PS (2006) The therapeutic potential of a kallikrein inhibitor for treating hereditary angioedema. Expert Opini Invest Drugs 15, 1077-1090.
Gompels MM, Lock RJ, Abinun M, Bethune CA, Davies G, Grattan C, Fay AC, Longhurst HJ, Morrison L, Price A et al. (2005) C1 inhibitor deficiency: consensus document. Clin Exper Immunol 139, 379-394.
Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H & Donnelly RP (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4, 69-77.
Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J et al. (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4, 63-68.
Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I et al. (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genetics 45, 164-171.
Gad HH, Dellgren C, Hamming OJ, Vends S, Paludan SR & Hartmann R (2009) Interferon-lambda is functionally an interferon but structurally related to the interleukin-10 family. J Biol Chem 284, 20869-20875.
Miknis ZJ, Magracheva E, Li W, Zdanov A, Kotenko SV & Wlodawer A (2010) Crystal structure of human interferon-lambda1 in complex with its high-affinity receptor interferon-lambdaR1. J Mol Biol 404, 650-664.
Logsdon NJ, Deshpande A, Harris BD, Rajashankar KR & Walter MR (2012) Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc Natl Acad Sci USA 109, 12704-12709.
Mendoza JL, Schneider WM, Hoffmann HH, Vercauteren K, Jude KM, Xiong A, Moraga I, Horton TM, Glenn JS, de Jong YP et al. (2017) The IFN-lambda-IFN-lambdaR1-IL-10Rbeta complex reveals structural features underlying type III IFN functional plasticity. Immunity 46, 379-392.
Lubkowski J, Sonmez C, Smirnov SV, Anishkin A, Kotenko SV & Wlodawer A (2018) Crystal structure of the labile complex of IL-24 with the extracellular domains of IL-22R1 and IL-20R2. J Immunol 201, 2082-2093.
Zhang D, Wlodawer A & Lubkowski J (2016) Crystal structure of a complex of the intracellular domain of interferon lambda receptor 1 (IFNLR1) and the FERM/SH2 domains of human JAK1. J Mol Biol 428, 4651-4668.
Kotenko SV & Durbin JE (2017) Contribution of type III interferons to antiviral immunity: location, location, location. J Biol Chem 292, 7295-7303.
Muir AJ, Arora S, Everson G, Flisiak R, George J, Ghalib R, Gordon SC, Gray T, Greenbloom S, Hassanein T et al. (2014) A randomized phase 2b study of peginterferon lambda-1a for the treatment of chronic HCV infection. J Hepatol 61, 1238-1246.
Lazear HM, Schoggins JW & Diamond MS (2019) Shared and distinct functions of type i and type III interferons. Immunity 50, 907-923.
Feld JJ, Kandel C, Biondi MJ, Kozak RA, Zahoor MA, Lemieux C, Borgia SM, Boggild AK, Powis J, McCready J et al. (2021) Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respirat Med 9, 498-510.
Packer MS & Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genetics 16, 379-394.
Schreuder MP, Brekelmans S, van den Ende H & Klis FM (1993) Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9, 399-409.
Zahradník J, Dey D, Marciano S & Schreiber G. (2020) An enhanced yeast display platform demonstrates the binding plasticity under various selection pressures. bioRxiv [PREPRINT].
Li H, Sharma N, General IJ, Schreiber G & Bahar I (2017) Dynamic modulation of binding affinity as a mechanism for regulating interferon signaling. J Mol Biol 429, 2571-2589.
Pham PN, Huliciak M, Biedermannova L, Cerny J, Charnavets T, Fuertes G, Herynek S, Kolarova L, Kolenko P, Pavlicek J et al. (2021) Protein binder (ProBi) as a new class of structurally robust non-antibody protein scaffold for directed evolution. Viruses 13, 190.
Gera N, Hussain M, Wright RC & Rao BM (2011) Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. J Mol Biol 409, 601-616.
Kruziki MA, Bhatnagar S, Woldring DR, Duong VT & Hackel BJ (2015) A 45-amino-acid scaffold mined from the PDB for high-affinity ligand engineering. Chem Biol 22, 946-956.
Hosse RJ, Rothe A & Power BE (2006) A new generation of protein display scaffolds for molecular recognition. Prot Sci 15, 14-27.
Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM & Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1, 755-768.
Horejsi Z, Stach L, Flower TG, Joshi D, Flynn H, Skehel JM, O'Reilly NJ, Ogrodowicz RW, Smerdon SJ & Boulton SJ (2014) Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep 7, 19-26.
Baumann H, Knapp S, Lundbäck T, Ladenstein R & Härd T (1994) Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Nat Struct Biol 1, 808-819.
Boyko KM, Gorbacheva MA, Korzhenevskiy DA, Alekseeva MG, Mavletova DA, Zakharevich NV, Elizarov SM, Rudakova NN, Danilenko VN & Popov VO (2016) Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation. Biochem Biophys Res Commun 477, 595-601.
Cámara B, Liu M, Reynolds J, Shadrin A, Liu B, Kwok K, Simpson P, Weinzierl R, Severinov K, Cota E et al. (2010) T7 phage protein Gp2 inhibits the Escherichia coli RNA polymerase by antagonizing stable DNA strand separation near the transcription start site. Proc Natl Acad Sci USA 107, 2247-2252.
Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J & Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28, 7241-7257.
Peleg Y & Unger T (2014) Application of the Restriction-Free (RF) cloning for multicomponents assembly. Methods Mol Biol 1116, 73-87.
Benatuil L, Perez JM, Belk J & Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23, 155-159.
Zahradnik J, Kolarova L, Peleg Y, Kolenko P, Svidenska S, Charnavets T, Unger T, Sussman JL & Schneider B (2019) Flexible regions govern promiscuous binding of IL-24 to receptors IL-20R1 and IL-22R1. FEBS J 286, 3858-3873.
Diegelmann J, Beigel F, Zitzmann K, Kaul A, Göke B, Auernhammer CJ, Bartenschlager R, Diepolder HM & Brand S (2010) Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus. PLoS One 5, e15200.
Sharma N, Longjam G & Schreiber G (2016) Type I interferon signaling is decoupled from specific receptor orientation through lenient requirements of the transmembrane domain. J Biol Chem 291, 3371-3384.
Mikulecky P, Zahradnik J, Kolenko P, Cerny J, Charnavets T, Kolarova L, Necasova I, Pham PN & Schneider B (2016) Crystal structure of human interferon-gamma receptor 2 reveals the structural basis for receptor specificity. Acta Cryst 72, 1017-1025.
Peleg Y & Unger T (2008) Application of high-throughput methodologies to the expression of recombinant proteins in E. coli. Methods Mol Biol 426, 197-208.
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH & Ferrin TE (2021) UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Prot Sci 30, 70-82.
Regulation of IL-24/IL-20R2 complex formation using photocaged tyrosines and UV light