De novo developed protein binders mimicking Interferon lambda signaling
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34826176
DOI
10.1111/febs.16300
Knihovny.cz E-zdroje
- Klíčová slova
- IFN-λ, IL-29, cytokine signaling, cytokines, directed evolution, interferon lambda, protein scaffolds, yeast display,
- MeSH
- antivirové látky metabolismus MeSH
- cytokiny metabolismus MeSH
- interferony * metabolismus MeSH
- interleukiny * metabolismus MeSH
- lidé MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- cytokiny MeSH
- interferony * MeSH
- interleukiny * MeSH
We hereby describe the process of design and selection of nonantibody protein binders mimicking cytokine signaling. We chose to mimic signaling of IFN-λ1, type 3 interferon (also known as IL-29) for its novelty and the importance of its biological functions. All four known interferons λ signal through binding to the extracellular domains of IL-28 receptor 1 (IL-28R1) and IL-10 receptor 2 (IL-10R2). Our binders were therefore trained to bind both receptors simultaneously. The bifunctional binder molecules were developed by yeast display, a method of directed evolution. The signaling capacity of the bivalent binders was tested by measuring phosphorylation of the JAK/STAT signaling pathway and production of mRNA of six selected genes naturally induced by IFN- λ1 in human cell lines. The newly developed bivalent binders offer opportunities to study cytokine-related biological functions and modulation of the cell behavior by receptor activation on the cell surfaces alternative to the use of natural IFN-λ.
Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
Zobrazit více v PubMed
Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K & Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 76, 106-110.
Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A & Raghava GPS (2017) THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One 12, e0181748.
Fosgerau K & Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20, 122-128.
Leader B, Baca QJ & Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7, 21-39.
Vazquez-Lombardi R, Phan TG, Zimmermann C, Lowe D, Jermutus L & Christ D (2015) Challenges and opportunities for non-antibody scaffold drugs. Drug Discov Today 20, 1271-1283.
Simeon R & Chen Z (2018) In vitro-engineered non-antibody protein therapeutics. Protein Cell 9, 3-14.
Levy JH & O’Donnell PS (2006) The therapeutic potential of a kallikrein inhibitor for treating hereditary angioedema. Expert Opini Invest Drugs 15, 1077-1090.
Gompels MM, Lock RJ, Abinun M, Bethune CA, Davies G, Grattan C, Fay AC, Longhurst HJ, Morrison L, Price A et al. (2005) C1 inhibitor deficiency: consensus document. Clin Exper Immunol 139, 379-394.
Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H & Donnelly RP (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4, 69-77.
Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J et al. (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4, 63-68.
Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I et al. (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genetics 45, 164-171.
Gad HH, Dellgren C, Hamming OJ, Vends S, Paludan SR & Hartmann R (2009) Interferon-lambda is functionally an interferon but structurally related to the interleukin-10 family. J Biol Chem 284, 20869-20875.
Miknis ZJ, Magracheva E, Li W, Zdanov A, Kotenko SV & Wlodawer A (2010) Crystal structure of human interferon-lambda1 in complex with its high-affinity receptor interferon-lambdaR1. J Mol Biol 404, 650-664.
Logsdon NJ, Deshpande A, Harris BD, Rajashankar KR & Walter MR (2012) Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc Natl Acad Sci USA 109, 12704-12709.
Mendoza JL, Schneider WM, Hoffmann HH, Vercauteren K, Jude KM, Xiong A, Moraga I, Horton TM, Glenn JS, de Jong YP et al. (2017) The IFN-lambda-IFN-lambdaR1-IL-10Rbeta complex reveals structural features underlying type III IFN functional plasticity. Immunity 46, 379-392.
Lubkowski J, Sonmez C, Smirnov SV, Anishkin A, Kotenko SV & Wlodawer A (2018) Crystal structure of the labile complex of IL-24 with the extracellular domains of IL-22R1 and IL-20R2. J Immunol 201, 2082-2093.
Zhang D, Wlodawer A & Lubkowski J (2016) Crystal structure of a complex of the intracellular domain of interferon lambda receptor 1 (IFNLR1) and the FERM/SH2 domains of human JAK1. J Mol Biol 428, 4651-4668.
Kotenko SV & Durbin JE (2017) Contribution of type III interferons to antiviral immunity: location, location, location. J Biol Chem 292, 7295-7303.
Muir AJ, Arora S, Everson G, Flisiak R, George J, Ghalib R, Gordon SC, Gray T, Greenbloom S, Hassanein T et al. (2014) A randomized phase 2b study of peginterferon lambda-1a for the treatment of chronic HCV infection. J Hepatol 61, 1238-1246.
Lazear HM, Schoggins JW & Diamond MS (2019) Shared and distinct functions of type i and type III interferons. Immunity 50, 907-923.
Feld JJ, Kandel C, Biondi MJ, Kozak RA, Zahoor MA, Lemieux C, Borgia SM, Boggild AK, Powis J, McCready J et al. (2021) Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respirat Med 9, 498-510.
Packer MS & Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genetics 16, 379-394.
Schreuder MP, Brekelmans S, van den Ende H & Klis FM (1993) Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9, 399-409.
Zahradník J, Dey D, Marciano S & Schreiber G. (2020) An enhanced yeast display platform demonstrates the binding plasticity under various selection pressures. bioRxiv [PREPRINT].
Li H, Sharma N, General IJ, Schreiber G & Bahar I (2017) Dynamic modulation of binding affinity as a mechanism for regulating interferon signaling. J Mol Biol 429, 2571-2589.
Pham PN, Huliciak M, Biedermannova L, Cerny J, Charnavets T, Fuertes G, Herynek S, Kolarova L, Kolenko P, Pavlicek J et al. (2021) Protein binder (ProBi) as a new class of structurally robust non-antibody protein scaffold for directed evolution. Viruses 13, 190.
Gera N, Hussain M, Wright RC & Rao BM (2011) Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. J Mol Biol 409, 601-616.
Kruziki MA, Bhatnagar S, Woldring DR, Duong VT & Hackel BJ (2015) A 45-amino-acid scaffold mined from the PDB for high-affinity ligand engineering. Chem Biol 22, 946-956.
Hosse RJ, Rothe A & Power BE (2006) A new generation of protein display scaffolds for molecular recognition. Prot Sci 15, 14-27.
Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM & Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1, 755-768.
Horejsi Z, Stach L, Flower TG, Joshi D, Flynn H, Skehel JM, O'Reilly NJ, Ogrodowicz RW, Smerdon SJ & Boulton SJ (2014) Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep 7, 19-26.
Baumann H, Knapp S, Lundbäck T, Ladenstein R & Härd T (1994) Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Nat Struct Biol 1, 808-819.
Boyko KM, Gorbacheva MA, Korzhenevskiy DA, Alekseeva MG, Mavletova DA, Zakharevich NV, Elizarov SM, Rudakova NN, Danilenko VN & Popov VO (2016) Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation. Biochem Biophys Res Commun 477, 595-601.
Cámara B, Liu M, Reynolds J, Shadrin A, Liu B, Kwok K, Simpson P, Weinzierl R, Severinov K, Cota E et al. (2010) T7 phage protein Gp2 inhibits the Escherichia coli RNA polymerase by antagonizing stable DNA strand separation near the transcription start site. Proc Natl Acad Sci USA 107, 2247-2252.
Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J & Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28, 7241-7257.
Peleg Y & Unger T (2014) Application of the Restriction-Free (RF) cloning for multicomponents assembly. Methods Mol Biol 1116, 73-87.
Benatuil L, Perez JM, Belk J & Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23, 155-159.
Zahradnik J, Kolarova L, Peleg Y, Kolenko P, Svidenska S, Charnavets T, Unger T, Sussman JL & Schneider B (2019) Flexible regions govern promiscuous binding of IL-24 to receptors IL-20R1 and IL-22R1. FEBS J 286, 3858-3873.
Diegelmann J, Beigel F, Zitzmann K, Kaul A, Göke B, Auernhammer CJ, Bartenschlager R, Diepolder HM & Brand S (2010) Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus. PLoS One 5, e15200.
Sharma N, Longjam G & Schreiber G (2016) Type I interferon signaling is decoupled from specific receptor orientation through lenient requirements of the transmembrane domain. J Biol Chem 291, 3371-3384.
Mikulecky P, Zahradnik J, Kolenko P, Cerny J, Charnavets T, Kolarova L, Necasova I, Pham PN & Schneider B (2016) Crystal structure of human interferon-gamma receptor 2 reveals the structural basis for receptor specificity. Acta Cryst 72, 1017-1025.
Peleg Y & Unger T (2008) Application of high-throughput methodologies to the expression of recombinant proteins in E. coli. Methods Mol Biol 426, 197-208.
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH & Ferrin TE (2021) UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Prot Sci 30, 70-82.
Regulation of IL-24/IL-20R2 complex formation using photocaged tyrosines and UV light