Increasing recombinant protein production in E. coli via FACS-based selection of N-terminal coding DNA libraries
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO 86652036
Institute of Biotechnology of the Czech Academy of Sciences
LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39726159
PubMed Central
PMC11880969
DOI
10.1111/febs.17376
Knihovny.cz E-zdroje
- Klíčová slova
- DNA libraries, N‐terminal sequences, directed evolution, fluorescence‐activated cell sorting (FACS), protein expression optimization,
- MeSH
- Escherichia coli * genetika metabolismus MeSH
- genová knihovna * MeSH
- klonování DNA metody MeSH
- průtoková cytometrie * MeSH
- rekombinantní proteiny * genetika metabolismus biosyntéza MeSH
- zelené fluorescenční proteiny * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rekombinantní proteiny * MeSH
- zelené fluorescenční proteiny * MeSH
Here, we present a previously undescribed approach to modify N-terminal sequences of recombinant proteins to increase their production yield in Escherichia coli. Prior research has demonstrated that the nucleotides immediately following the start codon can significantly influence protein expression. However, the impact of these sequences is construct-specific and is not universally applicable to all proteins. Most of the previous research has been limited to selecting from a few rationally designed sequences. In contrast, we used a directed evolution-based methodology, screening large numbers of diversified sequences derived from DNA libraries coding for the N-termini of investigated proteins. To facilitate the identification of cells with increased expression of the target construct, we cloned a GFP gene at the C-terminus of the expressed genes and used fluorescent activated cell sorting (FACS) to separate cells based on their fluorescence. By following this systematic workflow, we successfully elevated the yield of soluble recombinant proteins of multiple constructs up to over 30-fold.
Institute of Biotechnology Czech Academy of Sciences BIOCEV Prague Czech Republic
Structural Proteomics Unit Weizmann Institute of Science Rehovot Israel
Zobrazit více v PubMed
Rosano GL & Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5, 172. PubMed PMC
Overton TW (2014) Recombinant protein production in bacterial hosts. Drug Discov Today 19, 590–601. PubMed
Gopal GJ & Kumar A (2013) Strategies for the production of recombinant protein in Escherichia coli . Protein J 32, 419–425. PubMed
Jia B & Jeon CO (2016) High‐throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 6, 160196. PubMed PMC
Makrides SC (1996) Strategies for achieving high‐level expression of genes in Escherichia coli . Microbiol Rev 60, 512–538. PubMed PMC
Bivona L, Zou ZC, Stutzman N & Sun PD (2010) Influence of the second amino acid on recombinant protein expression. Protein Expr Purif 74, 248–256. PubMed PMC
Goodman DB, Church GM & Kosuri S (2013) Causes and effects of N‐terminal codon bias in bacterial genes. Science 342, 475–479. PubMed
Gutierrez G, Marquez L & Marin A (1996) Preference for guanosine at first codon position in highly expressed Escherichia coli genes. A relationship with translational efficiency. Nucleic Acids Res 24, 2525–2527. PubMed PMC
Ojima‐Kato T, Nagai S & Nakano H (2017) N‐terminal SKIK peptide tag markedly improves expression of difficult‐to‐express proteins in Escherichia coli and Saccharomyces cerevisiae . J Biosci Bioeng 123, 540–546. PubMed
Stenstrom CM, Jin HN, Major LL, Tate WP & Isaksson LA (2001) Codon bias at the 3′‐side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli . Gene 263, 273–284. PubMed
Thangadurai C, Suthakaran P, Barfal P, Anandaraj B, Pradhan SN, Boneya HK, Ramalingam S & Murugan V (2008) Rare codon priority and its position specificity at the 5′ of the gene modulates heterologous protein expression in Escherichia coli . Biochem Biophys Res Commun 376, 647–652. PubMed
Verma M, Choi J, Cottrell KA, Lavagnino Z, Thomas EN, Pavlovic‐Djuranovic S, Szczesny P, Piston DW, Zaher HS, Puglisi JD et al. (2019) A short translational ramp determines the efficiency of protein synthesis. Nature Comm 10, 5774. PubMed PMC
Stenstrom CM & Isaksson LA (2002) Influences on translation initiation and early elongation by the messenger RNA region flanking the initiation codon at the 3′ side. Gene 288, 1–8. PubMed
Allert M, Cox JC & Hellinga HW (2010) Multifactorial determinants of protein expression in prokaryotic open Reading frames. J Mol Biol 402, 905–918. PubMed PMC
Yu ZB & Jin JP (2007) Removing the regulatory N‐terminal domain of cardiac troponin I diminishes incompatibility during bacterial expression. Arch Biochem Biophys 461, 138–145. PubMed PMC
Charneski CA & Hurst LD (2013) Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol 11, e1001508. PubMed PMC
Looman AC, Bodlaender J, Comstock LJ, Eaton D, Jhurani P, Deboer HA & Vanknippenberg PH (1987) Influence of the codon following the Aug initiation codon on the expression of a modified Lacz gene in Escherichia coli . EMBO J 6, 2489–2492. PubMed PMC
Ojima‐Kato T, Nishikawa Y, Furukawa Y, Kojima T & Nakano H (2023) Nascent MSKIK peptide cancels ribosomal stalling by arrest peptides in Escherichia coli . J Biol Chem 299, 104676. PubMed PMC
Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361, 13–37. PubMed
Tuller T, Waldman YY, Kupiec M & Ruppin E (2010) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci USA 107, 3645–3650. PubMed PMC
Del Campo C, Bartholomaus A, Fedyunin I & Ignatova Z (2015) Secondary structure across the bacterial transcriptome reveals versatile roles in mRNA regulation and function. PLoS Genet 11, e1005613. PubMed PMC
Keller TE, Mis SD, Jia KE & Wilke CO (2012) Reduced mRNA secondary‐structure stability near the start codon indicates functional genes in prokaryotes. Genome Biol Evol 4, 80–88. PubMed PMC
Katz L & Burge CB (2003) Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res 13, 2042–2051. PubMed PMC
Kudla G, Murray AW, Tollervey D & Plotkin JB (2009) Coding‐sequence determinants of gene expression in Escherichia coli . Science 324, 255–258. PubMed PMC
de Smit MH & van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87, 7668–7672. PubMed PMC
Bhandari BK, Lim CS & Gardner PP (2021) TISIGNER.Com: web services for improving recombinant protein production. Nucleic Acids Res 49(W1), W654–W661. PubMed PMC
Gu W, Zhou T & Wilke CO (2010) A universal trend of reduced mRNA stability near the translation‐initiation site in prokaryotes and eukaryotes. PLoS Comput Biol 6, e1000664. PubMed PMC
Zhou T & Wilke CO (2011) Reduced stability of mRNA secondary structure near the translation‐initiation site in dsDNA viruses. BMC Evol Biol 11, 59. PubMed PMC
dos Reis M, Savva R & Wernisch L (2004) Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32, 5036–5044. PubMed PMC
Pop C, Rouskin S, Ingolia NT, Han L, Phizicky EM, Weissman JS & Koller D (2014) Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol Syst Biol 10, 770. PubMed PMC
Chen GFT & Inouye M (1990) Suppression of the negative effect of minor arginine codons on gene‐expression ‐ preferential usage of minor codons within the 1st 25 codons of the Escherichia‐Coli genes. Nucleic Acids Res 18, 1465–1473. PubMed PMC
Ikemura T (1985) Codon usage and transfer‐Rna content in unicellular and multicellular organisms. Mol Biol Evol 2, 13–34. PubMed
Ikemura T (1981) Correlation between the abundance of Escherichia coli transfer‐Rnas and the occurrence of the respective codons in its protein genes – a proposal for a synonymous codon choice that is optimal for the Escherichia coli translational system. J Mol Biol 151, 389–409. PubMed
Zamora‐Romo E, Cruz‐Vera LR, Vivanco‐Dominguez S, Magos‐Castro MA & Guarneros G (2007) Efficient expression of gene variants that harbour AGA codons next to the initiation codon. Nucleic Acids Res 35, 5966–5974. PubMed PMC
de Valdivia EIG & Isaksson LA (2004) A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli . Nucleic Acids Res 32, 5198–5205. PubMed PMC
Puri N, Appa Rao KB, Menon S, Panda AK, Tiwari G, Garg LC & Totey SM (1999) Effect of the codon following the ATG start site on the expression of ovine growth hormone in Escherichia coli . Protein Expr Purif 17, 215–223. PubMed
Cambray G, Guimaraes JC & Arkin AP (2018) Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli . Nat Biotechnol 36, 1005‐+. PubMed
Pham PN, Huliciak M, Biedermannova L, Cerny J, Charnavets T, Fuertes G, Herynek S, Kolarova L, Kolenko P, Pavlicek J et al. (2021) Protein binder (ProBi) as a new class of structurally robust non‐antibody protein scaffold for directed evolution. Viruses 13, 190. PubMed PMC
Huliciak M, Biedermanová L, Berdár D, Herynek S, Kolárová L, Tomala J, Mikulecky P & Schneider B (2023) Combined in vitro and cell‐based selection display method producing specific binders against IL‐9 receptor in high yields. FEBS J 290, 2993–3005. PubMed
Crameri A, Whitehorn EA, Tate E & Stemmer WPC (1996) Improved green fluorescence protein by molecular evolution using DNA shuffling. Nat Biotechnol 14, 5–319. PubMed
Fukuda H, Arai M & Kuwajima K (2000) Folding of green fluorescent protein and the cycle3 mutant. Biochemistry 39, 12025–12032. PubMed
Rasband WS (1997. ‐2018) ImageJ. U.S. National Institutes of Health, Bethesda, MA, USA. https://imagej.nih.gov/ij/
Unger T, Jacobovitch Y, Dantes A, Bernheim R & Peleg Y (2010) Applications of the restriction free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 172, 34–44. PubMed
Takara Bio Inc. USA (2024) In‐Fusion® Snap Assembly User Manual. https://www.takarabio.com/documents/User%20Manual/In/In‐Fusion%20Snap%20Assembly%20User%20Manual.pdf
New England Biolabs (2024) KLD Enzyme Mix Reaction Protocol (M0554). https://www.neb.com/en/protocols/2017/03/31/kld‐enzyme‐mix‐reaction‐protocol‐m0554