Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends

. 2021 Jan 05 ; 10 (1) : . [epub] 20210105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33466242

Grantová podpora
720325 H2020 Marie Skłodowska-Curie Actions

Pesticides have been extensively used in agriculture to protect crops and enhance their yields, indicating the need to monitor for their toxic residues in foodstuff. To achieve that, chromatographic methods coupled to mass spectrometry is the common analytical approach, combining low limits of detection, wide linear ranges, and high accuracy. However, these methods are also quite expensive, time-consuming, and require highly skilled personnel, indicating the need to seek for alternatives providing simple, low-cost, rapid, and on-site results. In this study, we critically review the available screening methods for pesticide residues on the basis of optical detection during the period 2016-2020. Optical biosensors are commonly miniaturized analytical platforms introducing the point-of-care (POC) era in the field. Various optical detection principles have been utilized, namely, colorimetry, fluorescence (FL), surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). Nanomaterials can significantly enhance optical detection performance and handheld platforms, for example, handheld SERS devices can revolutionize testing. The hyphenation of optical assays to smartphones is also underlined as it enables unprecedented features such as one-click results using smartphone apps or online result communication. All in all, despite being in an early stage facing several challenges, i.e., long sample preparation protocols or interphone variation results, such POC diagnostics pave a new road into the food safety field in which analysis cost will be reduced and a more intensive testing will be achieved.

Zobrazit více v PubMed

Kim K.-H., Kabir E., Jahan S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017;575:525–535. doi: 10.1016/j.scitotenv.2016.09.009. PubMed DOI

World Health Organization . The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009. World Health Organization; Geneva, Switzerland: 2010.

Sulaiman N.S., Rovina K., Joseph V.M. Classification, extraction and current analytical approaches for detection of pesticides in various food products. J. Consum. Prot. Food Saf. 2019;14:209–221. doi: 10.1007/s00003-019-01242-4. DOI

Jayaraj R., Megha P., Sreedev P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016;9:90–100. doi: 10.1515/intox-2016-0012. PubMed DOI PMC

Chopra A.K., Sharma M.K., Chamoli S. Bioaccumulation of organochlorine pesticides in aquatic system—An overview. Environ. Monit. Assess. 2011;173:905–916. doi: 10.1007/s10661-010-1433-4. PubMed DOI

Patočka J., Cabal J., Kuča K., Jun D. Oxime reactivation of acetylcholinesterase inhibited by toxic phosphorus esters: In vitro kinetics and thermodynamics. J. Appl. Biomed. 2005;3:91–99. doi: 10.32725/jab.2005.011. DOI

Lin J.-N., Lin C.-L., Lin M.-C., Lai C.-H., Lin H.-H., Yang C.-H., Kao C.-H. Increased risk of dementia in patients with acute organophosphate and carbamate poisoning: A nationwide population-based cohort study. Medicine. 2015;94:e1187. doi: 10.1097/MD.0000000000001187. PubMed DOI PMC

Gupta R.C., Crissman J.W. Chapter 42—Agricultural Chemicals. In: Haschek W.M., Rousseaux C.G., Wallig M.A., editors. Haschek and Rousseaux’s Handbook of Toxicologic Pathology. 3rd ed. Academic Press; Boston, MA, USA: 2013. pp. 1349–1372.

Tsagkaris A.S., Nelis J.L.D., Ross G.M.S., Jafari S., Guercetti J., Kopper K., Zhao Y., Rafferty K., Salvador J.P., Migliorelli D., et al. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TrAC Trends Anal. Chem. 2019;121:115688. doi: 10.1016/j.trac.2019.115688. DOI

Stachniuk A., Fornal E. Liquid Chromatography-Mass Spectrometry in the Analysis of Pesticide Residues in Food. Food Anal. Methods. 2016;9:1654–1665. doi: 10.1007/s12161-015-0342-0. DOI

Hakme E., Lozano A., Uclés S., Fernández-Alba A.R. Further improvements in pesticide residue analysis in food by applying gas chromatography triple quadrupole mass spectrometry (GC-QqQ-MS/MS) technologies. Anal. Bioanal. Chem. 2018;410:5491–5506. doi: 10.1007/s00216-017-0723-x. PubMed DOI

Mrzlikar M., Heath D., Heath E., Markelj J., Borovšak A.K., Prosen H. Investigation of neonicotinoid pesticides in Slovenian honey by LC-MS/MS. LWT. 2019;104:45–52. doi: 10.1016/j.lwt.2019.01.017. DOI

Hou X., Han M., Dai X., Yang X., Yi S. A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography-tandem mass spectrometry. Food Chem. 2013;138:1198–1205. doi: 10.1016/j.foodchem.2012.11.089. PubMed DOI

Hamamoto K., Iwatsuki K., Akama R., Koike R. Rapid multiresidue determination of pesticides in livestock muscle and liver tissue via modified QuEChERS sample preparation and LC-MS/MS. Food Addit. Contam. Part A. 2017;34:1162–1171. doi: 10.1080/19440049.2017.1319075. PubMed DOI

Mezcua M., Malato O., García-Reyes J.F., Molina-Díaz A., Fernández-Alba A.R. Accurate-Mass Databases for Comprehensive Screening of Pesticide Residues in Food by Fast Liquid Chromatography Time-of-Flight Mass Spectrometry. Anal. Chem. 2009;81:913–929. doi: 10.1021/ac801411t. PubMed DOI

Sun F., Tan H., Li Y., De Boevre M., Zhang H., Zhou J., Li Y., Yang S. An integrated data-dependent and data-independent acquisition method for hazardous compounds screening in foods using a single UHPLC-Q-Orbitrap run. J. Hazard. Mater. 2021;401:123266. doi: 10.1016/j.jhazmat.2020.123266. PubMed DOI

Musatadi M., González-Gaya B., Irazola M., Prieto A., Etxebarria N., Olivares M., Zuloaga O. Focused ultrasound-based extraction for target analysis and suspect screening of organic xenobiotics in fish muscle. Sci. Total Environ. 2020;740:139894. doi: 10.1016/j.scitotenv.2020.139894. PubMed DOI

Vargas-Pérez M., Domínguez I., González F.J.E., Frenich A.G. Application of full scan gas chromatography high resolution mass spectrometry data to quantify targeted-pesticide residues and to screen for additional substances of concern in fresh-food commodities. J. Chromatogr. A. 2020;1622:461118. doi: 10.1016/j.chroma.2020.461118. PubMed DOI

Nelis J.L.D., Tsagkaris A.S., Zhao Y., Lou-Franco J., Nolan P., Zhou H., Cao C., Rafferty K., Hajslova J., Elliott C.T., et al. The end user sensor tree: An end-user friendly sensor database. Biosens. Bioelectron. 2019;130:245–253. doi: 10.1016/j.bios.2019.01.055. PubMed DOI

Fang L., Liao X., Jia B., Shi L., Kang L., Zhou L., Kong W. Recent progress in immunosensors for pesticides. Biosens. Bioelectron. 2020;164:112255. doi: 10.1016/j.bios.2020.112255. PubMed DOI

Cao J., Wang M., Yu H., She Y., Cao Z., Ye J., Abd El-Aty A.M., Hacımüftüoğlu A., Wang J., Lao S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. J. Agric. Food Chem. 2020;68:7298–7315. doi: 10.1021/acs.jafc.0c01962. PubMed DOI

Capoferri D., Della Pelle F., Del Carlo M., Compagnone D. Affinity sensing strategies for the detection of pesticides in food. Foods. 2018;7:148. doi: 10.3390/foods7090148. PubMed DOI PMC

Nelis J., Elliott C., Campbell K. “The smartphone’s guide to the galaxy”: In situ analysis in space. Biosensors. 2018;8:96. doi: 10.3390/bios8040096. PubMed DOI PMC

Nelis J.L.D., Tsagkaris A.S., Dillon M.J., Hajslova J., Elliott C.T. Smartphone-based optical assays in the food safety field. TrAC Trends Anal. Chem. 2020;129:115934. doi: 10.1016/j.trac.2020.115934. PubMed DOI PMC

Authority E.F.S. The 2014 European Union report on pesticide residues in food. EFSA J. 2016;14:e04611. doi: 10.2903/j.efsa.2016.4611. PubMed DOI PMC

Authority E.F.S. The 2015 European Union report on pesticide residues in food. EFSA J. 2017;15:e04791. PubMed PMC

Authority E.F.S. European Food Safety Authority The 2016 European Union report on pesticide residues in food. EFSA J. 2018;16:e05348. PubMed PMC

Authority E.F.S. The 2017 European Union report on pesticide residues in food. EFSA J. 2019;17:e05743. PubMed PMC

Medina-Pastor P., Triacchini G. The 2018 European Union report on pesticide residues in food. EFSA J. 2020;18:e06057. PubMed PMC

EFSA Statement on the available outcomes of the human health assessment in the context of the pesticides peer review of the active substance chlorpyrifos. EFSA J. 2019;17:e05809. PubMed PMC

Van Klaveren J.D., Kennedy M.C., Moretto A., Verbeke W., van der Voet H., Boon P.E. The ACROPOLIS project: Its aims, achievements, and way forward. Food Chem. Toxicol. 2015;79:1–4. doi: 10.1016/j.fct.2015.03.006. PubMed DOI

Jin L., Hao Z., Zheng Q., Chen H., Zhu L., Wang C., Liu X., Lu C. A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food. Anal. Chim. Acta. 2020;1100:215–224. doi: 10.1016/j.aca.2019.11.067. PubMed DOI

Jang I., Carrão D.B., Menger R.F., de Oliveira A.R.M., Henry C.S. Pump-Free Microfluidic Rapid Mixer Combined with a Paper-Based Channel. ACS Sens. 2020;5:2230–2238. doi: 10.1021/acssensors.0c00937. PubMed DOI

Tsagkaris A.S., Pulkrabova J., Hajslova J., Filippini D. A Hybrid Lab-on-a-Chip Injector System for Autonomous Carbofuran Screening. Sensors. 2019;19:5579. doi: 10.3390/s19245579. PubMed DOI PMC

Arduini F., Forchielli M., Scognamiglio V., Nikolaevna K.A., Moscone D. Organophosphorous pesticide detection in olive oil by using a miniaturized, easy-to-use, and cost-effective biosensor combined with QuEChERS for sample clean-up. Sensors. 2017;17:34. doi: 10.3390/s17010034. PubMed DOI PMC

Wu L., Li G., Xu X., Zhu L., Huang R., Chen X. Application of nano-ELISA in food analysis: Recent advances and challenges. TrAC Trends Anal. Chem. 2019;113:140–156. doi: 10.1016/j.trac.2019.02.002. DOI

Hongsibsong S., Prapamontol T., Xu T., Hammock B.D., Wang H., Chen Z.-J., Xu Z.-L. Monitoring of the organophosphate pesticide chlorpyrifos in vegetable samples from local markets in Northern Thailand by developed immunoassay. Int. J. Environ. Res. Public Health. 2020;17:4723. doi: 10.3390/ijerph17134723. PubMed DOI PMC

Ivanov Y. Development of MNPs based enzyme immuno-sorbent analysis for the determination of organophosphorus pesticides in milk. Open Biotechnol. J. 2019;13:146–154. doi: 10.2174/187407070190130146. DOI

He J., Tao X., Wang K., Ding G., Li J., Li Q.X., Gee S.J., Hammock B.D., Xu T. One-step immunoassay for the insecticide carbaryl using a chicken single-chain variable fragment (scFv) fused to alkaline phosphatase. Anal. Biochem. 2019;572:9–15. doi: 10.1016/j.ab.2019.02.022. PubMed DOI

Watanabe E., Miyake S. Direct determination of neonicotinoid insecticides in an analytically challenging crop such as Chinese chives using selective ELISAs. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. 2018;53:707–712. doi: 10.1080/03601234.2018.1480154. PubMed DOI

Esteve-Turrillas F.A., Agulló C., Abad-Somovilla A., Mercader J.V., Abad-Fuentes A. Fungicide multiresidue monitoring in international wines by immunoassays. Food Chem. 2016;196:1279–1286. doi: 10.1016/j.foodchem.2015.10.102. PubMed DOI

Tsagkaris A.S., Uttl L., Pulkrabova J., Hajslova J. Screening of Carbamate and Organophosphate Pesticides in Food Matrices Using an Affordable and Simple Spectrophotometric Acetylcholinesterase Assay. Appl. Sci. 2020;10:565. doi: 10.3390/app10020565. DOI

Tsagkaris A.S., Migliorelli D., Uttl L., Filippini D., Pulkrabova J., Hajslova J. A microfluidic paper-based analytical device (μPAD) with smartphone readout for chlorpyrifos-oxon screening in human serum. Talanta. 2020;222:121535. doi: 10.1016/j.talanta.2020.121535. PubMed DOI

Halámek E., Kobliha Z., Pitschmann V. Analysis of Chemical Warfare Agents. Univerzita Obrany; Brno, Czech Republic: 2009.

Yang X., Dai J., Yang L., Ma M., Zhao S.-J., Chen X.-G., Xiao H. Oxidation pretreatment by calcium hypochlorite to improve the sensitivity of enzyme inhibition-based detection of organophosphorus pesticides. J. Sci. Food Agric. 2018;98:2624–2631. doi: 10.1002/jsfa.8755. PubMed DOI

Pohanka M., Karasova J.Z., Kuca K., Pikula J. Multichannel spectrophotometry for analysis of organophosphate paraoxon in beverages. Turk. J. Chem. 2010;34:91–98.

Watanabe E., Miyake S., Yogo Y. Review of Enzyme-Linked Immunosorbent Assays (ELISAs) for Analyses of Neonicotinoid Insecticides in Agro-environments. J. Agric. Food Chem. 2013;61:12459–12472. doi: 10.1021/jf403801h. PubMed DOI

Pohanka M. Biosensors and bioassays based on lipases, principles and applications, a review. Molecules. 2019;24:616. doi: 10.3390/molecules24030616. PubMed DOI PMC

Mishra G.K., Sharma V., Mishra R.K. Electrochemical aptasensors for food and environmental safeguarding: A review. Biosensors. 2018;8:28. doi: 10.3390/bios8020028. PubMed DOI PMC

Lan L., Yao Y., Ping J., Ying Y. Recent Progress in Nanomaterial-Based Optical Aptamer Assay for the Detection of Food Chemical Contaminants. ACS Appl. Mater. Interfaces. 2017;9:23287–23301. doi: 10.1021/acsami.7b03937. PubMed DOI

Augusto F., Hantao L.W., Mogollón N.G.S., Braga S.C.G.N. New materials and trends in sorbents for solid-phase extraction. TrAC Trends Anal. Chem. 2013;43:14–23. doi: 10.1016/j.trac.2012.08.012. DOI

Nery E.W., Kubota L.T. Evaluation of enzyme immobilization methods for paper-based devices—A glucose oxidase study. J. Pharm. Biomed. Anal. 2016;117:551–559. doi: 10.1016/j.jpba.2015.08.041. PubMed DOI

Koczula K.M., Gallotta A. Lateral flow assays. Essays Biochem. 2016;60:111–120. PubMed PMC

Lan J., Sun W., Chen L., Zhou H., Fan Y., Diao X., Wang B., Zhao H. Simultaneous and rapid detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations using lateral-flow immunochromatographic assay. Food Agric. Immunol. 2020;31:165–175. doi: 10.1080/09540105.2019.1708272. DOI

Sankar K., Lenisha D., Janaki G., Juliana J., Kumar R.S., Selvi M.C., Srinivasan G. Digital image-based quantification of chlorpyrifos in water samples using a lipase embedded paper based device. Talanta. 2020;208:120408. doi: 10.1016/j.talanta.2019.120408. PubMed DOI

Whitesides G.M. The origins and the future of microfluidics. Nature. 2006;442:368–373. doi: 10.1038/nature05058. PubMed DOI

Rapp B. In: Microfluidics: Modeling, Mechanics and Mathematics. Holt S., editor. Elsevier; Amsterdam, The Netherlands: 2016.

Suska A., Filippini D. Autonomous lab-on-a-chip generic architecture for disposables with integrated actuation. Sci. Rep. 2019;9:20320. doi: 10.1038/s41598-019-55111-z. PubMed DOI PMC

Xu B., Guo J., Fu Y., Chen X., Guo J. A review on microfluidics in the detection of food pesticide residues. Electrophoresis. 2020;41:821–832. doi: 10.1002/elps.201900209. PubMed DOI

Nouanthavong S., Nacapricha D., Henry C.S., Sameenoi Y. Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst. 2016;141:1837–1846. doi: 10.1039/C5AN02403J. PubMed DOI

Bala R., Kumar M., Bansal K., Sharma R.K., Wangoo N. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens. Bioelectron. 2016;85:445–449. doi: 10.1016/j.bios.2016.05.042. PubMed DOI

Guo L., Li Z., Chen H., Wu Y., Chen L., Song Z., Lin T. Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Anal. Chim. Acta. 2017;967:59–63. doi: 10.1016/j.aca.2017.02.028. PubMed DOI

Li X., Cui H., Zeng Z. A simple colorimetric and fluorescent sensor to detect organophosphate pesticides based on adenosine triphosphate-modified gold nanoparticles. Sensors. 2018;18:4302. doi: 10.3390/s18124302. PubMed DOI PMC

Li H., Yan X., Lu G., Su X. Carbon dot-based bioplatform for dual colorimetric and fluorometric sensing of organophosphate pesticides. Sens. Actuators B Chem. 2018;260:563–570. doi: 10.1016/j.snb.2017.12.170. DOI

Zeng L., Zhou D., Wu J., Liu C., Chen J. A target-induced and equipment-free biosensor for amplified visual detection of pesticide acetamiprid with high sensitivity and selectivity. Anal. Methods. 2019;11:1168–1173. doi: 10.1039/C8AY02513D. DOI

Nsibande S.A., Forbes P.B.C. Fluorescence detection of pesticides using quantum dot materials—A review. Anal. Chim. Acta. 2016;945:9–22. doi: 10.1016/j.aca.2016.10.002. PubMed DOI

Liu B., Zhuang J., Wei G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano. 2020;7:2195–2213. doi: 10.1039/D0EN00449A. DOI

Kalyani N., Goel S., Jaiswal S. On-site sensing of pesticides using point-of-care biosensors: A review. Environ. Chem. Lett. 2020:1–10. doi: 10.1007/s10311-020-01070-1. DOI

Korram J., Dewangan L., Karbhal I., Nagwanshi R., Vaishanav S.K., Ghosh K.K., Satnami M.L. CdTe QD-based inhibition and reactivation assay of acetylcholinesterase for the detection of organophosphorus pesticides. RSC Adv. 2020;10:24190–24202. doi: 10.1039/D0RA03055D. PubMed DOI PMC

Wang P., Li H., Hassan M.M., Guo Z., Zhang Z.-Z., Chen Q. Fabricating an Acetylcholinesterase Modulated UCNPs-Cu2+ Fluorescence Biosensor for Ultrasensitive Detection of Organophosphorus Pesticides-Diazinon in Food. J. Agric. Food Chem. 2019;67:4071–4079. doi: 10.1021/acs.jafc.8b07201. PubMed DOI

Hu W., Chen Q., Li H., Ouyang Q., Zhao J. Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au nanoparticles. Biosens. Bioelectron. 2016;80:398–404. doi: 10.1016/j.bios.2016.02.001. PubMed DOI

Hou J., Dong G., Tian Z., Lu J., Wang Q., Ai S., Wang M. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system. Food Chem. 2016;202:81–87. doi: 10.1016/j.foodchem.2015.11.134. PubMed DOI

Wu X., Song Y., Yan X., Zhu C., Ma Y., Du D., Lin Y. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron. 2017;94:292–297. doi: 10.1016/j.bios.2017.03.010. PubMed DOI

Tan G., Zhao Y., Wang M., Chen X., Wang B., Li Q.X. Ultrasensitive quantitation of imidacloprid in vegetables by colloidal gold and time-resolved fluorescent nanobead traced lateral flow immunoassays. Food Chem. 2020;311:126055. doi: 10.1016/j.foodchem.2019.126055. PubMed DOI

Arvand M., Mirroshandel A.A. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Food Chem. 2019;280:115–122. doi: 10.1016/j.foodchem.2018.12.069. PubMed DOI

Wang X., Hou T., Dong S., Liu X., Li F. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide. Biosens. Bioelectron. 2016;77:644–649. doi: 10.1016/j.bios.2015.10.034. PubMed DOI

Li H., Dong B., Dou L., Yu W., Yu X., Wen K., Ke Y., Shen J., Wang Z. Fluorescent lateral flow immunoassay for highly sensitive detection of eight anticoagulant rodenticides based on cadmium-free quantum dot-encapsulated nanospheres. Sens. Actuators B Chem. 2020;324:128771. doi: 10.1016/j.snb.2020.128771. DOI

Špačková B., Wrobel P., Bocková M., Homola J. Optical Biosensors Based on Plasmonic Nanostructures: A Review. Proc. IEEE. 2016;104:2380–2408. doi: 10.1109/JPROC.2016.2624340. DOI

Ross G.M.S., Bremer M.G.E.G., Wichers J.H., Van Amerongen A., Nielen M.W.F. Rapid antibody selection using surface plasmon resonance for high-speed and sensitive hazelnut lateral flow prototypes. Biosensors. 2018;8:130. doi: 10.3390/bios8040130. PubMed DOI PMC

Pundir C.S., Malik A. Preety Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019;140:111348. doi: 10.1016/j.bios.2019.111348. PubMed DOI

Mahmoudpour M., Dolatabadi J.E.N., Torbati M., Homayouni-Rad A. Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions. Biosens. Bioelectron. 2019;127:72–84. doi: 10.1016/j.bios.2018.12.023. PubMed DOI

Huang Y.H., Ho H.P., Kong S.K., Kabashin A. V Phase-sensitive surface plasmon resonance biosensors: Methodology, instrumentation and applications. Ann. Phys. 2012;524:637–662. doi: 10.1002/andp.201200203. DOI

Mohammadzadeh-Asl S., Keshtkar A., Dolatabadi J.E.N., de la Guardia M. Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance. Biosens. Bioelectron. 2018;110:118–131. doi: 10.1016/j.bios.2018.03.051. PubMed DOI

Soler M., Huertas C.S., Lechuga L.M. Label-free plasmonic biosensors for point-of-care diagnostics: A review. Expert Rev. Mol. Diagn. 2019;19:71–81. doi: 10.1080/14737159.2019.1554435. PubMed DOI

Wu S., Li D., Gao Z., Wang J. Controlled etching of gold nanorods by the Au(III)-CTAB complex, and its application to semi-quantitative visual determination of organophosphorus pesticides. Microchim. Acta. 2017;184:4383–4391. doi: 10.1007/s00604-017-2468-9. DOI

Shrivastav A.M., Usha S.P., Gupta B.D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosens. Bioelectron. 2016;79:150–157. doi: 10.1016/j.bios.2015.11.095. PubMed DOI

Guo Y., Liu R., Liu Y., Xiang D., Liu Y., Gui W., Li M., Zhu G. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples. Sci. Total Environ. 2018;613–614:783–791. doi: 10.1016/j.scitotenv.2017.09.157. PubMed DOI

Li Q., Dou X., Zhao X., Zhang L., Luo J., Xing X., Yang M. A gold/Fe3O4 nanocomposite for use in a surface plasmon resonance immunosensor for carbendazim. Microchim. Acta. 2019;186:313. doi: 10.1007/s00604-019-3402-0. PubMed DOI

Hirakawa Y., Yamasaki T., Watanabe E., Okazaki F., Murakami-Yamaguchi Y., Oda M., Iwasa S., Narita H., Miyake S. Development of an Immunosensor for Determination of the Fungicide Chlorothalonil in Vegetables, Using Surface Plasmon Resonance. J. Agric. Food Chem. 2015;63:6325–6330. doi: 10.1021/acs.jafc.5b01980. PubMed DOI

Li Q., Dou X., Zhang L., Zhao X., Luo J., Yang M. Oriented assembly of surface plasmon resonance biosensor through staphylococcal protein A for the chlorpyrifos detection. Anal. Bioanal. Chem. 2019;411:6057–6066. doi: 10.1007/s00216-019-01990-0. PubMed DOI

Boyaci I.H., Temiz H.T., Geniş H.E., Soykut E.A., Yazgan N.N., Güven B., Uysal R.S., Bozkurt A.G., İlaslan K., Torun O. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv. 2015;5:56606–56624. doi: 10.1039/C4RA12463D. DOI

Li X., Yang T., Song Y., Zhu J., Wang D., Li W. Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sens. Actuators B Chem. 2019;283:230–238. doi: 10.1016/j.snb.2018.11.112. DOI

Gao F., Hu Y., Chen D., Li-Chan E.C.Y., Grant E., Lu X. Determination of Sudan I in paprika powder by molecularly imprinted polymers–thin layer chromatography–surface enhanced Raman spectroscopic biosensor. Talanta. 2015;143:344–352. doi: 10.1016/j.talanta.2015.05.003. PubMed DOI

Lin Z., He L. Recent Advance in SERS techniques for food safety and quality analysis: A brief review. Curr. Opin. Food Sci. 2019;28:82–87. doi: 10.1016/j.cofs.2019.10.001. DOI

Yaseen T., Pu H., Sun D.-W. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends. Trends Food Sci. Technol. 2018;72:162–174. doi: 10.1016/j.tifs.2017.12.012. DOI

Hoppmann E.P., Wei W.Y., White I.M. Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods. 2013;63:219–224. doi: 10.1016/j.ymeth.2013.07.010. PubMed DOI

Gong Z., Wang C., Pu S., Wang C., Cheng F., Wang Y., Fan M. Rapid and direct detection of illicit dyes on tainted fruit peel using a PVA hydrogel surface enhanced Raman scattering substrate. Anal. Methods. 2016;8:4816–4820. doi: 10.1039/C6AY00233A. DOI

Lin S., Lin X., Han S., Liu Y., Hasi W., Wang L. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core–shell nanospheres for reliable quantitative SERS measurements. Anal. Chim. Acta. 2020;1108:167–176. doi: 10.1016/j.aca.2020.02.034. PubMed DOI

Lin S., Lin X., Liu Y., Zhao H., Hasi W., Wang L. Self-assembly of Au@Ag core–shell nanocubes embedded with an internal standard for reliable quantitative SERS measurements. Anal. Methods. 2018;10:4201–4208. doi: 10.1039/C8AY01369A. DOI

Li X., Zhang S., Yu Z., Yang T. Surface-enhanced Raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles. Appl. Spectrosc. 2014;68:483–487. doi: 10.1366/13-07080. PubMed DOI

Fales A.M., Vo-Dinh T. Silver embedded nanostars for SERS with internal reference (SENSIR) J. Mater. Chem. C. 2015;3:7319–7324. doi: 10.1039/C5TC01296A. DOI

Xie J., Li L., Khan I.M., Wang Z., Ma X. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020;231:118104. doi: 10.1016/j.saa.2020.118104. PubMed DOI

Yan M., She Y., Cao X., Ma J., Chen G., Hong S., Shao Y., Abd El-Aty A.M., Wang M., Wang J. A molecularly imprinted polymer with integrated gold nanoparticles for surface enhanced Raman scattering based detection of the triazine herbicides, prometryn and simetryn. Microchim. Acta. 2019;186:1–9. doi: 10.1007/s00604-019-3254-7. PubMed DOI

Cui H., Li S., Deng S., Chen H., Wang C. Flexible, Transparent, and Free-Standing Silicon Nanowire SERS Platform for in Situ Food Inspection. ACS Sens. 2017;2:386–393. doi: 10.1021/acssensors.6b00712. PubMed DOI

Huang S., Yan W., Liu M., Hu J. Detection of difenoconazole pesticides in pak choi by surface-enhanced Raman scattering spectroscopy coupled with gold nanoparticles. Anal. Methods. 2016;8:4755–4761. doi: 10.1039/C6AY00513F. DOI

Wang C., Wu X., Dong P., Chen J., Xiao R. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Biosens. Bioelectron. 2016;86:944–950. doi: 10.1016/j.bios.2016.06.082. PubMed DOI

Tognaccini L., Ricci M., Gellini C., Feis A., Smulevich G., Becucci M. Surface enhanced Raman spectroscopy for in-field detection of pesticides: A test on dimethoate residues in water and on olive leaves. Molecules. 2019;24:292. doi: 10.3390/molecules24020292. PubMed DOI PMC

Weng S., Wang F., Dong R., Qiu M., Zhao J., Huang L., Zhang D. Fast and Quantitative Analysis of Ediphenphos Residue in Rice Using Surface-Enhanced Raman Spectroscopy. J. Food Sci. 2018;83:1179–1185. doi: 10.1111/1750-3841.14103. PubMed DOI

Wang K., Huang M., Chen J., Lin L., Kong L., Liu X., Wang H., Lin M. A “drop-wipe-test” SERS method for rapid detection of pesticide residues in fruits. J. Raman Spectrosc. 2018;49:493–498. doi: 10.1002/jrs.5308. DOI

Kanchi S., Sabela M.I., Mdluli P.S., Bisetty K. Smartphone based bioanalytical and diagnosis applications: A review. Biosens. Bioelectron. 2018;102:136–149. doi: 10.1016/j.bios.2017.11.021. PubMed DOI

Li X., Li H., Ma W., Guo Z., Li X., Song S., Tang H., Li X., Zhang Q. Development of precise GC-EI-MS method to determine the residual fipronil and its metabolites in chicken egg. Food Chem. 2019;281:85–90. doi: 10.1016/j.foodchem.2018.12.041. PubMed DOI

Dekker S., Isgor P.K., Feijten T., Segerink L.I., Odijk M. From chip-in-a-lab to lab-on-a-chip: A portable Coulter counter using a modular platform. Microsyst. Nanoeng. 2018;4:1–8. doi: 10.1038/s41378-018-0034-1. PubMed DOI PMC

Keçili R., Büyüktiryaki S., Hussain C.M. Handbook of Nanomaterials in Analytical Chemistry. Elsevier; Amsterdam, The Netherlands: 2020. 8—Micro total analysis systems with nanomaterials; pp. 185–198.

Ross G.M.S., Filippini D., Nielen M.W.F., Salentijn G.I.J. Interconnectable solid-liquid protein extraction unit and chip-based dilution for multiplexed consumer immunodiagnostics. Anal. Chim. Acta. 2020;1140:190–198. doi: 10.1016/j.aca.2020.10.018. PubMed DOI PMC

Nelis J.L.D., Bura L., Zhao Y., Burkin K.M., Rafferty K., Elliott C.T., Campbell K. The Efficiency of Color Space Channels to Quantify Color and Color Intensity Change in Liquids, pH Strips, and Lateral Flow Assays with Smartphones. Sensors. 2019;19:5104. doi: 10.3390/s19235104. PubMed DOI PMC

Ross G., Salentijn G.I.J., Nielen M.W.F. A critical comparison between flow-through and lateral flow immunoassay formats for visual and smartphone-based multiplex allergen detection. Biosensors. 2019;9:143. doi: 10.3390/bios9040143. PubMed DOI PMC

Nelis J.L.D., Zhao Y., Bura L., Rafferty K., Elliott C.T., Campbell K. A Randomized Combined Channel Approach for the Quantification of Color- And Intensity-Based Assays with Smartphones. Anal. Chem. 2020;92:7852–7860. doi: 10.1021/acs.analchem.0c01099. PubMed DOI

Guo J., Wong J.X.H., Cui C., Li X., Yu H.-Z. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Analyst. 2015;140:5518–5525. doi: 10.1039/C5AN00874C. PubMed DOI

Zhao Y., Elliott C., Zhou H., Rafferty K. Spectral Illumination Correction: Achieving Relative Color Constancy Under the Spectral Domain; Proceedings of the 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT); Louisville, KY, USA. 6–8 December 2018; pp. 690–695.

Cheng N., Song Y., Fu Q., Du D., Luo Y., Wang Y., Xu W., Lin Y. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens. Bioelectron. 2018;117:75–83. doi: 10.1016/j.bios.2018.06.002. PubMed DOI PMC

Montali L., Calabretta M.M., Lopreside A., D’Elia M., Guardigli M., Michelini E. Multienzyme chemiluminescent foldable biosensor for on-site detection of acetylcholinesterase inhibitors. Biosens. Bioelectron. 2020;162:112232. doi: 10.1016/j.bios.2020.112232. PubMed DOI

Cheng N., Shi Q., Zhu C., Li S., Lin Y., Du D. Pt–Ni(OH)2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides. Biosens. Bioelectron. 2019;142:111498. doi: 10.1016/j.bios.2019.111498. PubMed DOI

Wei J., Yang L., Luo M., Wang Y., Li P. Nanozyme-assisted technique for dual mode detection of organophosphorus pesticide. Ecotoxicol. Environ. Saf. 2019;179:17–23. doi: 10.1016/j.ecoenv.2019.04.041. PubMed DOI

Wang Y., Zeinhom M.M.A., Yang M., Sun R., Wang S., Smith J.N., Timchalk C., Li L., Lin Y., Du D. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid. Anal. Chem. 2017;89:9339–9346. doi: 10.1021/acs.analchem.7b02139. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...