Smartphone-based optical assays in the food safety field

. 2020 Aug ; 129 () : 115934.

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32904649
Odkazy

PubMed 32904649
PubMed Central PMC7457721
DOI 10.1016/j.trac.2020.115934
PII: S0165-9936(20)30163-1
Knihovny.cz E-zdroje

Smartphone based devices (SBDs) have the potential to revolutionize food safety control by empowering citizens to perform screening tests. To achieve this, it is of paramount importance to understand current research efforts and identify key technology gaps. Therefore, a systematic review of optical SBDs in the food safety sector was performed. An overview of reviewed SBDs is given focusing on performance characteristics as well as image analysis procedures. The state-of-the-art on commercially available SBDs is also provided. This analysis revealed several important technology gaps, the most prominent of which are: (i) the need to reach a consensus regarding optimal image analysis, (ii) the need to assess the effect of measurement variation caused by using different smartphones and (iii) the need to standardize validation procedures to obtain robust data. Addressing these issues will drive the development of SBDs and potentially unlock their massive potential for citizen-based food control.

Zobrazit více v PubMed

Nelis J.L.D., Tsagkaris A.S., Zhao Y., Lou-Franco J., Nolan P., Zhou H., Cao C., Rafferty K., Hajslova J., Elliott C.T., Campbell K. The End user Sensor Tree: an end-user friendly sensor database. Biosens. Bioelectron. 2019;130:245–253. doi: 10.1016/j.bios.2019.01.055. PubMed DOI

Tsagkaris A.S., Nelis J.L.D., Ross G.M.S., Jafari S., Guercetti J., Kopper K., Zhao Y., Rafferty K., Salvador J.P., Migliorelli D., Salentijn G.I.J., Campbell K., Marco M.P., Elliot C.T., Nielen M.W.F., Pulkrabova J., Hajslova J. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TrAC Trends Anal. Chem. 2019;121:115688. doi: 10.1016/j.trac.2019.115688. DOI

Zhang D., Liu Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 2016;75:273–284. doi: 10.1016/j.bios.2015.08.037. PubMed DOI

Nelis J., Elliott C., Campbell K. “The smartphone's guide to the galaxy”: in situ analysis in space. Biosensors. 2018;8 doi: 10.3390/bios8040096. PubMed DOI PMC

Roda A., Michelini E., Zangheri M., Di Fusco M., Calabria D., Simoni P. Smartphone-based biosensors: a critical review and perspectives. TrAC - Trends Anal. Chem. 2016;79:317–325. doi: 10.1016/j.trac.2015.10.019. DOI

Dutta S. Point of care sensing and biosensing using ambient light sensor of smartphone: critical review. TrAC Trends Anal. Chem. 2019;110:393–400. doi: 10.1016/j.trac.2018.11.014. DOI

Rateni G., Dario P., Cavallo F. Smartphone-based food diagnostic technologies: a review. Sensors. 2017;17 doi: 10.3390/s17061453. PubMed DOI PMC

Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gøtzsche P.C., Ioannidis J.P.A., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J. Clin. Epidemiol. 2009;62:e1–e34. doi: 10.1016/j.jclinepi.2009.06.006. PubMed DOI

Li S., Zhang Q., Lu Y., Zhang D., Liu J., Zhu L., Li C., Hu L., Li J., Liu Q. Gold nanoparticles on graphene oxide substrate as sensitive nanoprobes for rapid L-cysteine detection through smartphone-based multimode analysis. ChemistrySelect. 2018;3:10002–10009. doi: 10.1002/slct.201802261. DOI

Gong Y., Zheng Y., Jin B., You M., Wang J., Li X., Lin M., Xu F., Li F. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta. 2019;201:126–133. doi: 10.1016/j.talanta.2019.03.105. PubMed DOI

Y. Zhao, S.Y. Choi, J.L.D. Nelis, H. Zhou, C. Cao, K. Campbell, C. Elliott, K. Rafferty, Smartphone modulated colorimetric reader with color subtraction, (2019) 1–4.

Pérez-Ortega P., Lara-Ortega F.J., Gilbert-López B., Moreno-González D., García-Reyes J.F., Molina-Díaz A. Screening of over 600 pesticides, veterinary drugs, food-packaging contaminants, mycotoxins, and other chemicals in food by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) Food Anal. Methods. 2017;10:1216–1244. doi: 10.1007/s12161-016-0678-0. DOI

Shabeer T.P.A., Jadhav M., Girame R., Hingmire S., Bhongale A., Pudale A., Banerjee K. Targeted screening and safety evaluation of 276 agrochemical residues in raisins using buffered ethyl acetate extraction and liquid chromatography–tandem mass spectrometry analysis. Chemosphere. 2017;184:1036–1042. doi: 10.1016/j.chemosphere.2017.06.086. PubMed DOI

Hernández-Mesa M., García-Campaña A.M. Determination of sulfonylurea pesticide residues in edible seeds used as nutraceuticals by QuEChERS in combination with ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr., A. 2020;1617:460831. doi: 10.1016/j.chroma.2019.460831. PubMed DOI

Keçili R., Büyüktiryaki S., Hussain C.M. 8 - micro total analysis systems with nanomaterials. In: [Mustansar Hussain C., editor. Handb. Nanomater. Anal. Chem. Elsevier; 2020. pp. 185–198. DOI

Tsagkaris A.S., Pulkrabova J., Hajslova J., Filippini D. A hybrid lab-on-a-chip injector system for autonomous carbofuran screening. Sensors. 2019;19 doi: 10.3390/s19245579. PubMed DOI PMC

Nery E.W., Kubota L.T. Evaluation of enzyme immobilization methods for paper-based devices—a glucose oxidase study. J. Pharmaceut. Biomed. Anal. 2016;117:551–559. doi: 10.1016/j.jpba.2015.08.041. PubMed DOI

Xia Y., Si J., Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens. Bioelectron. 2016;77:774–789. PubMed

Soh J.H., Chan H.-M., Ying J.Y. Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today. 2020:100831.

Ross G.M.S., Bremer M.G.E.G., Wichers J.H., Van Amerongen A., Nielen M.W.F. Rapid antibody selection using surface plasmon resonance for high-speed and sensitive hazelnut lateral flow prototypes. Biosensors. 2018;8 doi: 10.3390/bios8040130. PubMed DOI PMC

Ross G.M.S., Salentijn G.I.J., Nielen M.W.F. A critical comparison between flow-through and lateral flow immunoassay formats for visual and smartphone-based multiplex allergen detection. Biosensors. 2019;9 doi: 10.3390/bios9040143. PubMed DOI PMC

Cheng N., Song Y., Fu Q., Du D., Luo Y., Wang Y., Xu W., Lin Y. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens. Bioelectron. 2018;117:75–83. doi: 10.1016/j.bios.2018.06.002. PubMed DOI PMC

Li J., Wang X., Shan Y., Huang H., Jian D., Xue L., Wang S., Liu F. Handheld inkjet printing paper chip based smart tetracycline detector. Micromachines. 2019;10 doi: 10.3390/mi10010027. PubMed DOI PMC

Su K., Qiu X., Fang J., Zou Q., Wang P. An improved efficient biochemical detection method to marine toxins with a smartphone-based portable system—bionic e-Eye. Sensor. Actuator. B Chem. 2017;238:1165–1172. doi: 10.1016/j.snb.2016.02.092. DOI

Nelis J.L.D., Bura L., Zhao Y., Burkin K.M., Rafferty K., Elliott C.T., Campbell K. The efficiency of color space channels to quantify color and color intensity change in liquids, pH strips, and lateral flow assays with smartphones. Sensors. 2019;19 doi: 10.3390/s19235104. PubMed DOI PMC

Mahato K., Chandra P. Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens. Bioelectron. 2019;128:9–16. doi: 10.1016/j.bios.2018.12.006. PubMed DOI

Monošík R., Bezerra dos Santos V., Angnes L. A simple paper-strip colorimetric method utilizing dehydrogenase enzymes for analysis of food components. Anal. Methods. 2015;7:8177–8184. doi: 10.1039/C5AY01556A. DOI

Liu Z., Zhang Y., Xu S., Zhang H., Tan Y., Ma C., Song R., Jiang L., Yi C. A 3D printed smartphone optosensing platform for point-of-need food safety inspection. Anal. Chim. Acta. 2017;966:81–89. doi: 10.1016/j.aca.2017.02.022. PubMed DOI

Jia L., Guo S., Xu J., Chen X., Zhu T., Zhao T. A ratiometric fluorescent nano-probe for rapid and specific detection of tetracycline residues based on a dye-doped functionalized nanoscaled metal–organic framework. Nanomaterials. 2019;9 doi: 10.3390/nano9070976. PubMed DOI PMC

Su K., Pan Y., Wan Z., Zhong L., Fang J., Zou Q., Li H., Wang P. Smartphone-based portable biosensing system using cell viability biosensor for okadaic acid detection. Sensor. Actuator. B Chem. 2017;251:134–143. doi: 10.1016/j.snb.2017.04.036. DOI

Kirk K.A., Andreescu S. Easy-to-Use sensors for field monitoring of copper contamination in water and pesticide-sprayed plants. Anal. Chem. 2019 doi: 10.1021/acs.analchem.9b03385. PubMed DOI

Mohamed A.A., Shalaby A.A. Digital imaging devices as sensors for iron determination. Food Chem. 2019;274:360–367. doi: 10.1016/j.foodchem.2018.09.014. PubMed DOI

Bustamante S.E., Vallejos S., Pascual-Portal B.S., Muñoz A., Mendia A., Rivas B.L., García F.C., García J.M. Polymer films containing chemically anchored diazonium salts with long-term stability as colorimetric sensors. J. Hazard Mater. 2019;365:725–732. doi: 10.1016/j.jhazmat.2018.11.066. PubMed DOI

Guzman J.M.C.C., Tayo L.L., Liu C.-C., Wang Y.-N., Fu L.-M. Rapid microfluidic paper-based platform for low concentration formaldehyde detection. Sensor. Actuator. B Chem. 2018;255:3623–3629. doi: 10.1016/j.snb.2017.09.080. DOI

Adkins J.A., Boehle K., Friend C., Chamberlain B., Bisha B., Henry C.S. Colorimetric and electrochemical bacteria detection using printed paper- and transparency-based analytic devices. Anal. Chem. 2017;89:3613–3621. doi: 10.1021/acs.analchem.6b05009. PubMed DOI

Cheng N., Song Y., Zeinhom M.M.A., Chang Y.-C., Sheng L., Li H., Du D., Li L., Zhu M.-J., Luo Y., Xu W., Lin Y. Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces. 2017;9:40671–40680. doi: 10.1021/acsami.7b12734. PubMed DOI PMC

Shahvar A., Saraji M., Gordan H., Shamsaei D. Combination of paper-based thin film microextraction with smartphone-based sensing for sulfite assay in food samples. Talanta. 2019;197:578–583. doi: 10.1016/j.talanta.2019.01.071. PubMed DOI

Kim S.D., Koo Y., Yun Y. A smartphone-based automatic measurement method for colorimetric pH detection using a color adaptation algorithm. Sensors (Switzerland) 2017:17. doi: 10.3390/s17071604. PubMed DOI PMC

Skandarajah A., Reber C.D., Switz N.A., Fletcher D.A. Quantitative imaging with a mobile phone microscope. PLoS One. 2014;9 doi: 10.1371/journal.pone.0096906. e96906–e96906. PubMed DOI PMC

Fronczek C.F., Park T.S., Harshman D.K., Nicolini A.M., Yoon J.-Y. Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 2014;4:11103–11110. doi: 10.1039/c3ra47688j. DOI

Guo J., Wong J.X.H., Cui C., Li X., Yu H.-Z. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Analyst. 2015;140:5518–5525. doi: 10.1039/c5an00874c. PubMed DOI

Mei Q., Jing H., Li Y., Yisibashaer W., Chen J., Nan Li B., Zhang Y. Smartphone based visual and quantitative assays on upconversional paper sensor. Biosens. Bioelectron. 2016;75:427–432. doi: 10.1016/j.bios.2015.08.054. PubMed DOI

Nelis J.L.D., Zhao Y., Bura L., Rafferty K., Elliott C.T., Campbell K. A randomised combined channel approach for the quantification of colour and intensity based assays with smartphones. Anal. Chem. 2020 doi: 10.1021/acs.analchem.0c01099. PubMed DOI

Yu L., Shi Z., Fang C., Zhang Y., Liu Y., Li C. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens. Bioelectron. 2015;69:307–315. doi: 10.1016/j.bios.2015.02.035. PubMed DOI

Hosu O., Lettieri M., Papara N., Ravalli A., Sandulescu R., Cristea C., Marrazza G. Colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis. Talanta. 2019;204:525–532. doi: 10.1016/j.talanta.2019.06.041. PubMed DOI

Park Y.M., Kim C.H., Lee S.J., Lee M.-K. Multifunctional hand-held sensor using electronic components embedded in smartphones for quick PCR screening. Biosens. Bioelectron. 2019;141 doi: 10.1016/j.bios.2019.111415. PubMed DOI

Álvarez-DIduk R., Orozco J., Merkoçi A. Paper strip-embedded graphene quantum dots: a screening device with a smartphone readout. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-01134-3. PubMed DOI PMC

Sergeyeva T., Yarynka D., Piletska E., Linnik R., Zaporozhets O., Brovko O., Piletsky S., El’skaya A. Development of a smartphone-based biomimetic sensor for aflatoxin B1 detection using molecularly imprinted polymer membranes. Talanta. 2019;201:204–210. doi: 10.1016/j.talanta.2019.04.016. PubMed DOI

Chen Y., Fu Q., Li D., Xie J., Ke D., Song Q., Tang Y., Wang H. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone. Anal. Bioanal. Chem. 2017;409:6567–6574. doi: 10.1007/s00216-017-0605-2. PubMed DOI

Spreitzer R. Proc. 4th ACM Work. Secur. Priv. Smartphones Mob. Devices, Scottsdale, AZ, USA. 2014. PIN Skimming : exploiting the ambient-light sensor in mobile devices; pp. 51–62.

adafruit . 2019. Commercial ALS Sensor.https://learn.adafruit.com/adafruit-veml7700

Russell S.M., Doménech-Sánchez A., De La Rica R. Augmented reality for real-time detection and interpretation of colorimetric signals generated by paper-based biosensors. ACS Sens. 2017;2:848–853. doi: 10.1021/acssensors.7b00259. PubMed DOI

Yang N., Xie L.-L., Pan C., Yuan M.-F., Tao Z.-H., Mao H.-P. A novel on-chip solution enabling rapid analysis of melamine and chloramphenicol in milk by smartphones. J. Food Process. Eng. 2019;42 doi: 10.1111/jfpe.12976. DOI

Creative Commons Corporation . 1996. Creative Commons Licence.https://creativecommons.org/licenses/by/4.0/legalcode

Huang L., Zhu Q., Zhu J., Luo L., Pu S., Zhang W., Zhu W., Sun J., Wang J. Portable colorimetric detection of mercury(II) based on a non-noble metal nanozyme with tunable activity. Inorg. Chem. 2019;58:1638–1646. doi: 10.1021/acs.inorgchem.8b03193. PubMed DOI

Liu C.-C., Wang Y.-N., Fu L.-M., Chen K.-L. Microfluidic paper-based chip platform for benzoic acid detection in food. Food Chem. 2018;249:162–167. doi: 10.1016/j.foodchem.2018.01.004. PubMed DOI

Jin B., Yang Y., He R., Park Y.I., Lee A., Bai D., Li F., Lu T.J., Xu F., Lin M. Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sensor. Actuator. B Chem. 2018;276:48–56. doi: 10.1016/j.snb.2018.08.074. DOI

Wu Y.-Y., Liu B.-W., Huang P., Wu F.-Y. A novel colorimetric aptasensor for detection of chloramphenicol based on lanthanum ion–assisted gold nanoparticle aggregation and smartphone imaging. Anal. Bioanal. Chem. 2019 doi: 10.1007/s00216-019-02149-7. PubMed DOI

Erdemir S., Malkondu S. On-site and low-cost detection of cyanide by simple colorimetric and fluorogenic sensors: smartphone and test strip applications. Talanta. 2020;207 doi: 10.1016/j.talanta.2019.120278. PubMed DOI

Sicard C., Glen C., Aubie B., Wallace D., Jahanshahi-Anbuhi S., Pennings K., Daigger G.T., Pelton R., Brennan J.D., Filipe C.D.M. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015;70:360–369. doi: 10.1016/j.watres.2014.12.005. PubMed DOI

Wu F., Wang M. A portable smartphone-based sensing system using a 3D-printed chip for on-site biochemical assays. Sensors (Switzerland) 2018:18. doi: 10.3390/s18114002. PubMed DOI PMC

Sankar K., Lenisha D., Janaki G., Juliana J., Kumar R.S., Selvi M.C., Srinivasan G. Digital image-based quantification of chlorpyrifos in water samples using a lipase embedded paper based device. Talanta. 2020;208 doi: 10.1016/j.talanta.2019.120408. PubMed DOI

r-biopharm, RIDA®SMART APP 2016. https://food.r-biopharm.com/products/rida-smart-app-mycotoxin/

Neogen, Raptor Solo 2019. https://www.neogen.com/solutions/mycotoxins/raptor-solo/

MyDX, OrganaDX 2014. https://www.mydxlife.com/organadx/

MyDX, AquaDX 2017. https://www.mydxlife.com/aqua-sensor/

ZeuLab, Test4all 2018. https://www.zeulab.com/products.html/veterinary-residues/202-test4all-antibiotic-control-milk.html

Abingdon Health. AppDX Smartphone Reader 2018. https://www.abingdonhealth.com/contract-services/lateral-flow-reader/appdx/

ChemBio, Cube-Reader https://www.optricon.de/cube-reader.php (n.d.)

EU Project LIFE AskREACH, SCAN4CHEM APP. 2019. https://www.askreach.eu/scan4chem-app-for-checking-substances-of-very-high-concern-in-products-launched/

EU Project FoodSmartPhone. 2017. http://www.foodsmartphone.eu/

PhasmaFOOD https://phasmafood.eu/index.php/ (n.d.)

Nelis J.L.D., Migliorelli D., Jafari S., Generelli S., Lou-Franco J., Salvador J.P., Marco M.P., Cao C., Elliott C.T., Campbell K. The benefits of carbon black, gold and magnetic nanomaterials for point-of-harvest electrochemical quantification of domoic acid. Microchim. Acta. 2020;187 doi: 10.1007/s00604-020-4150-x. PubMed DOI PMC

Tsagkaris A.S., Uttl L., Pulkrabova J., Hajslova J. Screening of carbamate and organophosphate pesticides in food matrices using an affordable and simple spectrophotometric acetylcholinesterase assay. Appl. Sci. 2020;10:565.

Tsakanikas P., Fengou L.-C., Manthou E., Lianou A., Panagou E.Z., Nychas G.-J.E. A unified spectra analysis workflow for the assessment of microbial contamination of ready-to-eat green salads: comparative study and application of non-invasive sensors. Comput. Electron. Agric. 2018;155:212–219.

Groß B., Hintschich S., Tošic M., Bourgos P., Tsoumanis K., Bertani F.R. OCM 2019-Optical Charact. Mater. Conf. Proc. KIT Scientific Publishing; 2019. PhasmaFOOD-A miniaturized multi-sensor solution for rapid, non-destructive food quality assessment; p. 99.

Bertani F.R., Businaro L., Gambacorta L., Mencattini A., Brenda D., Di Giuseppe D., De Ninno A., Solfrizzo M., Martinelli E., Gerardino A. Optical detection of aflatoxins B in grained almonds using fluorescence spectroscopy and machine learning algorithms. Food Contr. 2020;112:107073. doi: 10.1016/j.foodcont.2019.107073. DOI

Zeng F., Mou T., Zhang C., Huang X., Wang B., Ma X., Guo J. Paper-based SERS analysis with smartphones as Raman spectral analyzers. Analyst. 2019;144:137–142. doi: 10.1039/c8an01901k. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...