ASSURED Point-of-Need Food Safety Screening: A Critical Assessment of Portable Food Analyzers

. 2021 Jun 17 ; 10 (6) : . [epub] 20210617

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34204284

Standard methods for chemical food safety testing in official laboratories rely largely on liquid or gas chromatography coupled with mass spectrometry. Although these methods are considered the gold standard for quantitative confirmatory analysis, they require sampling, transferring the samples to a central laboratory to be tested by highly trained personnel, and the use of expensive equipment. Therefore, there is an increasing demand for portable and handheld devices to provide rapid, efficient, and on-site screening of food contaminants. Recent technological advancements in the field include smartphone-based, microfluidic chip-based, and paper-based devices integrated with electrochemical and optical biosensing platforms. Furthermore, the potential application of portable mass spectrometers in food testing might bring the confirmatory analysis from the laboratory to the field in the future. Although such systems open new promising possibilities for portable food testing, few of these devices are commercially available. To understand why barriers remain, portable food analyzers reported in the literature over the last ten years were reviewed. To this end, the analytical performance of these devices and the extent they match the World Health Organization benchmark for diagnostic tests, i.e., the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end-users (ASSURED) criteria, was evaluated critically. A five-star scoring system was used to assess their potential to be implemented as food safety testing systems. The main findings highlight the need for concentrated efforts towards combining the best features of different technologies, to bridge technological gaps and meet commercialization requirements.

Zobrazit více v PubMed

World Health Organization (WHO) WHO Estimates of the Global Burden of Foodborne Diseases: Executive Summary. WHO; Genenva, Switzerland: 2015.

Haughey S.A., Chevallier O.P., McVey C., Elliott C.T. Laboratory Investigations into the Cause of Multiple Serious and Fatal Food Poisoning Incidents in Uganda during 2019. Food Control. 2021;121:107648. doi: 10.1016/j.foodcont.2020.107648. DOI

Wang X., Wang S., Cai Z. The Latest Developments and Applications of Mass Spectrometry in Food-Safety and Quality Analysis. TrAC Trends Anal. Chem. 2013;52:170–185. doi: 10.1016/j.trac.2013.08.005. DOI

Griesche C., Baeumner A.J. Biosensors to support sustainable agriculture and food safety. TrAC Trends Anal. Chem. 2020;128:115906. doi: 10.1016/j.trac.2020.115906. DOI

Lu Y., Yang Q., Wu J. Recent Advances in Biosensor-integrated enrichment methods for preconcentrating and detecting the low-abundant analytes in agriculture and food samples. TrAC Trends Anal. Chem. 2020;128:115914. doi: 10.1016/j.trac.2020.115914. DOI

European Commisdion . Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results. European Commission; Brussels, Belgium: 2002.

Ma X., Ouyang Z. Ambient ionization and miniature mass spectrometry system for chemical and biological analysis. TrAC Trends Anal. Chem. 2016;85:10–19. doi: 10.1016/j.trac.2016.04.009. PubMed DOI PMC

Kosack C.S., Page A.L., Klatser P.R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 2017;95:639–645. doi: 10.2471/BLT.16.187468. PubMed DOI PMC

Chen C., Wang J. Optical Biosensors: An exhaustive and comprehensive review. Analyst. 2020;145:1605–1628. doi: 10.1039/C9AN01998G. PubMed DOI

Lechuga L.M. Comprehensive Analytical Chemistry. Volume 44. Elsevier; Amsterdam, The Netherlands: 2005. Optical biosensors; pp. 209–250.

Yang Z., Albrow-Owen T., Cai W., Hasan T. Miniaturization of optical spectrometers. Science. 2021;371 doi: 10.1126/science.abe0722. PubMed DOI

Martinez A.W., Phillips S.T., Butte M.J., Whitesides G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. Engl. 2007;46:1318–1320. doi: 10.1002/anie.200603817. PubMed DOI PMC

Fu L.-M., Wang Y.-N. Detection methods and applications of microfluidic paper-based analytical devices. TrAC Trends Anal. Chem. 2018;107:196–211. doi: 10.1016/j.trac.2018.08.018. DOI

Carrell C., Kava A., Nguyen M., Menger R., Munshi Z., Call Z., Nussbaum M., Henry C. Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectron. Eng. 2019;206:45–54. doi: 10.1016/j.mee.2018.12.002. DOI

Choi J.R., Hu J., Tang R., Gong Y., Feng S., Ren H., Wen T., Li X., Wan Abas W.A.B., Pingguan-Murphy B., et al. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip. 2016;16:611–621. doi: 10.1039/C5LC01388G. PubMed DOI

Ross G.M.S., Bremer M.G.E.G., Wichers J.H., Van Amerongen A., Nielen M.W.F. Rapid antibody selection using surface plasmon resonance for high-speed and sensitive hazelnut lateral flow prototypes. Biosensors. 2018;8:130. doi: 10.3390/bios8040130. PubMed DOI PMC

Tsagkaris A.S., Uttl L., Pulkrabova J., Hajslova J. Screening of carbamate and organophosphate pesticides in food matrices using an affordable and simple spectrophotometric acetylcholinesterase assay. Appl. Sci. 2020;10:565. doi: 10.3390/app10020565. DOI

Zhao Y., Wang H., Zhang P., Sun C., Wang X., Wang X., Yang R., Wang C., Zhou L. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Sci. Rep. 2016;6:21342. doi: 10.1038/srep21342. PubMed DOI PMC

Tsagkaris A.S., Pulkrabova J., Hajslova J., Filippini D. A Hybrid lab-on-a-chip injector system for autonomous carbofuran screening. Sensors. 2019;19:5579. doi: 10.3390/s19245579. PubMed DOI PMC

Nelis J.L.D., Tsagkaris A.S., Dillon M.J., Hajslova J., Elliott C.T. Smartphone-Based Optical Assays in the Food Safety Field. TrAC Trends Anal. Chem. 2020;129:115934. doi: 10.1016/j.trac.2020.115934. PubMed DOI PMC

Liu W., Guo Y., Luo J., Kou J., Zheng H., Li B., Zhang Z. A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015;141:51–57. doi: 10.1016/j.saa.2015.01.020. PubMed DOI

Tseng S.-Y., Li S.-Y., Yi S.-Y., Sun A.Y., Gao D.-Y., Wan D. Food quality monitor: Paper-based plasmonic sensors prepared through reversal nanoimprinting for rapid detection of biogenic amine odorants. ACS Appl. Mater. Interfaces. 2017;9:17306–17316. doi: 10.1021/acsami.7b00115. PubMed DOI

Picó Y. Chemical Analysis of Food: Techniques and Applications. 1st ed. Elsevier; Amsterdam, The Netherlands: 2012.

Stroock A.D. Optical Biosensors. Elsevier; Amsterdam, The Netherlands: 2008. Microfluidics; pp. 659–681.

Connelly J.T., Kondapalli S., Skoupi M., Parker J.S.L., Kirby B.J., Baeumner A.J. Micro-total analysis system for virus detection: Microfluidic pre-concentration coupled to liposome-based detection. Anal. Bioanal. Chem. 2012;402:315–323. doi: 10.1007/s00216-011-5381-9. PubMed DOI

Soares R.R.G., Novo P., Azevedo A.M., Fernandes P., Aires-Barros M.R., Chu V., Conde J.P. On-chip sample preparation and analyte quantification using a microfluidic aqueous two-phase extraction coupled with an immunoassay. Lab Chip. 2014;14:4284–4294. doi: 10.1039/C4LC00695J. PubMed DOI

Hung T.Q., Chin W.H., Sun Y., Wolff A., Bang D.D. A novel lab-on-chip platform with integrated solid phase pcr and supercritical angle fluorescence (saf) microlens array for highly sensitive and multiplexed pathogen detection. Biosens. Bioelectron. 2017;90:217–223. doi: 10.1016/j.bios.2016.11.028. PubMed DOI

Choi G., Jung J.H., Park B.H., Oh S.J., Seo J.H., Choi J.S., Kim D.H., Seo T.S. A centrifugal direct recombinase polymerase amplification (direct-rpa) microdevice for multiplex and real-time identification of food poisoning bacteria. Lab Chip. 2016;16:2309–2316. doi: 10.1039/C6LC00329J. PubMed DOI

Bhardwaj H., Sumana G., Marquette C.A. A label-free ultrasensitive microfluidic surface plasmon resonance biosensor for aflatoxin b1 detection using nanoparticles integrated gold chip. Food Chem. 2020;307:125530. doi: 10.1016/j.foodchem.2019.125530. PubMed DOI

Joshi S., Annida R.M., Zuilhof H., van Beek T.A., Nielen M.W.F. Analysis of mycotoxins in beer using a portable nanostructured imaging surface plasmon resonance biosensor. J. Agric. Food Chem. 2016;64:8263–8271. doi: 10.1021/acs.jafc.6b04106. PubMed DOI

Sauceda-Friebe J.C., Karsunke X.Y.Z., Vazac S., Biselli S., Niessner R., Knopp D. Regenerable immuno-biochip for screening ochratoxin a in green coffee extract using an automated microarray chip reader with chemiluminescence detection. Anal. Chim. Acta. 2011;689:234–242. doi: 10.1016/j.aca.2011.01.030. PubMed DOI

Wang Y., Gan N., Zhou Y., Li T., Hu F., Cao Y., Chen Y. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Biosens. Bioelectron. 2017;97:100–106. doi: 10.1016/j.bios.2017.05.017. PubMed DOI

Weng X., Neethirajan S. Paper-based microfluidic aptasensor for food safety. J. Food Saf. 2018;38 doi: 10.1111/jfs.12412. DOI

Fernández F., Hegnerová K., Piliarik M., Sanchez-Baeza F., Homola J., Marco M.P. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens. Bioelectron. 2010;26:1231–1238. doi: 10.1016/j.bios.2010.06.012. PubMed DOI

Chalyan T., Potrich C., Schreuder E., Falke F., Pasquardini L., Pederzolli C., Heideman R., Pavesi L. AFM1 detection in milk by fab’ functionalized si3n4 asymmetric mach–zehnder interferometric biosensors. Toxins. 2019;11:409. doi: 10.3390/toxins11070409. PubMed DOI PMC

Nelis J.L.D., Zhao Y., Bura L., Rafferty K., Elliott C.T., Campbell K. A randomized combined channel approach for the quantification of color- and intensity-based assays with smartphones. Anal. Chem. 2020;92:7852–7860. doi: 10.1021/acs.analchem.0c01099. PubMed DOI

Li Z., Li Z., Zhao D., Wen F., Jiang J., Xu D. Smartphone-based visualized microarray detection for multiplexed harmful substances in milk. Biosens. Bioelectron. 2017;87:874–880. doi: 10.1016/j.bios.2016.09.046. PubMed DOI

Ye Y., Wu T., Jiang X., Cao J., Ling X., Mei Q., Chen H., Han D., Xu J.J., Shen Y. Portable smartphone-based QDs for the visual onsite monitoring of fluoroquinolone antibiotics in actual food and environmental samples. ACS Appl. Mater. Interfaces. 2020;12:14552–14562. doi: 10.1021/acsami.9b23167. PubMed DOI

Zhong L., Sun J., Gan Y., Zhou S., Wan Z., Zou Q., Su K., Wang P. Portable smartphone-based colorimetric analyzer with enhanced gold nanoparticles for on-site tests of seafood safety. Anal. Sci. 2019;35:133–140. doi: 10.2116/analsci.18P184. PubMed DOI

Wu Y.-Y., Liu B.-W., Huang P., Wu F.Y. A novel colorimetric aptasensor for detection of chloramphenicol based on lanthanum ion–assisted gold nanoparticle aggregation and smartphone imaging. Anal. Bioanal. Chem. 2019;411:7511–7518. doi: 10.1007/s00216-019-02149-7. PubMed DOI

Hosu O., Lettieri M., Papara N., Ravalli A., Sandulescu R., Cristea C., Marrazza G. Colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis. Talanta. 2019;204:525–532. doi: 10.1016/j.talanta.2019.06.041. PubMed DOI

Guo J., Wong J.X.H., Cui C., Li X., Yu H.Z. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Analyst. 2015;140:5518–5525. doi: 10.1039/C5AN00874C. PubMed DOI

Machado J.M.D., Soares R.R.G., Chu V., Conde J.P. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection. Biosens. Bioelectron. 2018;99:40–46. doi: 10.1016/j.bios.2017.07.032. PubMed DOI

Cheng N., Song Y., Fu Q., Du D., Luo Y., Wang Y., Xu W., Lin Y. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens. Bioelectron. 2018;117:75–83. doi: 10.1016/j.bios.2018.06.002. PubMed DOI PMC

Wang S., Zheng L., Cai G., Liu N., Liao M., Li Y., Zhang X., Lin J. A microfluidic biosensor for online and sensitive detection of salmonella typhimurium using fluorescence labeling and smartphone video processing. Biosens. Bioelectron. 2019;140:111333. doi: 10.1016/j.bios.2019.111333. PubMed DOI

Zeinhom M.M.A., Wang Y., Song Y., Zhu M.-J., Lin Y., Du D. A portable smart-phone device for rapid and sensitive detection of E. Coli O157:H7 in yoghurt and egg. Biosens. Bioelectron. 2018;99:479–485. doi: 10.1016/j.bios.2017.08.002. PubMed DOI

Liu Z., Zhang Y., Xu S., Zhang H., Tan Y., Ma C., Song R., Jiang L., Yi C. A 3D Printed smartphone optosensing platform for point-of-need food safety inspection. Anal. Chim. Acta. 2017;966:81–89. doi: 10.1016/j.aca.2017.02.022. PubMed DOI

Li X., Yang F., Wong J.X.H., Yu H.-Z. Integrated smartphone-app-chip system for on-site parts-per-billion-level colorimetric quantitation of aflatoxins. Anal. Chem. 2017;89:8908–8916. doi: 10.1021/acs.analchem.7b01379. PubMed DOI

Ross G.M.S., Salentijn G.I., Nielen M.W.F. A critical comparison between flow-through and lateral flow immunoassay formats for visual and smartphone-based multiplex allergen detection. Biosensors. 2019;9:143. doi: 10.3390/bios9040143. PubMed DOI PMC

Valand R., Tanna S., Lawson G., Bengtström L. A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020;37:19–38. doi: 10.1080/19440049.2019.1675909. PubMed DOI

Danezis G.P., Tsagkaris A.S., Camin F., Brusic V., Georgiou C.A. Food authentication: Techniques, trends & emerging approaches. TrAC Trends Anal. Chem. 2016;85:123–132. doi: 10.1016/j.trac.2016.02.026. DOI

Crocombe R.A. Portable spectroscopy. Appl. Spectrosc. 2018;72:1701–1751. doi: 10.1177/0003702818809719. PubMed DOI

SCiO—The World’s Only Pocket-Sized NIR Micro Spectrometer. [(accessed on 22 March 2021)]; Available online: https://www.consumerphysics.com/

Lin Z., He L. Recent advance in SERS Techniques for food safety and quality analysis: A brief review. Curr. Opin. Food Sci. 2019;28:82–87. doi: 10.1016/j.cofs.2019.10.001. DOI

Hoppmann E.P., Yu W.W., White I.M. Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods. 2013;63:219–224. doi: 10.1016/j.ymeth.2013.07.010. PubMed DOI

Gong Z., Wang C., Pu S., Wang C., Cheng F., Wang Y., Fan M. Rapid and direct detection of illicit dyes on tainted fruit peel using a pva hydrogel surface enhanced raman scattering substrate. Anal. Methods. 2016;8:4816–4820. doi: 10.1039/C6AY00233A. DOI

Shi Q., Huang J., Sun Y., Deng R., Teng M., Li Q., Yang Y., Hu X., Zhang Z., Zhang G. A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay. Microchim. Acta. 2018;185:3–10. doi: 10.1007/s00604-017-2556-x. PubMed DOI

Fales A.M., Vo-Dinh T. Silver embedded nanostars for SERS with internal reference (SENSIR) J. Mater. Chem. C. 2015;3:7319–7324. doi: 10.1039/C5TC01296A. DOI

Li X., Zhang S., Yu Z., Yang T. Surface-enhanced raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles. Appl. Spectrosc. 2014;68:483–487. doi: 10.1366/13-07080. PubMed DOI

Lin S., Lin X., Liu Y., Zhao H., Hasi W., Wang L. Self-assembly of Au@Ag core–shell nanocubes embedded with an internal standard for reliable quantitative SERS measurements. Anal. Methods. 2018;10:4201–4208. doi: 10.1039/C8AY01369A. DOI

Xie J., Li L., Khan I.M., Wang Z., Ma X. Flexible Paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020;231:118104. doi: 10.1016/j.saa.2020.118104. PubMed DOI

Chen J., Huang M., Kong L., Lin M. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Carbohydr. Polym. 2019;205:596–600. doi: 10.1016/j.carbpol.2018.10.059. PubMed DOI

Moreno V., Adnane A., Salghi R., Zougagh M., Ríos Á. Nanostructured hybrid surface enhancement raman scattering substrate for the rapid determination of sulfapyridine in milk samples. Talanta. 2019;194:357–362. doi: 10.1016/j.talanta.2018.10.047. PubMed DOI

Sánchez M.T., Flores-Rojas K., Guerrero J.E., Garrido-Varo A., Pérez-Marín D. Measurement of pesticide residues in peppers by near-infrared reflectance spectroscopy. Pest Manag. Sci. 2010;66:580–586. doi: 10.1002/ps.1910. PubMed DOI

de Girolamo A., Cervellieri S., Visconti A., Pascale M. Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy. Toxins. 2014;6:3129–3143. doi: 10.3390/toxins6113129. PubMed DOI PMC

Lasch P., Stämmler M., Zhang M., Baranska M., Bosch A., Majzner K. FT-IR hyperspectral imaging and artificial neural network analysis for identification of pathogenic bacteria. Anal. Chem. 2018;90:8896–8904. doi: 10.1021/acs.analchem.8b01024. PubMed DOI

Skolik P., Morais C.L.M., Martin F.L., McAinsh M.R. Attenuated total reflection fourier-transform infrared spectroscopy coupled with chemometrics directly detects pre- and post-symptomatic changes in tomato plants infected with botrytis cinerea. Vib. Spectrosc. 2020;111:103171. doi: 10.1016/j.vibspec.2020.103171. DOI

Yang Y., Zhang Y., He C., Xie M., Luo H., Wang Y., Zhang J. Rapid screen of aflatoxin-contaminated peanut oil using fourier transform infrared spectroscopy combined with multivariate decision tree. Int. J. Food Sci. Technol. 2018;53:2386–2393. doi: 10.1111/ijfs.13831. DOI

Meza-Márquez O.G., Gallardo-Velázquez T., Osorio-Revilla G., Dorantes-Álvarez L. Detection of clenbuterol in beef meat, liver and kidney by mid-infrared spectroscopy (FT-Mid IR) and multivariate analysis. Int. J. Food Sci. Technol. 2012;47:2342–2351. doi: 10.1111/j.1365-2621.2012.03108.x. DOI

Kim J., Kumar R., Bandodkar A.J., Wang J. Advanced materials for printed wearable electrochemical devices: A review. Adv. Electron. Mater. 2017;3:1600260. doi: 10.1002/aelm.201600260. DOI

Gao M., Li L., Song Y. Inkjet printing wearable electronic devices. APL Mater. 2017:2971–2993. doi: 10.1039/C7TC00038C. DOI

Dobbelaere T., Vereecken P.M., Detavernier C. HardwareX A USB-controlled potentiostat/galvanostat for thin-film battery characterization. HardwareX. 2017;2:34–49. doi: 10.1016/j.ohx.2017.08.001. DOI

Dryden M.D.M., Wheeler A.R. DStat: A versatile, open-source potentiostat for electroanalysis and integration. PLoS ONE. 2015:e140349. doi: 10.1371/journal.pone.0140349. PubMed DOI PMC

Ainla A., Mousavi M.P.S., Tsaloglou M., Redston J., Bell G., Ferna M.T. Open-source potentiostat for wireless electrochemical detection with smartphones. Anal. Chem. 2018 doi: 10.1021/acs.analchem.8b00850. PubMed DOI PMC

Ronkainen N.J., Brian H., Heineman W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010:1747–1763. doi: 10.1039/b714449k. PubMed DOI

Zhao Y., Choi S.Y., Lou-Franco J., Nelis J.L.D., Zhou H., Cao C., Campbell K., Elliott C., Rafferty K. Smartphone modulated colorimetric reader with color Subtraction; Proceedings of the IEEE Sensors; Montreal, QC, Canada. 27–30 October 2019;

Nelis J.L.D., Migliorelli D., Jafari S., Generelli S., Lou-Franco J., Salvador J.P., Marco M.P., Cao C., Elliott C.T., Campbell K. The benefits of carbon black, gold and magnetic nanomaterials for point-of-harvest electrochemical quantification of domoic acid. Microchim. Acta. 2020;187:1–11. doi: 10.1007/s00604-020-4150-x. PubMed DOI PMC

Nelis J.L.D., Migliorelli D., Mühlebach L., Generelli S., Stewart L., Elliott C.T., Campbell K. Highly sensitive electrochemical detection of the marine toxins okadaic acid and domoic acid with carbon black modified screen printed electrodes. Talanta. 2021;228:122215. doi: 10.1016/j.talanta.2021.122215. PubMed DOI

Sierra T., Crevillen A.G., Escarpa A. Electrochemical detection based on nanomaterials in ce and microfluidic systems. Electrophoresis. 2019;40:113–123. doi: 10.1002/elps.201800281. PubMed DOI

Huang X., Xu D., Chen J., Liu J., Li Y., Song J., Ma X., Guo J. Smartphone-based analytical biosensors. Analyst. 2018;143:5339–5351. doi: 10.1039/C8AN01269E. PubMed DOI

Nelis J.L.D., Tsagkaris A.S., Zhao Y., Lou-Franco J., Nolan P., Zhou H., Cao C., Rafferty K., Hajslova J., Elliott C.T., et al. The end user sensor tree: An end-user friendly sensor database. Biosens. Bioelectron. 2019;130:245–253. doi: 10.1016/j.bios.2019.01.055. PubMed DOI

Dungchai W., Chailapakul O., Henry C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009;81:5821–5826. doi: 10.1021/ac9007573. PubMed DOI

Nie Z., Nijhuis C.A., Gong J., Chen X., Kumachev A., Martinez A.W., Narovlyansky M., Whitesides G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip. 2010;10:477–483. doi: 10.1039/B917150A. PubMed DOI PMC

Ataide V.N., Mendes L.F., Gama L.I.L.M., de Araujo W.R., Paixão T.R.L.C. Electrochemical paper-based analytical devices: Ten years of development. Anal. Methods. 2020;12:1030–1054. doi: 10.1039/C9AY02350J. DOI

Noviana E., McCord C.P., Clark K.M., Jang I., Henry C.S. Electrochemical paper-based devices: Sensing approaches and progress toward practical applications. Lab Chip. 2020;20:9–34. doi: 10.1039/C9LC00903E. PubMed DOI

de Araujo W.R., Frasson C.M.R., Ameku W.A., Silva J.R., Angnes L., Paixão T.R.L.C. Single-step reagentless laser scribing fabrication of electrochemical paper-based analytical devices. Angew. Chemie Int. Ed. 2017;56:15113–15117. doi: 10.1002/anie.201708527. PubMed DOI

Sun G., Wang P., Ge S., Ge L., Yu J., Yan M. Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosens. Bioelectron. 2014;56:97–103. doi: 10.1016/j.bios.2014.01.001. PubMed DOI

Marín-Barroso E., Messina G.A., Bertolino F.A., Raba J., Pereira S. V Electrochemical immunosensor modified with carbon nanofibers coupled to a paper platform for the determination of gliadins in food samples. Anal. Methods. 2019;11:2170–2178. doi: 10.1039/C9AY00255C. DOI

Vojdani A. Cross-reaction between gliadin and different food and tissue antigens. Food Nutr. Sci. 2013;4:20–32. doi: 10.4236/fns.2013.41005. DOI

Wang Y., Ping J., Ye Z., Wu J., Ying Y. Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of escherichia Coli O157:H. Biosens. Bioelectron. 2013;49:492–498. doi: 10.1016/j.bios.2013.05.061. PubMed DOI

Rattanarat P., Dungchai W., Cate D., Volckens J., Chailapakul O., Henry C.S. Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Anal. Chem. 2014;86:3555–3562. doi: 10.1021/ac5000224. PubMed DOI

Bhardwaj J., Devarakonda S., Kumar S., Jang J. Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sens. Actuators B Chem. 2017;253:115–123. doi: 10.1016/j.snb.2017.06.108. DOI

Ge S., Liu W., Ge L., Yan M., Yan J., Huang J., Yu J. In situ assembly of porous au-paper electrode and functionalization of magnetic silica nanoparticles with HRP via click chemistry for microcystin-LR immunoassay. Biosens. Bioelectron. 2013;49:111–117. doi: 10.1016/j.bios.2013.05.010. PubMed DOI

Arduini F., Cinti S., Caratelli V., Amendola L., Palleschi G., Moscone D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019;126:346–354. doi: 10.1016/j.bios.2018.10.014. PubMed DOI

Cinti S., Basso M., Moscone D., Arduini F. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal. Chim. Acta. 2017;960:123–130. doi: 10.1016/j.aca.2017.01.010. PubMed DOI

Cinti S., Moscone D., Arduini F. Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. Nat. Protoc. 2019;14:2437–2451. doi: 10.1038/s41596-019-0186-y. PubMed DOI

Kant K., Shahbazi M.A., Dave V.P., Ngo T.A., Chidambara V.A., Than L.Q., Bang D.D., Wolff A. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol. Adv. 2018;36:1003–1024. doi: 10.1016/j.biotechadv.2018.03.002. PubMed DOI

Puiu M., Bala C. Microfluidics-integrated biosensing platforms as emergency tools for on-site field detection of foodborne pathogens. TrAC Trends Anal. Chem. 2020;125:115831. doi: 10.1016/j.trac.2020.115831. DOI

Rackus D.G., Shamsi M.H., Wheeler A.R. Electrochemistry, biosensors and microfluidics: A convergence of fields. Chem. Soc. Rev. 2015;44:5320–5340. doi: 10.1039/C4CS00369A. PubMed DOI

Lafleur J.P., Jönsson A., Senkbeil S., Kutter J.P. Recent advances in lab-on-a-chip for biosensing applications. Biosens. Bioelectron. 2016;76:213–233. doi: 10.1016/j.bios.2015.08.003. PubMed DOI

Park Y.M., Lim S.Y., Shin S.J., Kim C.H., Jeong S.W., Shin S.Y., Bae N.H., Lee S.J., Na J., Jung G.Y., et al. A film-based integrated chip for gene amplification and electrochemical detection of pathogens causing foodborne illnesses. Anal. Chim. Acta. 2018;1027:57–66. doi: 10.1016/j.aca.2018.03.061. PubMed DOI

Drechsel L., Schulz M., Von Stetten F., Moldovan C., Zengerle R., Paust N. Electrochemical pesticide detection with autodip—A portable platform for automation of crude sample analyses. Lab Chip. 2015;15:704–710. doi: 10.1039/C4LC01214C. PubMed DOI

EFSA The 2010 European Union Report on Pesticide Residues in Food. EFSA J. 2013;11 doi: 10.2903/j.efsa.2013.3130. PubMed DOI

Uludag Y., Esen E., Kokturk G., Ozer H., Muhammad T., Olcer Z., Basegmez H.I.O., Simsek S., Barut S., Gok M.Y., et al. Lab-on-a-chip based biosensor for the real-time detection of aflatoxin. Talanta. 2016;160:381–388. doi: 10.1016/j.talanta.2016.07.060. PubMed DOI

European Commission . Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. European Commission; Brussels, Belgium: 2006.

Medina-Sánchez M., Mayorga-Martinez C.C., Watanabe T., Ivandini T.A., Honda Y., Pino F., Nakata A., Fujishima A., Einaga Y., Merkoçi A. Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosens. Bioelectron. 2016;75:365–374. doi: 10.1016/j.bios.2015.08.058. PubMed DOI

Panini N.V., Salinas E., Messina G.A., Raba J. Modified paramagnetic beads in a microfluidic system for the determination of zearalenone in feedstuffs samples. Food Chem. 2011;125:791–796. doi: 10.1016/j.foodchem.2010.09.035. DOI

Lin Y., Zhou Q., Tang D., Niessner R., Knopp D. Signal-on photoelectrochemical immunoassay for aflatoxin b1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal. Chem. 2017;89:5637–5645. doi: 10.1021/acs.analchem.7b00942. PubMed DOI

Hervás M., López M.A., Escarpa A. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst. 2011;136:2131–2138. doi: 10.1039/c1an15081b. PubMed DOI

Chen Q., Wang D., Cai G., Xiong Y., Li Y., Wang M., Huo H., Lin J. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics. Biosens. Bioelectron. 2016;86:770–776. doi: 10.1016/j.bios.2016.07.071. PubMed DOI

Olcer Z., Esen E., Muhammad T., Ersoy A., Budak S., Uludag Y. Fast and sensitive detection of mycotoxins in wheat using microfluidics based real-time electrochemical profiling. Biosens. Bioelectron. 2014;62:163–169. doi: 10.1016/j.bios.2014.06.025. PubMed DOI

Freitas T.A., Proença C.A., Baldo T.A., Materón E.M., Wong A., Magnani R.F., Faria R.C. Ultrasensitive immunoassay for detection of citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device. Talanta. 2019;205:120110. doi: 10.1016/j.talanta.2019.07.005. PubMed DOI

De Oliveira T.R., Martucci D.H., Faria R.C. Simple disposable microfluidic device for salmonella typhimurium detection by magneto-immunoassay. Sens. Actuators B Chem. 2018;255:684–691. doi: 10.1016/j.snb.2017.08.075. DOI

Lu L., Gunasekaran S. Dual-Channel ITO-microfluidic electrochemical immunosensor for simultaneous detection of two mycotoxins. Talanta. 2019;194:709–716. doi: 10.1016/j.talanta.2018.10.091. PubMed DOI

Chiriacò M.S., De Feo F., Primiceri E., Monteduro A.G., De Benedetto G.E., Pennetta A., Rinaldi R., Maruccio G. Portable gliadin-immunochip for contamination control on the food production chain. Talanta. 2015;142:57–63. doi: 10.1016/j.talanta.2015.04.040. PubMed DOI

Crew A., Lonsdale D., Byrd N., Pittson R., Hart J.P. A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides. Biosens. Bioelectron. 2011;26:2847–2851. doi: 10.1016/j.bios.2010.11.018. PubMed DOI

Chen J., Zhou Y., Wang D., He F., Rotello V.M., Carter K.R., Watkins J.J., Nugen S.R. UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection. Lab Chip. 2015;15:3086–3094. doi: 10.1039/C5LC00515A. PubMed DOI

Lillehoj P.B., Wei F., Ho C.M. A Self-pumping lab-on-a-chip for rapid detection of botulinum toxin. Lab Chip. 2010;10:2265–2270. doi: 10.1039/c004885b. PubMed DOI

Singh C., Ali M.A., Kumar V., Ahmad R., Sumana G. Functionalized MoS2 nanosheets assembled microfluidic immunosensor for highly sensitive detection of food pathogen. Sens. Actuators B Chem. 2018;259:1090–1098. doi: 10.1016/j.snb.2017.12.094. DOI

Ramalingam S., Chand R., Singh C.B., Singh A. Phosphorene-gold nanocomposite based microfluidic aptasensor for the detection of okadaic acid. Biosens. Bioelectron. 2019;135:14–21. doi: 10.1016/j.bios.2019.03.056. PubMed DOI

Li S., Li J., Luo J., Xu Z., Ma X. A Microfluidic chip containing a molecularly imprinted polymer and a DNA aptamer for voltammetric determination of carbofuran. Microchim. Acta. 2018;185:1–8. doi: 10.1007/s00604-018-2835-1. PubMed DOI

Tan F., Leung P.H.M., Liu Z.B., Zhang Y., Xiao L., Ye W., Zhang X., Yi L., Yang M. A PDMS Microfluidic Impedance Immunosensor for E. Coli O157:H7 and staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sens. Actuators B Chem. 2011;159:328–335. doi: 10.1016/j.snb.2011.06.074. DOI

Mondal K., Ali A., Srivastava S., Malhotra B.D., Sharma A. Sensors and Actuators B: Chemical electrospun functional micro/nanochannels embedded in porous carbon electrodes for microfluidic biosensing. Sens. Actuators B Chem. 2016;229:82–91. doi: 10.1016/j.snb.2015.12.108. DOI

Tian F., Lyu J., Shi J., Tan F., Yang M. A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens. Sens. Actuators B Chem. 2016;225:312–318. doi: 10.1016/j.snb.2015.11.059. DOI

Thiha A., Ibrahim F., Muniandy S., Julian I., Jyan S., Lin K., Fen B., Madou M. All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing platform. Biosens. Bioelectron. 2018;107:145–152. doi: 10.1016/j.bios.2018.02.024. PubMed DOI

Rezazadeh M., Seidi S., Lid M., Pedersen-bjergaard S. Trends in analytical chemistry the modern role of smartphones in analytical chemistry. Trends Anal. Chem. 2019;118:548–555. doi: 10.1016/j.trac.2019.06.019. DOI

Fan Y., Liu J., Wang Y., Luo J., Xu H., Xu S., Cai X. A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices. Biosens. Bioelectron. 2017;95:60–66. doi: 10.1016/j.bios.2017.04.003. PubMed DOI

Xu K., Chen Q., Zhao Y., Ge C., Lin S., Liao J. Cost-effective, wireless, and portable smartphone-based electrochemical system for on-site monitoring and spatial mapping of the nitrite contamination in water. Sens. Actuators B Chem. 2020;319 doi: 10.1016/j.snb.2020.128221. DOI

Liao J., Chang F., Han X., Ge C., Lin S. Wireless water quality monitoring and spatial mapping with disposable whole-copper electrochemical sensors and a smartphone. Sens. Actuators B Chem. 2020;306:127557. doi: 10.1016/j.snb.2019.127557. DOI

Guan T., Huang W., Xu N., Xu Z., Jiang L., Li M., Wei X., Liu Y., Shen X., Li X., et al. Point-of-need detection of microcystin-LR using a smartphone-controlled electrochemical analyzer. Sens. Actuators B Chem. 2019;294:132–140. doi: 10.1016/j.snb.2019.05.028. DOI

Ji D., Liu L., Li S., Chen C., Lu Y., Wu J., Liu Q. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens. Bioelectron. 2017;98:449–456. doi: 10.1016/j.bios.2017.07.027. PubMed DOI

Lin H.-Y., Huang C.-H., Park J., Pathania D., Castro C.M., Fasano A., Weissleder R., Lee H. Integrated magneto-chemical sensor for on-site food allergen detection. ACS Nano. 2017;11:10062–10069. doi: 10.1021/acsnano.7b04318. PubMed DOI

Mishra R.K., Hubble L.J., Martín A., Kumar R., Barfidokht A., Kim J., Musameh M.M., Kyratzis I.L., Wang J. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens. 2017;2:553–561. doi: 10.1021/acssensors.7b00051. PubMed DOI

Barfidokht A., Mishra R.K., Seenivasan R., Liu S., Hubble L.J., Wang J., Hall D.A. Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sens. Actuators B Chem. 2019;296:126422. doi: 10.1016/j.snb.2019.04.053. PubMed DOI PMC

Hipple J.A., Jr. Portable mass spectrometer. Nature. 1942;150:111–112. doi: 10.1038/150111a0. DOI

Yang M., Kim T.-Y., Hwang H.-C., Yi S.-K., Kim D.-H. Developmen of a palm portable mass spectrometer. J. Am. Soc. Mass Spectrom. 2008;19:1442–1448. doi: 10.1016/j.jasms.2008.05.011. PubMed DOI

Ouyang Z., Cooks R.G. Miniature mass spectrometers. Annu. Rev. Anal. Chem. 2009;2:187–214. doi: 10.1146/annurev-anchem-060908-155229. PubMed DOI

Mielczarek P., Silberring J., Smoluch M. Miniaturization in mass spectrometry. Mass Spectrom. Rev. 2019 doi: 10.1002/mas.21614. PubMed DOI

Snyder D.T., Pulliam C.J., Ouyang Z., Cooks R.G. Miniature and fieldable mass spectrometers: Recent advances. Anal. Chem. 2016;88:2–29. doi: 10.1021/acs.analchem.5b03070. PubMed DOI PMC

Da Silva L.C., Pereira I., De Carvalho T.C., Allochio Filho J.F., Romão W., Vaz B.G. Paper Spray ionization and portable mass spectrometers: A review. Anal. Methods. 2019;11:999–1013. doi: 10.1039/C8AY02270D. DOI

Diaz J.A., Giese C.F., Gentry W.R. Portable double-focusing mass-spectrometer system for field gas monitoring. Field Anal. Chem. Technol. 2001;5:156–167. doi: 10.1002/fact.1016. DOI

Bryden W.A., Benson R.C., Eeelberger S.A., Phillips T.E., Cotter R.J., Fenselau C. The Tiny-TOF mass spectrometer for chemical and biological Sensing. Johns Hopkins APL Tech. Dig. 1995;16:296–310. doi: 10.1007/978-94-015-9534-6_10. DOI

Black C., Chevallier O.P., Elliott C.T. The current and potential applications of ambient mass spectrometry in detecting food fraud. TrAC Trends Anal. Chem. 2016;82:268–278. doi: 10.1016/j.trac.2016.06.005. DOI

Guo X.-Y., Huang X.-M., Zhai J.-F., Bai H., Li X.-X., Ma X.-X., Ma Q. Research advances in ambient ionization and miniature mass spectrometry. Chin. J. Anal. Chem. 2019;47:335–346. doi: 10.1016/S1872-2040(19)61145-X. DOI

Huang G., Xu W., Visbal-Onufrak M.A., Ouyang Z., Cooks R.G. Direct analysis of melamine in complex matrices using a handheld mass spectrometer. Analyst. 2010;135:705–711. doi: 10.1039/B923427F. PubMed DOI

European Commission Commission Regulation (EU) No 594/2012 of 5 July 2012 Amending Regulation (EC) 1881/2006 as regards the maximum levels of the contaminants Ochratoxin A, non dioxin-like PCBs and melamine in foodstuffs. Off. J. Eur. Union. 2012;176:43–45.

Soparawalla S., Tadjimukhamedov F.K., Wiley J.S., Ouyang Z., Cooks R.G. In situ analysis of agrochemical residues on fruit using ambient ionization on a handheld mass spectrometer. Analyst. 2011;136:4392–4396. doi: 10.1039/c1an15493a. PubMed DOI

Wiley J.S., Shelley J.T., Cooks R.G. Handheld low-temperature plasma probe for portable “point-and- shoot” ambient ionization mass spectrometry. Anal. Chem. 2013;85:6545–6552. doi: 10.1021/ac4013286. PubMed DOI

Janfelt C., Græsbøll R., Lauritsen F.R. Portable electrospray ionization mass spectrometry (ESI-MS) for analysis of contaminants in the Field. Int. J. Environ. Anal. Chem. 2012;92:397–404. doi: 10.1080/03067319.2011.561341. DOI

Gerbig S., Neese S., Penner A., Spengler B., Schulz S. Real-time food authentication using a miniature mass spectrometer. Anal. Chem. 2017;89:10717–10725. doi: 10.1021/acs.analchem.7b01689. PubMed DOI

Li L., Chen T.C., Ren Y., Hendricks P.I., Cooks R.G., Ouyang Z. Mini 12, miniature mass spectrometer for clinical and other applications—Introduction and characterization. Anal. Chem. 2014;86:2909–2916. doi: 10.1021/ac403766c. PubMed DOI PMC

Pulliam C.J., Bain R.M., Wiley J.S., Ouyang Z., Cooks R.G. Mass spectrometry in the home and garden. J. Am. Soc. Mass Spectrom. 2015;26:224–230. doi: 10.1007/s13361-014-1056-z. PubMed DOI PMC

Ma Q., Bai H., Li W., Wang C., Li X., Cooks R.G., Ouyang Z. Direct identification of prohibited substances in cosmetics and foodstuffs using ambient ionization on a miniature mass spectrometry system. Anal. Chim. Acta. 2016;912:65–73. doi: 10.1016/j.aca.2016.01.031. PubMed DOI PMC

Mini β Miniature Mass Spectrometer. [(accessed on 16 June 2021)]; Available online: http://www.purspec.us/params.

Kang M., Lian R., Zhang X., Li Y., Zhang Y., Zhang Y., Zhang W., Ouyang Z. Rapid and on-site detection of multiple fentanyl compounds by dual-ion trap miniature mass spectrometry system. Talanta. 2020;217:121057. doi: 10.1016/j.talanta.2020.121057. PubMed DOI

Zhang X., Zhang H., Yu K., Li N., Liu Y., Liu X., Zhang H., Yang B., Wu W., Gao J., et al. Rapid monitoring approach for microplastics using portable pyrolysis-mass spectrometry. Anal. Chem. 2020;92:4656–4662. doi: 10.1021/acs.analchem.0c00300. PubMed DOI

Gomez-Rios G.A., Vasiljevic T., Gionfriddo E., Yu M., Pawliszyn J. Towards on-site analysis of complex matrices by solid-phase microextraction-transmission mode coupled to a portable mass spectrometer via direct analysis in real time. Analyst. 2017;142:2928–2935. doi: 10.1039/C7AN00718C. PubMed DOI

Tomkins B.A., Ilgner R.H. Determination of atrazine and four organophosphorus pesticides in ground water using Solid Phase Microextraction (SPME) followed by gas chromatography with selected-ion monitoring. J. Chromatogr. A. 2002;972:183–194. doi: 10.1016/S0021-9673(02)01121-4. PubMed DOI

Hrbek V., Vaclavik L., Elich O., Hajslova J. Authentication of milk and milk-based foods by Direct Analysis in Real Time Ionization–High Resolution Mass Spectrometry (DART–HRMS) Technique: A critical assessment. Food Control. 2014;36:138–145. doi: 10.1016/j.foodcont.2013.08.003. DOI

Blokland M.H., Gerssen A., Zoontjes P.W., Pawliszyn J., Nielen M.W.F. Potential of recent ambient ionization techniques for future food contaminant analysis using (trans)portable mass spectrometry. Food Anal. Methods. 2019;13:706–717. doi: 10.1007/s12161-019-01666-6. DOI

Wright S., Malcolm A., Wright C., O’Prey S., Crichton E., Dash N., Moseley R.W., Zaczek W., Edwards P., Fussell R.J., et al. A Microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer. Anal. Chem. 2015;87:3115–3122. doi: 10.1021/acs.analchem.5b00311. PubMed DOI

Jager J., Gerssen A., Pawliszyn J., Sterk S.S., Nielen M.W.F., Blokland M.H. USB-powered coated blade spray ion source for on-site testing using transportable mass spectrometry. J. Am. Soc. Mass Spectrom. 2020;31:2243–2249. doi: 10.1021/jasms.0c00307. PubMed DOI PMC

Gallo M., Ferrara L., Calogero A., Montesano D., Naviglio D. Relationships between Food and Diseases: What to Know to Ensure Food Safety. Food Res. Int. 2020;137 doi: 10.1016/j.foodres.2020.109414. PubMed DOI

European Commission Commission Regulation (EC) No 149/2008 of 29 January 2008 Amending Regulation (EC) No 396/2005 of the European Parliament and of the Council by Establishing Annexes II, III and IV Setting Maximum Residue Levels for Products Covered by Annex I Thereto. Off. J. Eur. Union. 2008;58:1–398.

Geballa-Koukoula A., Gerssen A., Nielen M.W.F. From smartphone lateral flow immunoassay screening to direct MS Analysis: Development and validation of a semi-quantitative Direct Analysis in Real-Time Mass Spectrometric (DART-MS) approach to the analysis of deoxynivalenol. Sensors. 2021;21:1861. doi: 10.3390/s21051861. PubMed DOI PMC

Geballa-Koukoula A., Gerssen A., Nielen M.W.F. Direct analysis of lateral flow immunoassays for deoxynivalenol using electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 2020 doi: 10.1007/s00216-020-02890-4. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...