• This record comes from PubMed

Regulated and Non-Regulated Mycotoxin Detection in Cereal Matrices Using an Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UHPLC-HRMS) Method

. 2021 Nov 05 ; 13 (11) : . [epub] 20211105

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Validation Study

Cereals represent a widely consumed food commodity that might be contaminated by mycotoxins, resulting not only in potential consumer health risks upon dietary exposure but also significant financial losses due to contaminated batch disposal. Thus, continuous improvement of the performance characteristics of methods to enable an effective monitoring of such contaminants in food supply is highly needed. In this study, an ultra-high-performance liquid chromatography coupled to a hybrid quadrupole orbitrap mass analyzer (UHPLC-q-Orbitrap MS) method was optimized and validated in wheat, maize and rye flour matrices. Nineteen analytes were monitored, including both regulated mycotoxins, e.g., ochratoxin A (OTA) or deoxynivalenol (DON), and non-regulated mycotoxins, such as ergot alkaloids (EAs), which are analytes that are expected to be regulated soon in the EU. Low limits of quantification (LOQ) at the part per trillion level were achieved as well as wide linear ranges (four orders of magnitude) and recovery rates within the 68-104% range. Overall, the developed method attained fit-for-purpose results and it highlights the applicability of high-resolution mass spectrometry (HRMS) detection in mycotoxin food analysis.

See more in PubMed

Tao Y., Jia C., Jing J., Zhang J., Yu P., He M., Wu J., Chen L., Zhao E. Occurrence and dietary risk assessment of 37 pesticides in wheat fields in the suburbs of Beijing, China. Food Chem. 2021;350:129245. doi: 10.1016/j.foodchem.2021.129245. PubMed DOI

Organisation for Economic Co-Operation Development-Food and Agricultural Organization (OECD-FAO) Agricultural Outlook 2018–2027; OECD Publishing; Paris, France: 2018.

Ruan F., Chen J.G., Chen L., Lin X.T., Zhou Y., Zhu K.J., Guo Y.T., Tan A.J. Food Poisoning Caused by Deoxynivalenol at a School in Zhuhai, Guangdong, China, in 2019. Foodborne Pathog. Dis. 2020;17:429–433. doi: 10.1089/fpd.2019.2710. PubMed DOI

Kerschke-Risch P. The aflatoxin-affair: The invisible victims of crime in the food-sector. Temida. 2014;17:107–120.

Tsagkaris A.S., Nelis J.L.D., Ross G.M.S., Jafari S., Guercetti J., Kopper K., Zhao Y., Rafferty K., Salvador J.P., Migliorelli D., et al. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TrAC Trends Anal. Chem. 2019;121:115688.

Nelis J.L.D., Tsagkaris A.S., Zhao Y., Lou-Franco J., Nolan P., Zhou H., Cao C., Rafferty K., Hajslova J., Campbell K., et al. The End user Sensor Tree: An end-user friendly sensor database. Biosens. Bioelectron. 2019;130:245–253. PubMed

Jafari S., Guercetti J., Geballa-Koukoula A., Tsagkaris A.S., Nelis J.L.D., Marco M.-P., Salvador J.-P., Gerssen A., Hajslova J., Elliott C., et al. ASSURED Point-of-Need Food Safety Screening: A Critical Assessment of Portable Food Analyzers. Foods. 2021;10:1399. doi: 10.3390/foods10061399. PubMed DOI PMC

Nolan P., Auer S., Spehar A., Elliott C.T., Campbell K. Current trends in rapid tests for mycotoxins. Food Addit. Contam. Part A. 2019;36:800–814. doi: 10.1080/19440049.2019.1595171. PubMed DOI

Weaver A.C., Adams N., Yiannikouris A. Invited Review: Use of technology to assess and monitor multimycotoxin and emerging mycotoxin challenges in feedstuffs. Appl. Anim. Sci. 2020;36:19–25.

Tittlemier S.A., Brunkhorst J., Cramer B., DeRosa M.C., Lattanzio V.M.T., Malone R., Maragos C., Stranska M., Sumarah M.W. Developments in mycotoxin analysis: An update for 2019–2020. World Mycotoxin J. 2021;14:3–26. doi: 10.3920/WMJ2020.2664. DOI

Vargas Medina D.A., Bassolli Borsatto J.V., Maciel E.V.S., Lanças F.M. Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC Trends Anal. Chem. 2021;135:116156. doi: 10.1016/j.trac.2020.116156. DOI

Tsagkaris A.S., Hrbek V., Dzuman Z., Hajslova J. Critical comparison of direct analysis in real time orbitrap mass spectrometry (DART-Orbitrap MS) towards liquid chromatography mass spectrometry (LC-MS) for mycotoxin detection in cereal matrices. Food Control. 2022;132:108548. doi: 10.1016/j.foodcont.2021.108548. DOI

Tao Y., Xie S., Xu F., Liu A., Wang Y., Chen D., Pan Y., Huang L., Peng D., Wang X., et al. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem. Toxicol. 2018;112:320–331. doi: 10.1016/j.fct.2018.01.002. PubMed DOI

EFSA Panel on Contaminants in the Food Chain (CONTAM) Schrenk D., Bodin L., Chipman J.K., del Mazo J., Grasl-Kraupp B., Hogstrand C., Hoogenboom L., Leblanc J., Nebbia C.S., et al. Risk assessment of ochratoxin A in food. EFSA J. 2020;18:e06113. PubMed PMC

Bryła M., Ksieniewicz-Woźniak E., Waśkiewicz A., Szymczyk K., Jędrzejczak R. Natural Occurrence of Nivalenol, Deoxynivalenol, and Deoxynivalenol-3-Glucoside in Polish Winter Wheat. Toxins. 2018;10:81. PubMed PMC

Guo H., Ji J., Wang J., Sun X. Deoxynivalenol: Masked forms, fate during food processing, and potential biological remedies. Compr. Rev. Food Sci. Food Saf. 2020;19:895–926. doi: 10.1111/1541-4337.12545. PubMed DOI

Ropejko K., Twarużek M. Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity. Toxins. 2021;13:35. doi: 10.3390/toxins13010035. PubMed DOI PMC

Chen P., Xiang B., Shi H., Yu P., Song Y., Li S. Recent advances on type A trichothecenes in food and feed: Analysis, prevalence, toxicity, and decontamination techniques. Food Control. 2020;118:107371. doi: 10.1016/j.foodcont.2020.107371. DOI

Agriopoulou S. Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies. Agronomy. 2021;11:931.

Holderied I., Rychlik M., Elsinghorst P.W. Optimized analysis of ergot alkaloids in rye products by liquid chromatography-fluorescence detection applying lysergic acid diethylamide as an internal standard. Toxins. 2019;11:184. doi: 10.3390/toxins11040184. PubMed DOI PMC

Oellig C., Melde T. Screening for total ergot alkaloids in rye flour by planar solid phase extraction–fluorescence detection and mass spectrometry. J. Chromatogr. A. 2016;1441:126–133. doi: 10.1016/j.chroma.2016.02.075. PubMed DOI

León N., Pastor A., Yusà V. Target analysis and retrospective screening of veterinary drugs, ergot alkaloids, plant toxins and other undesirable substances in feed using liquid chromatography–high resolution mass spectrometry. Talanta. 2016;149:43–52. PubMed

Liao C.-D., Wong J.W., Zhang K., Yang P., Wittenberg J.B., Trucksess M.W., Hayward D.G., Lee N.S., Chang J.S. Multi-mycotoxin Analysis of Finished Grain and Nut Products Using Ultrahigh-Performance Liquid Chromatography and Positive Electrospray Ionization–Quadrupole Orbital Ion Trap High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2015;63:8314–8332. PubMed

Bessaire T., Ernest M., Christinat N., Carrères B., Panchaud A., Badoud F. High resolution mass spectrometry workflow for the analysis of food contaminants: Application to plant toxins, mycotoxins and phytoestrogens in plant-based ingredients. Food Addit. Contam. Part A. 2021;38:978–996. doi: 10.1080/19440049.2021.1902575. PubMed DOI

The Directorate-General for Health and Food Safety (SANTE) SANTE/12682/2019. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. 2019. [(accessed on 4 November 2021)]. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf.

Kim D.-B., Song N.-E., Nam T.G., Lee S., Seo D., Yoo M. Occurrence of emerging mycotoxins in cereals and cereal-based products from the Korean market using LC-MS/MS. Food Addit. Contam. Part A. 2019;36:289–295. PubMed

Carbonell-Rozas L., Mahdjoubi C.K., Arroyo-Manzanares N., García-Campaña A.M., Gámiz-Gracia L. Occurrence of Ergot Alkaloids in Barley and Wheat from Algeria. Toxins. 2021;13:316. doi: 10.3390/toxins13050316. PubMed DOI PMC

Qian M., Yang H., Li Z., Liu Y., Wang J., Wu H., Ji X., Xu J. Detection of 13 mycotoxins in feed using modified QuEChERS with dispersive magnetic materials and UHPLC-MS/MS. J. Sep. Sci. 2018;41:756–764. doi: 10.1002/jssc.201700882. PubMed DOI

Gonçalves C., Mischke C., Stroka J. Determination of deoxynivalenol and its major conjugates in cereals using an organic solvent-free extraction and IAC clean-up coupled in-line with HPLC-PCD-FLD. Food Addit. Contam. Part A. 2020;37:1765–1776. doi: 10.1080/19440049.2020.1800829. PubMed DOI

Rausch A.-K., Brockmeyer R., Schwerdtle T. Development and validation of a QuEChERS-based liquid chromatography tandem mass spectrometry multi-method for the determination of 38 native and modified mycotoxins in cereals. J. Agric. Food Chem. 2020;68:4657–4669. doi: 10.1021/acs.jafc.9b07491. PubMed DOI

Tolosa J., Rodríguez-Carrasco Y., Graziani G., Gaspari A., Ferrer E., Mañes J., Ritieni A. Mycotoxin Occurrence and Risk Assessment in Gluten-Free Pasta through UHPLC-Q-Exactive Orbitrap MS. Toxins. 2021;13:305. doi: 10.3390/toxins13050305. PubMed DOI PMC

Kemboi D.C., Ochieng P.E., Antonissen G., Croubels S., Scippo M.-L., Okoth S., Kangethe E.K., Faas J., Doupovec B., Lindahl J.F., et al. Multi-Mycotoxin Occurrence in Dairy Cattle and Poultry Feeds and Feed Ingredients from Machakos Town, Kenya. Toxins. 2020;12:762. doi: 10.3390/toxins12120762. PubMed DOI PMC

Olopade B.K., Oranusi S.U., Nwinyi O.C., Gbashi S., Njobeh P.B. Occurrences of Deoxynivalenol, Zearalenone and some of their masked forms in selected cereals from Southwest Nigeria. NFS J. 2021;23:24–29.

Reinholds I., Jansons M., Fedorenko D., Pugajeva I., Zute S., Bartkiene E., Bartkevics V. Mycotoxins in cereals and pulses harvested in Latvia by nanoLC-Orbitrap MS. Food Addit. Contam. Part B. 2021;14:115–123. doi: 10.1080/19393210.2021.1892204. PubMed DOI

Berthiller F., Schuhmacher R., Adam G., Krska R. Formation, determination and significance of masked and other conjugated mycotoxins. Anal. Bioanal. Chem. 2009;395:1243–1252. doi: 10.1007/s00216-009-2874-x. PubMed DOI

Jai A.E., Zinedine A., Juan-García A., Mañes J., Etahiri S., Juan C. Occurrence of Free and Conjugated Mycotoxins in Aromatic and Medicinal Plants and Dietary Exposure Assessment in the Moroccan Population. Toxins. 2021;13:125. doi: 10.3390/toxins13020125. PubMed DOI PMC

Dzuman Z., Zachariasova M., Lacina O., Veprikova Z., Slavikova P., Hajslova J. A rugged high-throughput analytical approach for the determination and quantification of multiple mycotoxins in complex feed matrices. Talanta. 2014;121:263–272. doi: 10.1016/j.talanta.2013.12.064. PubMed DOI

Dzuman Z., Zachariasova M., Veprikova Z., Godula M., Hajslova J. Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Anal. Chim. Acta. 2015;863:29–40. doi: 10.1016/j.aca.2015.01.021. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...