A Hybrid Lab-on-a-Chip Injector System for Autonomous Carbofuran Screening

. 2019 Dec 17 ; 19 (24) : . [epub] 20191217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31861204

Grantová podpora
720325 Horizon 2020

Securing food safety standards is crucial to protect the population from health-threatening food contaminants. In the case of pesticide residues, reference procedures typically find less than 1% of tested samples being contaminated, thus indicating the necessity for new tools able to support smart and affordable prescreening. Here, we introduce a hybrid paper-lab-on-a-chip platform, which integrates on-demand injectors to perform multiple step protocols in a single disposable device. Simultaneous detection of enzymatic color response in sample and reference cells, using a regular smartphone, enabled semiquantitative detection of carbofuran, a neurotoxic and EU-banned carbamate pesticide, in a wide concentration range. The resulting evaluation procedure is generic and allows the rejection of spurious measurements based on their dynamic responses, and was effectively applied for the binary detection of carbofuran in apple extracts.

Zobrazit více v PubMed

European Food Safety Authority (EFSA) The 2017 European Union report on pesticide residues in food. EFSA J. 2019;17:e05743. PubMed PMC

Pundir C.S., Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012;429:19–31. doi: 10.1016/j.ab.2012.06.025. PubMed DOI

Ensibi C., Hernández-Moreno D., Míguez Santiyán M.P., Daly Yahya M.N., Rodríguez F.S., Pérez-López M. Effects of carbofuran and deltamethrin on acetylcholinesterase activity in brain and muscle of the common carp. Environ. Toxicol. 2014;29:386–393. doi: 10.1002/tox.21765. PubMed DOI

European Food Safety Authority (EFSA) Conclusion regarding the peer review of the pesticide risk assessment of the active substance carbofuran. EFSA J. 2006;4:90r. doi: 10.2903/j.efsa.2006.90r. PubMed DOI PMC

Martínez-del-Río J., Martínez Vidal J.L., Garrido Frenich A. Economic evaluation of pesticide-residue analysis of vegetables. TrAC Trends Anal. Chem. 2013;44:90–97. doi: 10.1016/j.trac.2012.11.008. DOI

Tsagkaris A.S., Nelis J.L.D., Ross G.M.S., Jafari S., Guercetti J., Kopper K., Zhao Y., Rafferty K., Salvador J.P., Migliorelli D., et al. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TrAC Trends Anal. Chem. 2019;121:115688. doi: 10.1016/j.trac.2019.115688. DOI

Rejczak T., Tuzimski T. Recent trends in sample preparation and liquid chromatography/mass spectrometry for pesticide residue analysis in food and related matrixes. J. AOAC Int. 2015;98:1143–1162. doi: 10.5740/jaoacint.SGE1_Rejczak. PubMed DOI

Nelis J.L.D., Tsagkaris A.S., Zhao Y., Lou-Franco J., Nolan P., Zhou H., Cao C., Rafferty K., Hajslova J., Elliott C.T., et al. The end user sensor tree: An end-user friendly sensor database. Biosens. Bioelectron. 2019;130:245–253. doi: 10.1016/j.bios.2019.01.055. PubMed DOI

Karachaliou C.-E., Nikolaki E., Livaniou E. Development of antibodies and immunoassays for carbamate pesticides. Curr. Org. Chem. 2017;21:2632–2639. doi: 10.2174/1385272821666170420171946. DOI

Wang M., Huang J., Wang M., Zhang D., Chen J. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem. 2014;151:191–197. doi: 10.1016/j.foodchem.2013.11.046. PubMed DOI

Jirasirichote A., Punrat E., Suea-Ngam A., Chailapakul O., Chuanuwatanakul S. Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta. 2017;175:331–337. doi: 10.1016/j.talanta.2017.07.050. PubMed DOI

Xia N., Wang Q., Liu L. Nanomaterials-based optical techniques for the detection of acetylcholinesterase and pesticides. Sensors. 2015;15:499–514. doi: 10.3390/s150100499. PubMed DOI PMC

Nery E.W., Kubota L.T. Sensing approaches on paper-based devices: A review. Anal. Bioanal. Chem. 2013;405:7573–7595. doi: 10.1007/s00216-013-6911-4. PubMed DOI

Guo J., Wong J.X.H., Cui C., Li X., Yu H.Z. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Analyst. 2015;140:5518–5525. doi: 10.1039/C5AN00874C. PubMed DOI

No H.-Y., Kim Y.A., Lee Y.T., Lee H.-S. Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides. Anal. Chim. Acta. 2007;594:37–43. doi: 10.1016/j.aca.2007.05.008. PubMed DOI

Pohanka M. Acetylcholinesterase Based Dipsticks with Indoxylacetate as a Substrate for Assay of Organophosphates and Carbamates. Anal. Lett. 2012;45:367–374. doi: 10.1080/00032719.2011.644743. DOI

Jang Y.-H., Hancock M.J., Kim S.B., Selimović Š., Sim W.Y., Bae H., Khademhosseini A. An integrated microfluidic device for two-dimensional combinatorial dilution. Lab Chip. 2011;11:3277–3286. doi: 10.1039/c1lc20449a. PubMed DOI PMC

Kovacova J., Hrbek V., Kloutvorova J., Kocourek V., Drabova L., Hajslova J. Assessment of pesticide residues in strawberries grown under various treatment regimes. Food Addit. Contam. Part A. 2013;30:2123–2135. doi: 10.1080/19440049.2013.850537. PubMed DOI

Comina G., Suska A., Filippini D. Towards autonomous lab-on-a-chip devices for cell phone biosensing. Biosens. Bioelectron. 2016;77:1153–1167. doi: 10.1016/j.bios.2015.10.092. PubMed DOI

Comina G., Suska A., Filippini D. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer. Lab Chip. 2014;14:2978–2982. doi: 10.1039/C4LC00394B. PubMed DOI

Comina G., Suska A., Filippini D. 3D printed unibody lab-on-a-chip: Features survey and check-valves integration. Micromachines. 2015;6:437–451. doi: 10.3390/mi6040437. DOI

Comina G., Suska A., Filippini D. Autonomous chemical sensing interface for universal cell phone readout. Angew. Chem. Int. Ed. 2015;54:8708–8712. doi: 10.1002/anie.201503727. PubMed DOI

Suska A., Filippini D. Autonomous lab-on-a-chip generic architecture for disposables with integrated actuation. Nature Sci. Rep. 2020 accepted. PubMed PMC

Kokalj T., Park Y., Vencelj M., Jenko M., Lee L.P. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE. Lab Chip. 2014;14:4329–4333. doi: 10.1039/C4LC00920G. PubMed DOI

Lai T.-S., Chang T.-C., Wang S.-C. Gold nanoparticle-based colorimetric methods to determine protein contents in artificial urine using membrane micro-concentrators and mobile phone camera. Sens. Actuators B Chem. 2017;239:9–16. doi: 10.1016/j.snb.2016.07.158. DOI

Nouanthavong S., Nacapricha D., Henry C.S., Sameenoi Y. Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst. 2016;141:1837–1846. doi: 10.1039/C5AN02403J. PubMed DOI

Kim H.J., Kim Y., Park S.J., Kwon C., Noh H. Development of Colorimetric Paper Sensor for Pesticide Detection Using Competitive-inhibiting Reaction. BioChip J. 2018;12:326–331. doi: 10.1007/s13206-018-2404-z. DOI

Liu W., Kou J., Xing H., Li B. Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables. Biosens. Bioelectron. 2014;52:76–81. doi: 10.1016/j.bios.2013.08.024. PubMed DOI

Xie C., Li H., Li S., Gao S. Surface molecular imprinting for chemiluminescence detection of the organophosphate pesticide chlorpyrifos. Microchim. Acta. 2011;174:311. doi: 10.1007/s00604-011-0626-z. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...