A Hybrid Lab-on-a-Chip Injector System for Autonomous Carbofuran Screening
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
720325
Horizon 2020
PubMed
31861204
PubMed Central
PMC6960838
DOI
10.3390/s19245579
PII: s19245579
Knihovny.cz E-zdroje
- Klíčová slova
- 3D-printed devices, acetylcholinesterase, food safety, lab-on-a-chip, microfluidics, pesticides, screening method,
- Publikační typ
- časopisecké články MeSH
Securing food safety standards is crucial to protect the population from health-threatening food contaminants. In the case of pesticide residues, reference procedures typically find less than 1% of tested samples being contaminated, thus indicating the necessity for new tools able to support smart and affordable prescreening. Here, we introduce a hybrid paper-lab-on-a-chip platform, which integrates on-demand injectors to perform multiple step protocols in a single disposable device. Simultaneous detection of enzymatic color response in sample and reference cells, using a regular smartphone, enabled semiquantitative detection of carbofuran, a neurotoxic and EU-banned carbamate pesticide, in a wide concentration range. The resulting evaluation procedure is generic and allows the rejection of spurious measurements based on their dynamic responses, and was effectively applied for the binary detection of carbofuran in apple extracts.
Zobrazit více v PubMed
European Food Safety Authority (EFSA) The 2017 European Union report on pesticide residues in food. EFSA J. 2019;17:e05743. PubMed PMC
Pundir C.S., Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012;429:19–31. doi: 10.1016/j.ab.2012.06.025. PubMed DOI
Ensibi C., Hernández-Moreno D., Míguez Santiyán M.P., Daly Yahya M.N., Rodríguez F.S., Pérez-López M. Effects of carbofuran and deltamethrin on acetylcholinesterase activity in brain and muscle of the common carp. Environ. Toxicol. 2014;29:386–393. doi: 10.1002/tox.21765. PubMed DOI
European Food Safety Authority (EFSA) Conclusion regarding the peer review of the pesticide risk assessment of the active substance carbofuran. EFSA J. 2006;4:90r. doi: 10.2903/j.efsa.2006.90r. PubMed DOI PMC
Martínez-del-Río J., Martínez Vidal J.L., Garrido Frenich A. Economic evaluation of pesticide-residue analysis of vegetables. TrAC Trends Anal. Chem. 2013;44:90–97. doi: 10.1016/j.trac.2012.11.008. DOI
Tsagkaris A.S., Nelis J.L.D., Ross G.M.S., Jafari S., Guercetti J., Kopper K., Zhao Y., Rafferty K., Salvador J.P., Migliorelli D., et al. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TrAC Trends Anal. Chem. 2019;121:115688. doi: 10.1016/j.trac.2019.115688. DOI
Rejczak T., Tuzimski T. Recent trends in sample preparation and liquid chromatography/mass spectrometry for pesticide residue analysis in food and related matrixes. J. AOAC Int. 2015;98:1143–1162. doi: 10.5740/jaoacint.SGE1_Rejczak. PubMed DOI
Nelis J.L.D., Tsagkaris A.S., Zhao Y., Lou-Franco J., Nolan P., Zhou H., Cao C., Rafferty K., Hajslova J., Elliott C.T., et al. The end user sensor tree: An end-user friendly sensor database. Biosens. Bioelectron. 2019;130:245–253. doi: 10.1016/j.bios.2019.01.055. PubMed DOI
Karachaliou C.-E., Nikolaki E., Livaniou E. Development of antibodies and immunoassays for carbamate pesticides. Curr. Org. Chem. 2017;21:2632–2639. doi: 10.2174/1385272821666170420171946. DOI
Wang M., Huang J., Wang M., Zhang D., Chen J. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem. 2014;151:191–197. doi: 10.1016/j.foodchem.2013.11.046. PubMed DOI
Jirasirichote A., Punrat E., Suea-Ngam A., Chailapakul O., Chuanuwatanakul S. Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta. 2017;175:331–337. doi: 10.1016/j.talanta.2017.07.050. PubMed DOI
Xia N., Wang Q., Liu L. Nanomaterials-based optical techniques for the detection of acetylcholinesterase and pesticides. Sensors. 2015;15:499–514. doi: 10.3390/s150100499. PubMed DOI PMC
Nery E.W., Kubota L.T. Sensing approaches on paper-based devices: A review. Anal. Bioanal. Chem. 2013;405:7573–7595. doi: 10.1007/s00216-013-6911-4. PubMed DOI
Guo J., Wong J.X.H., Cui C., Li X., Yu H.Z. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Analyst. 2015;140:5518–5525. doi: 10.1039/C5AN00874C. PubMed DOI
No H.-Y., Kim Y.A., Lee Y.T., Lee H.-S. Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides. Anal. Chim. Acta. 2007;594:37–43. doi: 10.1016/j.aca.2007.05.008. PubMed DOI
Pohanka M. Acetylcholinesterase Based Dipsticks with Indoxylacetate as a Substrate for Assay of Organophosphates and Carbamates. Anal. Lett. 2012;45:367–374. doi: 10.1080/00032719.2011.644743. DOI
Jang Y.-H., Hancock M.J., Kim S.B., Selimović Š., Sim W.Y., Bae H., Khademhosseini A. An integrated microfluidic device for two-dimensional combinatorial dilution. Lab Chip. 2011;11:3277–3286. doi: 10.1039/c1lc20449a. PubMed DOI PMC
Kovacova J., Hrbek V., Kloutvorova J., Kocourek V., Drabova L., Hajslova J. Assessment of pesticide residues in strawberries grown under various treatment regimes. Food Addit. Contam. Part A. 2013;30:2123–2135. doi: 10.1080/19440049.2013.850537. PubMed DOI
Comina G., Suska A., Filippini D. Towards autonomous lab-on-a-chip devices for cell phone biosensing. Biosens. Bioelectron. 2016;77:1153–1167. doi: 10.1016/j.bios.2015.10.092. PubMed DOI
Comina G., Suska A., Filippini D. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer. Lab Chip. 2014;14:2978–2982. doi: 10.1039/C4LC00394B. PubMed DOI
Comina G., Suska A., Filippini D. 3D printed unibody lab-on-a-chip: Features survey and check-valves integration. Micromachines. 2015;6:437–451. doi: 10.3390/mi6040437. DOI
Comina G., Suska A., Filippini D. Autonomous chemical sensing interface for universal cell phone readout. Angew. Chem. Int. Ed. 2015;54:8708–8712. doi: 10.1002/anie.201503727. PubMed DOI
Suska A., Filippini D. Autonomous lab-on-a-chip generic architecture for disposables with integrated actuation. Nature Sci. Rep. 2020 accepted. PubMed PMC
Kokalj T., Park Y., Vencelj M., Jenko M., Lee L.P. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE. Lab Chip. 2014;14:4329–4333. doi: 10.1039/C4LC00920G. PubMed DOI
Lai T.-S., Chang T.-C., Wang S.-C. Gold nanoparticle-based colorimetric methods to determine protein contents in artificial urine using membrane micro-concentrators and mobile phone camera. Sens. Actuators B Chem. 2017;239:9–16. doi: 10.1016/j.snb.2016.07.158. DOI
Nouanthavong S., Nacapricha D., Henry C.S., Sameenoi Y. Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst. 2016;141:1837–1846. doi: 10.1039/C5AN02403J. PubMed DOI
Kim H.J., Kim Y., Park S.J., Kwon C., Noh H. Development of Colorimetric Paper Sensor for Pesticide Detection Using Competitive-inhibiting Reaction. BioChip J. 2018;12:326–331. doi: 10.1007/s13206-018-2404-z. DOI
Liu W., Kou J., Xing H., Li B. Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables. Biosens. Bioelectron. 2014;52:76–81. doi: 10.1016/j.bios.2013.08.024. PubMed DOI
Xie C., Li H., Li S., Gao S. Surface molecular imprinting for chemiluminescence detection of the organophosphate pesticide chlorpyrifos. Microchim. Acta. 2011;174:311. doi: 10.1007/s00604-011-0626-z. DOI