Immunosensors for Assay of Toxic Biological Warfare Agents

. 2023 Mar 20 ; 13 (3) : . [epub] 20230320

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36979614

Grantová podpora
A long-term organization development plan University of Defense, Czech Republic

An immunosensor for the assay of toxic biological warfare agents is a biosensor suitable for detecting hazardous substances such as aflatoxin, botulinum toxin, ricin, Shiga toxin, and others. The application of immunosensors is used in outdoor assays, point-of-care tests, as a spare method for more expensive devices, and even in the laboratory as a standard analytical method. Some immunosensors, such as automated flow-through analyzers or lateral flow tests, have been successfully commercialized as tools for toxins assay, but the research is ongoing. New devices are being developed, and the use of advanced materials and assay techniques make immunosensors highly competitive analytical devices in the field of toxic biological warfare agents assay. This review summarizes facts about current applications and new trends of immunosensors regarding recent papers in this area.

Zobrazit více v PubMed

Lee C.W., Su H., Shiea J. Potential applications and challenges of novel ambient ionization mass spectrometric techniques in the emergency care for acute poisoning. Trac-Trends Anal. Chem. 2022;157:9. doi: 10.1016/j.trac.2022.116742. DOI

De Girolamo A., Lippolis V., Pascale M. Overview of recent liquid chromatography mass spectrometry-based methods for natural toxins detection in food products. Toxins. 2022;14:328. doi: 10.3390/toxins14050328. PubMed DOI PMC

Su H., Huang M.Z., Shiea J.T., Lee C.W. Thermal desorption ambient ionization mass spectrometry for emergency toxicology. Mass Spectrom. Rev. 2023;20:e21784. doi: 10.1002/mas.21784. DOI

Tittlemier S.A., Cramer B., Dall’Asta C., Iha M.H., Lattanzio V.M.T., Maragos C., Solfrizzo M., Stranska M., Stroka J., Sumarah M. Developments in mycotoxin analysis: An update for 2018-19. World Mycotoxin J. 2020;13:3–24. doi: 10.3920/WMJ2019.2535. DOI

Liew W.P.P., Sabran M.R. Recent advances in immunoassay-based mycotoxin analysis and toxicogenomic technologies. J. Food Drug Anal. 2022;30:549–561. doi: 10.38212/2224-6614.3430. PubMed DOI PMC

Amin R., Alam F., Dey B.K., Mandhadi J.R., Bin Emran T., Khandaker M.U., Safi S.Z. Multidimensional chromatography and its applications in food products, biological samples and toxin products: A comprehensive review. Separations. 2022;9:326. doi: 10.3390/separations9110326. DOI

Valdes A., Alvarez-Rivera G., Socas-Rodriguez B., Herrero M., Cifuentes A. Capillary electromigration methods for food analysis and foodomics: Advances and applications in the period february 2019-february 2021. Electrophoresis. 2022;43:37–56. doi: 10.1002/elps.202100201. PubMed DOI

Bouteiller P., Lance E., Guerin T., Bire R. Analysis of total-forms of cyanotoxins microcystins in biological matrices: A methodological review. Toxins. 2022;14:550. doi: 10.3390/toxins14080550. PubMed DOI PMC

Hempel B.F., Damm M., Petras D., Kazandjian T.D., Szentiks C.A., Fritsch G., Nebrich G., Casewell N.R., Klein O., Sussmuth R.D. Spatial venomics-cobra venom system reveals spatial differentiation of snake toxins by mass spectrometry imaging. J. Proteome Res. 2023;22:26–35. doi: 10.1021/acs.jproteome.2c00424. PubMed DOI

Zhao Z.Y., Hengchao E., Tian E.J., Fan T.T., Yang X.L., Li X.B., Zhang Y.M., Li X.J., Chen A.L., Zhou C.Y., et al. Structural annotation and discovery of toxic cyclopeptides and their analogues in lethal mushroom amanita and lepiota species using uplc-hrms and molecular networking strategy. Food Control. 2023;146:9. doi: 10.1016/j.foodcont.2022.109548. DOI

Zhou J.J., Lv X.Q., Jia J.L., Din Z.U., Cai S.Q., He J.L., Xie F., Cai J. Nanomaterials-based electrochemiluminescence biosensors for food analysis: Recent developments and future directions. Biosensors. 2022;12:1046. doi: 10.3390/bios12111046. PubMed DOI PMC

Pohanka M. Progress in biosensors for the point-of-care diagnosis of COVID-19. Sensors. 2022;22:7423. doi: 10.3390/s22197423. PubMed DOI PMC

Hignett S., Hancox G., Otter M.E. Chemical, biological, radiological, nuclear and explosive (cbrne) events systematic literature review of evacuation, triage and decontamination for vulnerable people. Int. J. Emerg. Serv. 2019;8:175–190. doi: 10.1108/IJES-05-2018-0030. DOI

Razak S., Hignett S., Barnes J. Emergency department response to chemical, biological, radiological, nuclear, and explosive events: A systematic review. Prehospital Disaster Med. 2018;33:543–549. doi: 10.1017/S1049023X18000900. PubMed DOI

Mueller J., Mueller K. The methodology of mass destruction: Assessing threats in the new world order. J. Strateg. Stud. 2000;23:163–187. doi: 10.1080/01402390008437782. DOI

Peintner L., Wagner E., Shin A., Tukhanova N., Turebekov N., Abdiyeva K., Spaiser O., Serebrennikova Y., Tintrup E., Dmitrovskiy A., et al. Eight years of collaboration on biosafety and biosecurity issues between kazakhstan and germany as part of the german biosecurity programme and the g7 global partnership against the spread of weapons and materials of mass destruction. Front. Public Health. 2021;9:14. doi: 10.3389/fpubh.2021.649393. PubMed DOI PMC

Graham A.T. The nuclear non-proliferation treaty: Delayed review—Issues old and new. J. Peace Nucl. Disarm. 2021;4:186–195. doi: 10.1080/25751654.2021.1921499. DOI

Vogel H. Weapons of mass destruction, wmd. Eur. J. Radiol. 2007;63:205–213. doi: 10.1016/j.ejrad.2007.03.037. PubMed DOI

Priego A. Mass-destruction weapons proliferation in the national security strategy 2013. Rev. UNISCI. 2014;35:189–204.

Janik E., Ceremuga M., Saluk-Bijak J., Bijak M. Biological toxins as the potential tools for bioterrorism. Int. J. Mol. Sci. 2019;20:1181. doi: 10.3390/ijms20051181. PubMed DOI PMC

Olsnes S. The history of ricin, abrin and related toxins. Toxicon. 2004;44:361–370. doi: 10.1016/j.toxicon.2004.05.003. PubMed DOI

Ahmad M.M., Qamar F., Saifi M., Abdin M.Z. Natural inhibitors: A sustainable way to combat aflatoxins. Front. Microbiol. 2022;13:9. doi: 10.3389/fmicb.2022.993834. PubMed DOI PMC

Pohanka M. Botulinum toxin as a biological warfare agent: Poisoning, diagnosis and countermeasures. Mini-Rev. Med. Chem. 2020;20:865–874. doi: 10.2174/1389557520666200228105312. PubMed DOI

Rostami A., Zadeh F.A., Ebrahimzadeh F., Jafari-Sales A., Gholami S. Globally vibrio cholera antibiotics resistance to rna and DNA effective antibiotics: A systematic review and meta-analysis. Microb. Pathog. 2022;172:15. doi: 10.1016/j.micpath.2022.105514. PubMed DOI

Morris W.E., Fernandez-Miyakawa M.E. Toxins of clostridium perfringens. Rev. Argent. Microbiol. 2009;41:251–260. PubMed

Dao F.Y., Yang H., Su Z.D., Yang W.R.T., Wu Y., Ding H., Chen W., Tang H., Lin H. Recent advances in conotoxin classification by using machine learning methods. Molecules. 2017;22:1057. doi: 10.3390/molecules22071057. PubMed DOI PMC

Schollenberger M., Drochner W., Muller H.M. Fusarium toxins of the scirpentriol subgroup: A review. Mycopathologia. 2007;164:101–118. doi: 10.1007/s11046-007-9036-5. PubMed DOI

Imathiu S.M., Edwards S.G., Ray R.V., Back M.A. Fusarium langsethiae—A ht-2 and t-2 toxins producer that needs more attention. J. Phytopathol. 2013;161:1–10. doi: 10.1111/jph.12036. DOI

Welten R.D., Meneely J.P., Elliott C.T. A comparative review of the effect of microcystin-lr on the proteome. Expo. Health. 2020;12:111–129. doi: 10.1007/s12403-019-00303-1. DOI

Kozlov Y.V., Sudarkina O.Y., Kurmanova A.G. Ribosome-inactivating lectins of plants. Mol. Biol. 2006;40:711–723. doi: 10.1134/S0026893306040169. PubMed DOI

Akbar M.A., Yusof N.Y.M., Tahir N.I., Ahmad A., Usup G., Sahrani F.K., Bunawan H. Biosynthesis of saxitoxin in marine dinoflagellates: An omics perspective. Mar. Drugs. 2020;18:103. doi: 10.3390/md18020103. PubMed DOI PMC

Bergan J., Lingelem A.B.D., Simm R., Skotland T., Sandvig K. Shiga toxins. Toxicon. 2012;60:1085–1107. doi: 10.1016/j.toxicon.2012.07.016. PubMed DOI

Leal M., de Mejia E.G. Review: Toxicological and nutritional implications of t-2 toxin. Food Sci. Technol. Int. 1997;3:241–250. doi: 10.1177/108201329700300402. DOI

Makarova M., Rycek L., Hajicek J., Baidilov D., Hudlicky T. Tetrodotoxin: History, biology, and synthesis. Angew. Chem.-Int. Edit. 2019;58:18338–18387. doi: 10.1002/anie.201901564. PubMed DOI

Maltseva D.V., Gerasimov V.M., Sakharov D.A., Shkurnikov M.Y. Target cell glycosylation determines the biodistribution of plant lectin viscumin. Bull. Exp. Biol. Med. 2017;163:482–485. doi: 10.1007/s10517-017-3833-8. PubMed DOI

Battelli M.G., Musiani S., Buonamici L., Santi S., Riccio M., Maraldi N.M., Girbes T., Stirpe F. Interaction of volkensin with hela cells: Binding, uptake, intracellular localization, degradation and exocytosis. Cell. Mol. Life Sci. 2004;61:1975–1984. doi: 10.1007/s00018-004-4171-3. PubMed DOI PMC

Darling R.G., Catlett C.L., Huebner K.D., Jarrett D.G. Threats in bioterrorism i: Cdc category a agents. Emerg. Med. Clin. N. Am. 2002;20:273. doi: 10.1016/S0733-8627(02)00005-6. PubMed DOI

Bhalla D.K., Warheit D.B. Biological agents with potential for misuse: A historical perspective and defensive measures. Toxicol. Appl. Pharmacol. 2004;199:71–84. doi: 10.1016/j.taap.2004.03.009. PubMed DOI

Senveli S.U., Tigli O. Biosensors in the small scale: Methods and technology trends. IET Nanobiotechnol. 2013;7:7–21. doi: 10.1049/iet-nbt.2012.0005. PubMed DOI

Juska V.B., Pemble M.E. A critical review of electrochemical glucose sensing: Evolution of biosensor platforms based on advanced nanosystems. Sensors. 2020;20:6013. doi: 10.3390/s20216013. PubMed DOI PMC

Wang J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis. 2001;13:983–988. doi: 10.1002/1521-4109(200108)13:12<983::AID-ELAN983>3.0.CO;2-#. DOI

Yoo E.H., Lee S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors. 2010;10:4558–4576. doi: 10.3390/s100504558. PubMed DOI PMC

Aydin E.B., Aydin M., Sezginturk M.K. Advances in electrochemical immunosensors. Adv. Clin. Chem. 2019;92:1–57. PubMed

Tokranova N., Cady N., Lamphere A., Levitsky I.A. Highly sensitive fentanyl detection based on nanoporous electrochemical immunosensors. IEEE Sens. J. 2022;22:20165–20170. doi: 10.1109/JSEN.2022.3200591. PubMed DOI PMC

Nunez F.A., Castro A.C.H., de Oliveira V.L., Lima A.C., Oliveira J.R., de Medeiros G.X., Sasahara G.L., Santos K.S., Lanfredi A.J.C., Alves W.A. Electrochemical immunosensors based on zinc oxide nanorods for detection of antibodies against SARS-CoV-2 spike protein in convalescent and vaccinated individuals. ACS Biomater. Sci. Eng. 2023;16:458–473. doi: 10.1021/acsbiomaterials.2c00509. PubMed DOI

Zhang J., Yang L.X., Pei J., Tian Y.Z., Liu J.Y. A reagentless electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on the interface with redox probe-modified electron transfer wires and effectively immobilized antibody. Front. Chem. 2022;10:12. doi: 10.3389/fchem.2022.939736. PubMed DOI PMC

You Y., Luo B., Wang C., Dong H.T., Wang X.D., Hou P.C., Sun L.J., Li A.X. An ultrasensitive probe-free electrochemical immunosensor for gibberellins employing polydopamine-antibody nanoparticles modified electrode. Bioelectrochemistry. 2023;150:8. doi: 10.1016/j.bioelechem.2022.108331. PubMed DOI

Sadique M.A., Yadav S., Khare V., Khan R., Tripathi G.K., Khare P.S. Functionalized titanium dioxide nanoparticle-based electrochemical immunosensor for detection of SARS-CoV-2 antibody. Diagnostics. 2022;12:2612. doi: 10.3390/diagnostics12112612. PubMed DOI PMC

Park C., Lee J., Lee D., Jang J. Paper-based electrochemical peptide sensor for label-free and rapid detection of airborne bacillus anthracis simulant spores. Sens. Actuator B-Chem. 2022;355:8. doi: 10.1016/j.snb.2021.131321. DOI

Song S.P., Wang L.H., Li J., Zhao J.L., Fan C.H. Aptamer-based biosensors. Trac-Trends Anal. Chem. 2008;27:108–117. doi: 10.1016/j.trac.2007.12.004. DOI

Zheng J., Cheng G.F., Feng W.J., He P.G., Fang Y.Z. A thermodynamic investigation into the binding affinity between aptamer-DNA and aptamer-protein. Acta Chim. Sin. 2010;68:1427–1430.

Mazzaracchio V., Neagu D., Porchetta A., Marcoccio E., Pomponi A., Faggioni G., D’Amore N., Notargiacomo A., Pea M., Moscone D. et al. A label-free impedimetric aptasensor for the detection of bacillus anthracis spore simulant. Biosens. Bioelectron. 2019;126:640–646. doi: 10.1016/j.bios.2018.11.017. PubMed DOI

Choi J.S., Kim S.G., Lahousse M., Park H.Y., Park H.C., Jeong B., Kim J., Kim S.K., Yoon M.Y. Screening and characterization of high-affinity ssdna aptamers against anthrax protective antigen. J. Biomol. Screen. 2011;16:266–271. doi: 10.1177/1087057110391787. PubMed DOI

Shao Y.L., Duan J.Q., Wang M., Cao J., She Y.X., Cao Z., Li G.Y., Jin F., Wang J., Abd El-Aty A.M. Application of molecularly imprinted electrochemical biomimetic sensors for detecting small molecule food contaminants. Polymers. 2023;15:187. doi: 10.3390/polym15010187. PubMed DOI PMC

Maria C.G.A., Varghese A., Nidhin M. Recent advances in nanomaterials based molecularly imprinted electrochemical sensors. Crit. Rev. Anal. Chem. 2023;53:88–97. PubMed

Cui B.C., Liu P., Liu X.J., Liu S.Z., Zhang Z.H. Molecularly imprinted polymers for electrochemical detection and analysis: Progress and perspectives. J. Mater. Res. Technol-JMRT. 2020;9:12568–12584. doi: 10.1016/j.jmrt.2020.08.052. DOI

Saxena K., Murti B.T., Yang P.K., Malhotra B.D., Chauhan N., Jain U. Fabrication of a molecularly imprinted nano-interface-based electrochemical biosensor for the detection of caga virulence factors of h. Pylori. Biosensors. 2022;12:1066. doi: 10.3390/bios12121066. PubMed DOI PMC

Fan L., Zhang Q., Wang F., Yang H.F. Dummy molecularly imprinted solid-phase extraction-sers determination of afb1 in peanut. Spectroc. Acta Part A-Molec. Biomolec. Spectr. 2023;288:9. doi: 10.1016/j.saa.2022.122130. PubMed DOI

Mehmandoust M., Soylak M., Erk N. Innovative molecularly imprinted electrochemical sensor for the nanomolar detection of tenofovir as an anti-hiv drug. Talanta. 2023;253:11. doi: 10.1016/j.talanta.2022.123991. PubMed DOI

Carinelli S., Kuhnemund M., Nilsson M., Pividori M.I. Yoctomole electrochemical genosensing of ebola virus cdna by rolling circle and circle to circle amplification. Biosens. Bioelectron. 2017;93:65–71. doi: 10.1016/j.bios.2016.09.099. PubMed DOI

Ilkhani H., Farhad S. A novel electrochemical DNA biosensor for ebola virus detection. Anal. Biochem. 2018;557:151–155. doi: 10.1016/j.ab.2018.06.010. PubMed DOI

Cooper K.L., Bandara A.B., Wang Y.M., Wang A.B., Inzana T.J. Photonic biosensor assays to detect and distinguish subspecies of francisella tularensis. Sensors. 2011;11:3004–3019. doi: 10.3390/s110303004. PubMed DOI PMC

Euler M., Wang Y.J., Heidenreich D., Patel P., Strohmeier O., Hakenberg S., Niedrig M., Hufert F.T., Weidmann M. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J. Clin. Microbiol. 2013;51:1110–1117. doi: 10.1128/JCM.02704-12. PubMed DOI PMC

Komarova E., Aldissi M., Bogomolova A. Direct electrochemical sensor for fast reagent-free DNA detection. Biosens. Bioelectron. 2005;21:182–189. doi: 10.1016/j.bios.2004.07.025. PubMed DOI

Hao R.Z., Song H.B., Zuo G.M., Yang R.F., Wei H.P., Wang D.B., Cui Z.Q., Zhang Z.P., Cheng Z.X., Zhang X.E. DNA probe functionalized qcm biosensor based on gold nanoparticle amplification for bacillus anthracis detection. Biosens. Bioelectron. 2011;26:3398–3404. doi: 10.1016/j.bios.2011.01.010. PubMed DOI

Xiao S.Y., Zhen S.J., Huang C.Z., Li Y.F. Ultrasensitive ratiometric electrochemiluminescence for detecting atxa mrna using luminol-encapsulated liposome as effectively amplified signal labels. Biosens. Bioelectron. 2021;186:6. doi: 10.1016/j.bios.2021.113263. PubMed DOI

Wasiewska L.A., Diaz F.G., Shao H., Burgess C.M., Duffy G., O’Riordan A. Highly sensitive electrochemical sensor for the detection of shiga toxin-producing e. Coli (stec) using interdigitated micro-electrodes selectively modified with a chitosan-gold nanocomposite. Electrochim. Acta. 2022;426:11. doi: 10.1016/j.electacta.2022.140748. DOI

Pohanka M. COVID-19 molecular level laboratory diagnoses. Bratisl. Med. J. 2021;122:11–17. doi: 10.4149/BLL_2021_025. PubMed DOI

Pohanka M. Point-of-care diagnosis of COVID-19 disease based on antigen tests. Bratisl. Med. J. 2021;122:763–770. doi: 10.4149/BLL_2021_122. PubMed DOI

Pickering S., Betancor G., Galão R.P., Merrick B., Signell A.W., Wilson H.D., Kia Ik M.T., Seow J., Graham C., Acors S. et al. Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings. PLoS Pathog. 2020;16:e1008817. doi: 10.1371/journal.ppat.1008817. PubMed DOI PMC

Ristic M., Nikolic N., Cabarkapa V., Turkulov V., Petrovic V. Validation of the standard q COVID-19 antigen test in vojvodina, serbia. PLoS ONE. 2021;16:e0247606. doi: 10.1371/journal.pone.0247606. PubMed DOI PMC

Kabir M.A., Ahmed R., Iqbal S.M.A., Chowdhury R., Paulmurugan R., Demirci U., Asghar W. Diagnosis for COVID-19: Current status and future prospects. Expert Rev. Mol. Diagn. 2021;21:269–288. doi: 10.1080/14737159.2021.1894930. PubMed DOI PMC

Jia Y., Sun H., Tian J.P., Song Q.M., Zhang W.W. Paper-based point-of-care testing of SARS-CoV-2. Front. Bioeng. Biotechnol. 2021;9:17. doi: 10.3389/fbioe.2021.773304. PubMed DOI PMC

Donaldson K.A., Kramer M.F., Lim D.V. A rapid detection method for vaccinia virus, the surrogate for smallpox virus. Biosen. Bioelectron. 2004;20:322–327. doi: 10.1016/j.bios.2004.01.029. PubMed DOI PMC

Nath N., Eldefrawi M., Wright J., Darwin D., Huestis M. A rapid reusable fiber optic biosensor for detecting cocaine metabolites in urine. J. Anal. Toxicol. 1999;23:460–467. doi: 10.1093/jat/23.6.460. PubMed DOI

Narang U., Anderson G.P., Ligler F.S., Burans J. Fiber optic-based biosensor for ricin. Biosens. Bioelectron. 1997;12:937–945. doi: 10.1016/S0956-5663(97)00027-4. PubMed DOI

Cao L.K., Anderson G.P., Ligler F.S., Ezzell J. Detection of yersinia pestis fraction 1 antigen with a fiber optic biosensor. J. Clin. Microbiol. 1995;33:336–341. doi: 10.1128/jcm.33.2.336-341.1995. PubMed DOI PMC

DeMarco D.R., Saaski E.W., McCrae D.A., Lim D.V. Rapid detection of escherichia coli o157:H7 in ground beef using a fiber-optic biosensor. J. Food. Prot. 1999;62:711–716. doi: 10.4315/0362-028X-62.7.711. PubMed DOI

Tempelman L.A., King K.D., Anderson G.P., Ligler F.S. Quantitating staphylococcal enterotoxin b in diverse media using a portable fiber-optic biosensor. Anal. Biochem. 1996;233:50–57. doi: 10.1006/abio.1996.0006. PubMed DOI

Anderson G.P., King K.D., Gaffney K.L., Johnson L.H. Multi-analyte interrogation using the fiber optic biosensor. Biosens. Bioelectron. 2000;14:771–777. doi: 10.1016/S0956-5663(99)00053-6. PubMed DOI

Pohanka M. Current trends in the biosensors for biological warfare agents assay. Materials. 2019;12:2303. doi: 10.3390/ma12142303. PubMed DOI PMC

Gwyn S., Mitchell A., Dean D., Mkocha H., Handali S., Martin D.L. Lateral flow-based antibody testing for chlamydia trachomatis. J. Immunol. Methods. 2016;435:27–31. doi: 10.1016/j.jim.2016.05.008. PubMed DOI

Shome R., Kalleshamurthy T., Shome B.R., Sahay S., Natesan K., Bambal R.G., Sairiwal L., Mohandoss N., Barbuddhe S.B. Lateral flow assay for brucellosis testing in multiple livestock species. J. Microbiol. Methods. 2018;148:93–96. doi: 10.1016/j.mimet.2018.03.015. PubMed DOI

Machiesky L., Cote O., Kirkegaard L.H., Mefferd S.C., Larkin C. A rapid lateral flow immunoassay for identity testing of biotherapeutics. J. Immunol. Methods. 2019;474:5. doi: 10.1016/j.jim.2019.112666. PubMed DOI

Yang X.D., Wang Y.B., Yang J.F., Sun Z.K., Yue Z.H., Li L.L., He L., Hu X.F. An immunochromatographic lateral flow strip test for the rapid detection of danofloxacin in milk. Food Anal. Meth. 2019;12:2430–2437. doi: 10.1007/s12161-019-01601-9. DOI

Tel O.Y., Gurbilek S.E., Keskin O., Yucetepe A.G., Karadenizli A. Development of lateral flow test for serological diagnosis of tularemia. Kafkas Univ. Vet. Fak. Derg. 2022;28:579–584.

Peto T., Uk C.-L.F.O. COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing. EClinicalMedicine. 2021;36:7. doi: 10.1016/j.eclinm.2021.100924. PubMed DOI PMC

Hu J.L., Xu X.X., Xu L.G., Kuang H., Xu C.L., Guo L.L. Gold nanoparticle-based lateral flow immunoassay for the rapid and on-site detection of wheat allergen in milk. Food Biosci. 2023;51:8. doi: 10.1016/j.fbio.2023.102353. DOI

Slotved H.C., Sparding N., Tanassi J.T., Steenhard N.R., Heegaard N.H.H. Evaluating 6 ricin field detection assays. Biosecur. Bioterror. 2014;12:186–189. doi: 10.1089/bsp.2014.0015. PubMed DOI

Gessler F., Pagel-Wieder S., Avondet M.A., Bohnel H. Evaluation of lateral flow assays for the detection of botulinum neurotoxin type a and their application in laboratory diagnosis of botulism. Diagn. Microbiol. Infect. Dis. 2007;57:243–249. doi: 10.1016/j.diagmicrobio.2006.07.017. PubMed DOI

Jia X.F., Wang K.L., Li X.Y., Liu Z.Z., Liu Y., Xiao R., Wang S.Q. Highly sensitive detection of three protein toxins via sers-lateral flow immunoassay based on sio2@au nanoparticles. Nanomed.-Nanotechnol. Biol. Med. 2022;41:11. doi: 10.1016/j.nano.2022.102522. PubMed DOI

Saxena K., Kumar A., Chauhan N., Khanuja M., Malhotra B.D., Jain U. Electrochemical immunosensor for detection of h. Pylori secretory protein vaca on g-c3n4/zno nanocomposite-modified au electrode. ACS Omega. 2023;7:32292–32301. doi: 10.1021/acsomega.2c03627. PubMed DOI PMC

Feng S.S., Hu W., Pei F.B., Liu Z.W., Du B., Mu X.H., Liu B., Hao Q.L., Lei W., Tong Z.Y. A highly sensitive fluorescence and screen-printed electrodes-electrochemiluminescence immunosensor for ricin detection based on cdse/zns qds with dual signal. Toxins. 2022;14:710. doi: 10.3390/toxins14100710. PubMed DOI PMC

Atanasova M., Vasileva N., Godjevargova T. Determination of aflatoxin m1 in milk by a magnetic nanoparticle-based fluorescent immunoassay. Anal. Lett. 2017;50:452–469. doi: 10.1080/00032719.2016.1187626. DOI

Peltomaa R., Abbas A., Yli-Mattila T., Lamminmaki U. Single-step noncompetitive immunocomplex immunoassay for rapid aflatoxin detection. Food Chem. 2022;392:7. doi: 10.1016/j.foodchem.2022.133287. PubMed DOI

Cheng H.P., Chuang H.S. Rapid and sensitive nano-immunosensors for botulinum. ACS Sens. 2019;4:1754–1760. doi: 10.1021/acssensors.9b00644. PubMed DOI

Parvin S., Hashemi P., Afkhami A., Ghanei M., Bagheri H. Simultaneous determination of bont/a and/e using an electrochemical sandwich immunoassay based on the nanomagnetic immunosensing platform. Chemosphere. 2022;298:11. doi: 10.1016/j.chemosphere.2022.134358. PubMed DOI

Kumar D.N., Baider Z., Elad D., Blum S.E., Shtenberg G. Botulinum neurotoxin-c detection using nanostructured porous silicon interferometer. Chemosensors. 2021;9:228. doi: 10.3390/chemosensors9080228. DOI

Wang B., Park B., Chen J., He X.H. Rapid and label-free immunosensing of shiga toxin subtypes with surface plasmon resonance imaging. Toxins. 2020;12:280. doi: 10.3390/toxins12050280. PubMed DOI PMC

Luo L., Yang J.W., Li Z., Xu H., Guo L., Wang L.L., Wang Y.X., Luo L.L., Wang J., Zhang P.P., et al. Label-free differentiation and quantification of ricin, abrin from their agglutinin biotoxins by surface plasmon resonance. Talanta. 2022;238:8. doi: 10.1016/j.talanta.2021.122860. PubMed DOI

Stern D., Pauly D., Zydek M., Muller C., Avondet M.A., Worbs S., Lisdat F., Dorner M.B., Dorner B.G. Simultaneous differentiation and quantification of ricin and agglutinin by an antibody-sandwich surface plasmon resonance sensor. Biosens. Bioelectron. 2016;78:111–117. doi: 10.1016/j.bios.2015.11.020. PubMed DOI

Cagnani G.R., Oliveira T.D., Mattioli I.A., Sedenho G.C., Castro K.P.R., Crespilho F.N. From research to market: Correlation between publications, patent filings, and investments in development and production of technological innovations in biosensors. Anal. Bioanal. Chem. 2022:1–9. doi: 10.1007/s00216-022-04444-2. PubMed DOI PMC

Lin C.T., Wang S.M. Biosensor commercialization strategy—A theoretical approach. Front. Biosci. 2005;10:99–106. doi: 10.2741/1512. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...