Progress in Biosensors for the Point-of-Care Diagnosis of COVID-19
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Long-term organization development plan Medical Aspects of Weapons of Mass Destruction II
University of Defence
PubMed
36236521
PubMed Central
PMC9571584
DOI
10.3390/s22197423
PII: s22197423
Knihovny.cz E-zdroje
- Klíčová slova
- SARS-CoV-2, antibody, antigen, coronavirus disease, diagnosis, handheld assay, immunosensor, lateral flow immunoassay, lateral flow tests, point-of-care test,
- MeSH
- biosenzitivní techniky * MeSH
- COVID-19 * diagnóza MeSH
- imunoanalýza MeSH
- lidé MeSH
- protilátky virové MeSH
- SARS-CoV-2 MeSH
- senzitivita a specificita MeSH
- testování na COVID-19 MeSH
- vyšetření u lůžka MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- protilátky virové MeSH
Coronavirus disease 2019 (COVID-19) is a highly virulent infection that has caused a pandemic since 2019. Early diagnosis of the disease has been recognized as one of the important approaches to minimize the pathological impact and spread of infection. Point-of-care tests proved to be substantial analytical tools, and especially lateral flow immunoassays (lateral flow tests) serve the purpose. In the last few years, biosensors have gained popularity. These are simple but highly sensitive and accurate analytical devices composed from a selective molecule such as an antibody or antigen and a sensor platform. Biosensors would be an advanced alternative to current point-of-care tests for COVID-19 diagnosis and standard laboratory methods as well. Recent discoveries related to point-of-care diagnostic tests for COVID-19, the development of biosensors for specific antibodies and specific virus parts or their genetic information are reviewed.
Zobrazit více v PubMed
Eibensteiner F., Ritschl V., Stamm T., Cetin A., Schmitt C.P., Ariceta G., Bakkaloglu S., Jankauskiene A., Klaus G., Paglialonga F., et al. Countermeasures against COVID-19: How to navigate medical practice through a nascent, evolving evidence base—A European multicentre mixed methods study. BMJ Open. 2021;11:11. doi: 10.1136/bmjopen-2020-043015. PubMed DOI PMC
Kong L.C., Hu Y., Wang Q., Chen X.D., Yao T., Wang Y., Jin H., Fan L.J., Du W. Could COVID-19 pandemic be stopped with joint efforts of travel restrictions and public health countermeasures? A modelling study. BMJ Open. 2021;11:8. doi: 10.1136/bmjopen-2020-046157. PubMed DOI PMC
Vichiensan V., Hayashi Y., Kamnerdsap S. COVID-19 Countermeasures and Passengers’ Confidence of Urban Rail Travel in Bangkok. Sustainability. 2021;13:9377. doi: 10.3390/su13169377. DOI
Si R.S., Yao Y.M., Zhang X.Q., Lu Q., Aziz N. Investigating the Links Between Vaccination Against COVID-19 and Public Attitudes Toward Protective Countermeasures: Implications for Public Health. Front. Public Health. 2021;9:11. doi: 10.3389/fpubh.2021.702699. PubMed DOI PMC
Zhu H., Lu H.Z. The development of a quarantine strategy is an important path to a normalized response to COVID-19. BioSci. Trends. 2020;14:396–398. doi: 10.5582/bst.2020.03365. PubMed DOI
Traylor A.M., Tannenbaum S.I., Thomas E.J., Salas E. Helping Healthcare Teams Save Lives During COVID-19: Insights and Countermeasures From Team Science. Am. Psychol. 2021;76:1–13. doi: 10.1037/amp0000750. PubMed DOI PMC
Mohsin A.K.M., Lei H.Z., Hossain S.F.A. Impact of COVID-19 Pandemic on Consumer Economy: Countermeasures Analysis. Sage Open. 2021;11:10. doi: 10.1177/21582440211008875. DOI
Wang L.J., Li C.D., Chen X.H., Zhu L.L. Causal Relationship Between the Spread of the COVID-19 and Geopolitical Risks in Emerging Economies. Front. Public Health. 2020;8:626055. doi: 10.3389/fpubh.2020.626055. PubMed DOI PMC
Butt A.S. Supply chains and COVID-19: Impacts, countermeasures and post-COVID-19 era. Int. J. Logist. Manag. 2022 doi: 10.1108/IJLM-02-2021-0114. DOI
Liu Y.W., Cui Q., Liu Y., Zhang J.Z., Zhou M.F., Ali T., Yang L.Y., Feng K.S., Hubacek K., Li X.B. Countermeasures against economic crisis from COVID-19 pandemic in China: An analysis of effectiveness and trade-offs. Struct. Chang. Econ. Dyn. 2021;59:482–495. doi: 10.1016/j.strueco.2021.09.017. PubMed DOI PMC
Li Y., Wang X.J., Wang W. The Impact of COVID-19 on Cancer. Infect. Drug Resist. 2021;14:3809–3816. doi: 10.2147/IDR.S324569. PubMed DOI PMC
Zhao Z., Huang C.F., Huang Z.Y., Lin F.J., He Q.L., Tao D., Jaffrezic-Renault N., Guo Z.Z. Advancements in electrochemical biosensing for respiratory virus detection: A review. Trac-Trends Anal. Chem. 2021;139:16. doi: 10.1016/j.trac.2021.116253. PubMed DOI PMC
Tran V.V., Tran N.H.T., Hwang H.S., Chang M. Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: Potential for rapid COVID-19 detection. Biosens. Bioelectron. 2021;182:21. doi: 10.1016/j.bios.2021.113192. PubMed DOI PMC
Choi J.R. Development of Point-of-Care Biosensors for COVID-19. Front. Chem. 2020;8:517. doi: 10.3389/fchem.2020.00517. PubMed DOI PMC
Yue J., Xu H., Zhou Y., Liu W., Han X.F., Mao Q., Li S.X., Tam L.S., Ma J., Liu W. Dyslipidemia Is Related to Mortality in Critical Patients With Coronavirus Disease 2019: A Retrospective Study. Front. Endocrinol. 2021;12:611526. doi: 10.3389/fendo.2021.611526. PubMed DOI PMC
Gonzalez-Garcia N., Miranda-Lora A.L., Garduno-Espinosa J., Granados-Riveron J.T., Mendez-Galvan J.F., Nieto-Zermeno J., Castilla-Peon M.F. International heterogeneity in coronavirus disease 2019 pediatric mortality rates. Bol. Med. Hosp. Infant. Mex. 2021;78:24–28. doi: 10.24875/BMHIM.20000291. PubMed DOI
Hernandez-Romieu A.C., Adelman M.W., Hockstein M.A., Robichaux C.J., Edwards J.A., Fazio J.C., Blum J.M., Jabaley C.S., Caridi-Scheible M., Martin G.S., et al. Timing of Intubation and Mortality Among Critically Ill Coronavirus Disease 2019 Patients: A Single-Center Cohort Study. Crit. Care Med. 2020;48:E1045–E1053. doi: 10.1097/CCM.0000000000004600. PubMed DOI PMC
Barioni E.M.S., Nascimento C., Amaral T.L.M., Ramalho Neto J.M., Prado P.R.D. Clinical indicators, nursing diagnoses, and mortality risk in critically ill patients with COVID-19: A retrospective cohort. Rev. Esc. Enferm. USP. 2022;56:e20210568. doi: 10.1590/1980-220x-reeusp-2021-0568pt. PubMed DOI PMC
Cui D., Wang Y.M., Huang L.X., Gu X.Y., Huang Z.S., Mu S.R., Wang C., Cao B. Rheumatic Symptoms Following Coronavirus Disease 2019 (COVID-19): A Chronic Post-COVID-19 Condition. Open Forum Infect. Dis. 2022;9:ofac170. doi: 10.1093/ofid/ofac170. PubMed DOI PMC
Kadirvelu B., Burcea G., Quint J.K., Costelloe C.E., Faisal A.A. Variation in global COVID-19 symptoms by geography and by chronic disease: A global survey using the COVID-19 Symptom Mapper. EClinicalMedicine. 2022;45:15. doi: 10.1016/j.eclinm.2022.101317. PubMed DOI PMC
Galal I., Hussein A., Amin M.T., Saad M.M., Zayan H.E.E., Abdelsayed M.Z., Moustafa M.M., Ezzat A.R., Helmy R.E.D., Abd Elaal H.K., et al. Determinants of persistent post-COVID-19 symptoms: Value of a novel COVID-19 symptom score. Egypt. J. Bronchol. 2021;15:10. doi: 10.1186/s43168-020-00049-4. DOI
Luo Y.M., Wu J., Lu J.Y., Xu X., Long W., Yan G.J., Tang M.Y., Zou L., Xu D.Z., Zhuo P., et al. Investigation of COVID-19-related symptoms based on factor analysis. Ann. Pallliat. Med. 2020;9:1851–1858. doi: 10.21037/apm-20-1113. PubMed DOI
Fernandez-de-las-Penas C., Martin-Guerrero J.D., Pellicer-Valero O.J., Navarro-Pardo E., Gomez-Mayordomo V., Cuadrado M.L., Arias-Navalon J.A., Cigaran-Mendez M., Hernandez-Barrera V., Arendt-Nielsen L. Female Sex Is a Risk Factor Associated with Long-Term Post-COVID Related-Symptoms but Not with COVID-19 Symptoms: The LONG-COVID-EXP-CM Multicenter Study. J. Clin. Med. 2022;11:413. doi: 10.3390/jcm11020413. PubMed DOI PMC
Soma P., Bester J. Pathophysiological Changes in Erythrocytes Contributing to Complications of Inflammation and Coagulation in COVID-19. Front. Physiol. 2022;13:899629. doi: 10.3389/fphys.2022.899629. PubMed DOI PMC
Lamb L.E., Dhar N., Timar R., Wills M., Dhar S., Chancellor M.B. COVID-19 inflammation results in urine cytokine elevation and causes COVID-19 associated cystitis (CAC) Med. Hypotheses. 2020;145:110375. doi: 10.1016/j.mehy.2020.110375. PubMed DOI PMC
Wong R.S.Y. Inflammation in COVID-19: From pathogenesis to treatment. Int. J. Clin. Exp. Pathol. 2021;14:831–844. PubMed PMC
Tan Q.Q., He L.J., Meng X.J., Wang W., Pan H.D., Yin W.G., Zhu T.C.A., Huang X., Shan H. Macrophage biomimetic nanocarriers for anti-inflammation and targeted antiviral treatment in COVID-19. J. Nanobiotechnol. 2021;19:173. doi: 10.1186/s12951-021-00926-0. PubMed DOI PMC
Mester A., Benedek I., Rat N., Tolescu C., Polexa S.A., Benedek T. Imaging Cardiovascular Inflammation in the COVID-19 Era. Diagnostics. 2021;11:1114. doi: 10.3390/diagnostics11061114. PubMed DOI PMC
Johnson J.N., Loriaux D.B., Jenista E., Kim H.W., Baritussio A., De Garate Iparraguirre E., Bucciarelli-Ducci C., Denny V., O’Connor B., Siddiqui S., et al. Society for Cardiovascular Magnetic Resonance 2021 cases of SCMR and COVID-19 case collection series. J. Cardiovasc. Magn. Reson. 2022;24:42. doi: 10.1186/s12968-022-00872-2. PubMed DOI PMC
Shim S.R., Kim S.J., Hong M., Lee J., Kang M.G., Han H.W. Diagnostic Performance of Antigen Rapid Diagnostic Tests, Chest Computed Tomography, and Lung Point-of-Care-Ultrasonography for SARS-CoV-2 Compared with RT-PCR Testing: A Systematic Review and Network Meta-Analysis. Diagnostics. 2022;12:1302. doi: 10.3390/diagnostics12061302. PubMed DOI PMC
Barbas C.S.V. Thoracic Computed Tomography to Assess ARDS and COVID-19 Lungs. Front. Physiol. 2022;13:829534. doi: 10.3389/fphys.2022.829534. PubMed DOI PMC
Jenkins H.H., Lopez A.A.T., Tarantini F.S., Tomlin H., Scales D., Lee I.N., Wu S., Hyde R., Lis-Slimak K., Byaruhanga T., et al. Performance evaluation of a non-invasive one-step multiplex RT-qPCR assay for detection of SARS-CoV-2 direct from saliva. Sci. Rep. 2022;12:11553. doi: 10.1038/s41598-022-15616-6. PubMed DOI PMC
Mannan N., Raihan R., Parvin U.S., Fazle Akbar S.M., Reza M.S., Islam S., Kundu J., Noman A.A., Fakhruddin M., Billaha M., et al. Detection of SARS-CoV-2 RNA by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) on Self-Collected Nasal Swab Compared With Professionally Collected Nasopharyngeal Swab. Cureus. 2022;14:e25618. doi: 10.7759/cureus.25618. PubMed DOI PMC
Ali H., Alkhaursi K., Holton T. Development of a colorimetric RT-LAMP assay for the detection of SARS-COV-2 isolated from Oman. J. Infect. Dev. Ctries. 2022;16:952–958. doi: 10.3855/jidc.15377. PubMed DOI
Khan S.H., Zaidi S.K., Gilani M. PCR to CRISPR: Role of Nucleic Acid Tests (NAT) in detection of COVID-19. J. Pak. Med. Assoc. 2022;72:1166–1174. doi: 10.47391/jpma.2324. PubMed DOI
Yu Z., Xu L., Lyu W., Shen F. Parallel multistep digital analysis SlipChip demonstrated with the quantification of nucleic acid by digital LAMP-CRISPR. Lab Chip. 2022;22:2954–2961. doi: 10.1039/D2LC00284A. PubMed DOI
Kashir J., Yaqinuddin A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med. Hypotheses. 2020;141:109786. doi: 10.1016/j.mehy.2020.109786. PubMed DOI PMC
Augustine R., Hasan A., Das S., Ahmed R., Mori Y., Notomi T., Kevadiya B.D., Thakor A.S. Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. Biology. 2020;9:182. doi: 10.3390/biology9080182. PubMed DOI PMC
Balck A., Föh B., Borsche M., Rahmöller J., Vollstedt E.J., Waldeck F., Käding N., Twesten C., Mischnik A., Gillessen-Kaesbach G., et al. Protocol of the Luebeck longitudinal investigation of SARS-CoV-2 infection (ELISA) study—A prospective population-based cohort study. BMC Public Health. 2022;22:1305. doi: 10.1186/s12889-022-13666-z. PubMed DOI PMC
Ramos A., Araújo B., Lacerda L., Flora A.L., Ribeiro L., Patrício E., Cardoso M.J., Guimarães J.T. SARS-CoV-2 seroprevalence in healthcare workers: The experience of a Portuguese COVID-19 front-line hospital during the 1st pandemic wave. Porto. Biomed. J. 2022;7:e166. doi: 10.1097/j.pbj.0000000000000166. PubMed DOI PMC
Donoso Mantke O., Corman V.M., Taddei F., McCulloch E., Niemeyer D., Grumiro L., Dirani G., Wallace P.S., Drosten C., Sambri V., et al. Importance of external quality assessment for SARS-CoV-2 antigen detection during the COVID-19 pandemic. J. Clin. Virol. 2022;154:105222. doi: 10.1016/j.jcv.2022.105222. PubMed DOI PMC
Schwarze M., Krizsan A., Brakel A., Pohl F., Volke D., Hoffmann R. Cross-Reactivity of IgG Antibodies and Virus Neutralization in mRNA-Vaccinated People Against Wild-Type SARS-CoV-2 and the Five Most Common SARS-CoV-2 Variants of Concern. Front. Immunol. 2022;13:915034. doi: 10.3389/fimmu.2022.915034. PubMed DOI PMC
Sakyi A., Laing E., Ephraim R., Asibey O., Sadique O. Evaluation of analytical errors in a clinical chemistry laboratory: A 3 year experience. Ann. Med. Health Sci. Res. 2015;5:8–12. doi: 10.4103/2141-9248.149763. PubMed DOI PMC
Al-Ghaithi H., Pathare A., Al-Mamari S., Villacrucis R., Fawaz N., Alkindi S. Impact of Educational Activities in Reducing Pre-Analytical Laboratory Errors: A quality initiative. Sultan Qaboos Univ. Med. J. 2017;17:e309–e313. doi: 10.18295/squmj.2017.17.03.008. PubMed DOI PMC
Sturgeon C.M. External quality assessment of hormone determinations. Best Pract. Res. Clin. Endocrinol. Metab. 2013;27:803–822. doi: 10.1016/j.beem.2013.08.009. PubMed DOI
Lee G.R., Fitzgibbon M.C., O’Shea P. Laboratory services: Regaining and maintaining control. Int. J. Health Care Qual. Assur. 2016;29:507–522. doi: 10.1108/IJHCQA-08-2015-0098. PubMed DOI
Wallace P.S., MacKay W.G. Quality in the molecular microbiology laboratory. Methods Mol. Biol. 2013;943:49–79. doi: 10.1007/978-1-60327-353-4_3. PubMed DOI
Somborac Bačura A., Dorotić M., Grošić L., Džimbeg M., Dodig S. Current status of the lateral flow immunoassay for the detection of SARS-CoV-2 in nasopharyngeal swabs. Biochem. Med. 2021;31:020601. doi: 10.11613/BM.2021.020601. PubMed DOI PMC
Zhou Y., Wu Y., Ding L., Huang X., Xiong Y. Point-of-care COVID-19 diagnostics powered by lateral flow assay. Trends Analyt. Chem. 2021;145:116452. doi: 10.1016/j.trac.2021.116452. PubMed DOI PMC
Wang J.J., Zhang N., Richardson S.A., Wu J.V. Rapid lateral flow tests for the detection of SARS-CoV-2 neutralizing antibodies. Expert. Rev. Mol. Diagn. 2021;21:363–370. doi: 10.1080/14737159.2021.1913123. PubMed DOI PMC
Pohanka M. Point-of-Care Diagnoses and Assays Based on Lateral Flow Test. Int. J. Anal. Chem. 2021;2021:6685619. doi: 10.1155/2021/6685619. DOI
Choi S., Choi E.Y., Kim D.J., Kim J.H., Kim T.S., Oh S.W. A rapid, simple measurement of human albumin in whole blood using a fluorescence immunoassay (I) Clin. Chim. Acta. 2004;339:147–156. doi: 10.1016/j.cccn.2003.10.002. PubMed DOI
Wu Y.H., Zhou Y.F., Leng Y.K., Lai W.H., Huang X.L., Xiong Y.H. Emerging design strategies for constructing multiplex lateral flow test strip sensors. Biosens. Bioelectron. 2020;157:13. doi: 10.1016/j.bios.2020.112168. PubMed DOI
Ngom B., Guo Y.C., Wang X.L., Bi D.R. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: A review. Anal. Bioanal. Chem. 2010;397:1113–1135. doi: 10.1007/s00216-010-3661-4. PubMed DOI
Machiesky L., Cote O., Kirkegaard L.H., Mefferd S.C., Larkin C. A rapid lateral flow immunoassay for identity testing of biotherapeutics. J. Immunol. Methods. 2019;474:112666. doi: 10.1016/j.jim.2019.112666. PubMed DOI
Hendrickson O.D., Byzova N.A., Zvereva E.A., Zherdev A.V., Dzantiev B.B. Sensitive lateral flow immunoassay of an antibiotic neomycin in foodstuffs. J. Food Sci. Technol. 2021;58:292–301. doi: 10.1007/s13197-020-04541-z. PubMed DOI PMC
Beloglazova N.V., Shmelin P.S., Eremin S.A. Sensitive immunochemical approaches for quantitative (FPIA) and qualitative (lateral flow tests) determination of gentamicin in milk. Talanta. 2016;149:217–224. doi: 10.1016/j.talanta.2015.11.060. PubMed DOI
Dou L.N., Zhao B.X., Bu T., Zhang W.T., Huang Q., Yan L.Z., Huang L.J., Wang Y.R., Wang J.L., Zhang D.H. Highly sensitive detection of a small molecule by a paired labels recognition system based lateral flow assay. Anal. Bioanal. Chem. 2018;410:3161–3170. doi: 10.1007/s00216-018-1003-0. PubMed DOI
Alnajrani M.N., Alsager O.A. Lateral flow aptasensor for progesterone: Competitive target recognition and displacement of short complementary sequences. Anal. Biochem. 2019;587:113461. doi: 10.1016/j.ab.2019.113461. PubMed DOI
Yang H.L., Wang Y.R., Liu S.Y., Ouyang H., Lu S.G., Li H.T., Fu Z.F. Lateral flow assay of methicillin-resistant Staphylococcus aureus using bacteriophage cellular wall-binding domain as recognition agent. Biosens. Bioelectron. 2021;182:113189. doi: 10.1016/j.bios.2021.113189. PubMed DOI
Lee K.W., Yu Y.C., Chun H.J., Jang Y.H., Han Y.D., Yoon H.C. Instrumentation-Free Semiquantitative Immunoanalysis Using a Specially Patterned Lateral Flow Assay Device. Biosensors. 2020;10:87. doi: 10.3390/bios10080087. PubMed DOI PMC
Soleimani R., Deckers C., Huang T.D., Bogaerts P., Evrard S., Wallemme I., Habib B., Rouze P., Denis O. Rapid COVID-19 antigenic tests: Usefulness of a modified method for diagnosis. J. Med. Virol. 2021;93:5655–5659. doi: 10.1002/jmv.27094. PubMed DOI PMC
Frnda J., Durica M. On Pilot Massive COVID-19 Testing by Antigen Tests in Europe. Case Study: Slovakia. Infect. Dis. Rep. 2021;13:45–57. doi: 10.3390/idr13010007. PubMed DOI PMC
Candel F.J., Barreiro P., San Roman J., Abanades J.C., Barba R., Barberan J., Bibiano C., Canora J., Canton R., Calvo C., et al. Recommendations for use of antigenic tests in the diagnosis of acute SARS-CoV-2 infection in the second pandemic wave: Attitude in different clinical settings. Rev. Esp. Quim. 2020;33:466–484. doi: 10.37201/req/120.2020. PubMed DOI PMC
Scohy A., Anantharajah A., Bodeus M., Kabamba-Mukadi B., Verroken A., Rodriguez-Villalobos H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. 2020;129:104455. doi: 10.1016/j.jcv.2020.104455. PubMed DOI PMC
Yamayoshi S., Sakai-Tagawa Y., Koga M., Akasaka O., Nakachi I., Koh H., Maeda K., Adachi E., Saito M., Nagai H., et al. Comparison of Rapid Antigen Tests for COVID-19. Viruses. 2020;12:1420. doi: 10.3390/v12121420. PubMed DOI PMC
Kyosei Y., Yamura S., Namba M., Yoshimura T., Watabe S., Ito E. Antigen tests for COVID-19. Biophys. Physicobiol. 2021;18:28–39. doi: 10.2142/biophysico.bppb-v18.004. PubMed DOI PMC
Siddiqui Z.K., Chaudhary M., Robinson M.L., McCall A.B., Peralta R., Esteve R., Callahan C.W., Manabe Y.C., Campbell J.D., Johnson J.K., et al. Implementation and Accuracy of BinaxNOW Rapid Antigen COVID-19 Test in Asymptomatic and Symptomatic Populations in a High-Volume Self-Referred Testing Site. Microbiol. Spectr. 2021;9:e0100821. doi: 10.1128/Spectrum.01008-21. PubMed DOI PMC
Fearon E., Buchan I.E., Das R., Davis E.L., Fyles M., Hall I., Hollingsworth T.D., House T., Jay C., Medley G.F., et al. SARS-CoV-2 antigen testing: Weighing the false positives against the costs of failing to control transmission. Lancet Respir. Med. 2021;9:685–687. doi: 10.1016/S2213-2600(21)00234-4. PubMed DOI PMC
Shey M.S., Schmidt B.M., Wiysonge C.S. Antibody tests for diagnosing COVID-19: How relevant are they? Pan Afr. Med. J. 2020;37:4. doi: 10.11604/pamj.supp.2020.37.1.25822. PubMed DOI PMC
Zhao J., Yuan Q., Wang H., Liu W., Liao X., Su Y., Wang X., Yuan J., Li T., Li J., et al. Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019. Clin. Infect. Dis. 2020;71:2027–2034. doi: 10.1093/cid/ciaa344. PubMed DOI PMC
Ong D.S.Y., Fragkou P.C., Schweitzer V.A., Chemaly R.F., Moschopoulos C.D., Skevaki C. How to interpret and use COVID-19 serology and immunology tests. Clin. Microbiol. Infect. 2021;27:981–986. doi: 10.1016/j.cmi.2021.05.001. PubMed DOI PMC
Zollner A., Watschinger C., Rössler A., Farcet M.R., Penner A., Böhm V., Kiechl S.J., Stampfel G., Hintenberger R., Tilg H., et al. B and T cell response to SARS-CoV-2 vaccination in health care professionals with and without previous COVID-19. EBioMedicine. 2021;70:103539. doi: 10.1016/j.ebiom.2021.103539. PubMed DOI PMC
Zurac S., Nichita L., Mateescu B., Mogodici C., Bastian A., Popp C., Cioplea M., Socoliu C., Constantin C., Neagu M. COVID-19 vaccination and IgG and IgA antibody dynamics in healthcare workers. Mol. Med. Rep. 2021;24:578. doi: 10.3892/mmr.2021.12217. PubMed DOI PMC
Schrezenmeier E., Bergfeld L., Hillus D., Lippert J.D., Weber U., Tober-Lau P., Landgraf I., Schwarz T., Kappert K., Stefanski A.L., et al. Immunogenicity of COVID-19 Tozinameran Vaccination in Patients on Chronic Dialysis. Front. Immunol. 2021;12:690698. doi: 10.3389/fimmu.2021.690698. PubMed DOI PMC
Wang J., Hou Z., Liu J., Gu Y., Wu Y., Chen Z., Ji J., Diao S., Qiu Y., Zou S., et al. Safety and immunogenicity of COVID-19 vaccination in patients with non-alcoholic fatty liver disease (CHESS2101): A multicenter study. J. Hepatol. 2021;75:439–441. doi: 10.1016/j.jhep.2021.04.026. PubMed DOI PMC
Tretyn A., Szczepanek J., Skorupa M., Jarkiewicz-Tretyn J., Sandomierz D., Dejewska J., Ciechanowska K., Jarkiewicz-Tretyn A., Koper W., Pałgan K. Differences in the Concentration of Anti-SARS-CoV-2 IgG Antibodies Post-COVID-19 Recovery or Post-Vaccination. Cells. 2021;10:1952. doi: 10.3390/cells10081952. PubMed DOI PMC
Kocagoz T., Can O., Yurttutan Uyar N., Aksoy E., Polat T., Cankaya D., Karakus B., Mozioglu E., Kocagoz S. Simple concentration method enables the use of gargle and mouthwash instead of nasopharyngeal swab sampling for the diagnosis of COVID-19 by PCR. Eur. J. Clin. Microbiol. Infect. Dis. 2021;40:2617–2622. doi: 10.1007/s10096-021-04326-y. PubMed DOI PMC
Pohanka M. Point-of-care diagnosis of COVID-19 disease based on antigen tests. Bratisl. Med. J. 2021;122:763–770. doi: 10.4149/BLL_2021_122. PubMed DOI
Pohanka M. COVID-19 molecular level laboratory diagnoses. Bratisl. Med. J. 2021;122:11–17. doi: 10.4149/BLL_2021_025. PubMed DOI
Pandolfi L., Fossali T., Frangipane V., Bozzini S., Morosini M., D’Amato M., Lettieri S., Urtis M., Di Toro A., Saracino L., et al. Broncho-alveolar inflammation in COVID-19 patients: A correlation with clinical outcome. BMC Pulm. Med. 2020;20:301. doi: 10.1186/s12890-020-01343-z. PubMed DOI PMC
Zhang Y., Ong C.M., Yun C., Mo W., Whitman J.D., Lynch K.L., Wu A.H.B. Diagnostic Value of Nucleocapsid Protein in Blood for SARS-CoV-2 Infection. Clin. Chem. 2021;68:240–248. doi: 10.1093/clinchem/hvab148. PubMed DOI PMC
Thudium R.F., Stoico M.P., Høgdall E., Høgh J., Krarup H.B., Larsen M.A.H., Madsen P.H., Nielsen S.D., Ostrowski S.R., Palombini A., et al. Early Laboratory Diagnosis of COVID-19 by Antigen Detection in Blood Samples of the SARS-CoV-2 Nucleocapsid Protein. J. Clin. Microbiol. 2021;59:e0100121. doi: 10.1128/JCM.01001-21. PubMed DOI PMC
Cady N.C., Tokranova N., Minor A., Nikvand N., Strle K., Lee W.T., Page W., Guignon E., Pilar A., Gibson G.N. Multiplexed detection and quantification of human antibody response to COVID-19 infection using a plasmon enhanced biosensor platform. Biosens. Bioelectron. 2021;171:112679. doi: 10.1016/j.bios.2020.112679. PubMed DOI PMC
Schasfoort R.B.M., van Weperen J., van Amsterdam M., Parisot J., Hendriks J., Koerselman M., Karperien M., Mentink A., Bennink M., Krabbe H., et al. High throughput surface plasmon resonance imaging method for clinical detection of presence and strength of binding of IgM, IgG and IgA antibodies against SARS-CoV-2 during CoViD-19 infection. MethodsX. 2021;8:17. doi: 10.1016/j.mex.2021.101432. PubMed DOI PMC
Masterson A.N., Sardar R. Selective Detection and Ultrasensitive Quantification of SARS-CoV-2 IgG Antibodies in Clinical Plasma Samples Using Epitope-Modified Nanoplasmonic Biosensing Platforms. ACS Appl. Mater. Interfaces. 2022;14:26517–26527. doi: 10.1021/acsami.2c06599. PubMed DOI PMC
Bao L.L., Park J., Shim S., Yoneda M., Kai C., Kim B., Ieee A rapid COVID-19 diagnostic device integrating porous microneedles and the paper-based immunoassay biosensor; Proceedings of the 10th IEEE CPMT Symposium Japan (ICSJ); Kyoto, Japan. 10–12 November 2021; pp. 164–167. DOI
Mattioli I.A., Castro K.R., Macedo L.J.A., Sedenho G.C., Oliveira M.N., Todeschini I., Vitale P.M., Ferreira S.C., Manuli E.R., Pereira G.M., et al. Graphene-based hybrid electrical-electrochemical point-of-care device for serologic COVID-19 diagnosis. Biosens. Bioelectron. 2022;199:113866. doi: 10.1016/j.bios.2021.113866. PubMed DOI PMC
Song D., Liu J.Y., Xu W.J., Han X.Z., Wang H.L., Cheng Y., Zhuo Y.X., Long F. Rapid and quantitative detection of SARS-CoV-2 IgG antibody in serum using optofluidic point-of-care testing fluorescence biosensor. Talanta. 2021;235:122800. doi: 10.1016/j.talanta.2021.122800. PubMed DOI PMC
Xu W.J., Liu J.Y., Song D., Li C.S., Zhu A.N., Long F. Rapid, label-free, and sensitive point-of-care testing of anti-SARS-CoV-2 IgM/IgG using all-fiber Fresnel reflection microfluidic biosensor. Microchim. Acta. 2021;188:261. doi: 10.1007/s00604-021-04911-0. PubMed DOI PMC
Chen M.R., Cui D.Z., Zhao Z.Y., Kang D., Li Z., Albawardi S., Alsageer S., Alamri F., Alhazmi A., Amer M.R., et al. Highly sensitive, scalable, and rapid SARS-CoV-2 biosensor based on In2O3 nanoribbon transistors and phosphatase. Nano Res. 2022;15:5510–5516. doi: 10.1007/s12274-022-4190-0. PubMed DOI PMC
Yang H.S., Racine-Brzostek S.E., Karbaschi M., Yee J., Dillard A., Steel P.A.D., Lee W.T., McDonough K.A., Qiu Y., Ketas T.J., et al. Testing-on-a-probe biosensors reveal association of early SARS-CoV-2 total antibodies and surrogate neutralizing antibodies with mortality in COVID-19 patients. Biosens. Bioelectron. 2021;178:113008. doi: 10.1016/j.bios.2021.113008. PubMed DOI PMC
Racine-Brzostek S.E., Karbaschi M., Gaebler C., Klasse P.J., Yee J., Caskey M., Yang H.S., Hao Y., Sukhu A., Rand S., et al. TOP-Plus Is a Versatile Biosensor Platform for Monitoring SARS-CoV-2 Antibody Durability. Clin. Chem. 2021;67:1249–1258. doi: 10.1093/clinchem/hvab069. PubMed DOI PMC
Pohanka M. Piezoelectric Immunosensor for the Determination of Immunoglobulin G. Int. J. Electrochem. Sc. 2018;13:8784–8791. doi: 10.20964/2018.09.01. DOI
Li H., Long M., Su H.Y., Tan L., Shi X.W., Du Y.M., Luo Y., Deng H.B. Carboxymethyl chitosan assembled piezoelectric biosensor for rapid and label-free quantification of immunoglobulin Y. Carbohydr. Polym. 2022;290:119482. doi: 10.1016/j.carbpol.2022.119482. PubMed DOI
Zhou L.J., Kato F., Ogi H. Sensitive label-free immunoglobulin G detection using a MEMS quartz crystal microbalance biosensor with a 125 MHz wireless quartz resonator. Jpn. J. Appl. Phys. 2021;60:4. doi: 10.35848/1347-4065/abea50. DOI
Liu Y., Yu X., Zhao R., Shangguan D.H., Bo Z.Y., Liu G.Q. Real time kinetic analysis of the interaction between immunoglobulin G and histidine using quartz crystal microbalance biosensor in solution. Biosens. Bioelectron. 2003;18:1419–1427. doi: 10.1016/S0956-5663(03)00090-3. PubMed DOI
Mandal D., Indaleeb M.M., Younan A., Banerjee S. Piezoelectric point-of-care biosensor for the detection of SARS-COV-2 (COVID-19) antibodies. Sens. Bio-Sens. Res. 2022;37:100510. doi: 10.1016/j.sbsr.2022.100510. PubMed DOI PMC
Kim W., Kim S., Han J., Kim T.G., Bang A., Choi H.W., Min G.E., Shin J.H., Moon S.W., Choi S. An excitation wavelength-optimized, stable SERS biosensing nanoplatform for analyzing adenoviral and AstraZeneca COVID-19 vaccination efficacy status using tear samples of vaccinated individuals. Biosens. Bioelectron. 2022;204:114079. doi: 10.1016/j.bios.2022.114079. PubMed DOI PMC
Wu Q., Wu W., Chen F.F., Ren P. Highly sensitive and selective surface plasmon resonance biosensor for the detection of SARS-CoV-2 spike S1 protein. Analyst. 2022;147:2809–2818. doi: 10.1039/D2AN00426G. PubMed DOI
Kumar A., Kumar A., Srivastava S.K. Silicon Nitride-BP-Based Surface Plasmon Resonance Highly Sensitive Biosensor for Virus SARS-CoV-2 Detection. Plasmonics. 2022;17:1065–1077. doi: 10.1007/s11468-021-01589-1. PubMed DOI PMC
Saad Y., Gazzah M.H., Mougin K., Selmi M., Belmabrouk H. Sensitive Detection of SARS-CoV-2 Using a Novel Plasmonic Fiber Optic Biosensor Design. Plasmonics. 2022;17:1489–1500. doi: 10.1007/s11468-022-01639-2. PubMed DOI PMC
Cennamo N., Pasquardini L., Arcadio F., Lunelli L., Vanzetti L., Carafa V., Altucci L., Zeni L.G. SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor. Talanta. 2021;233:122532. doi: 10.1016/j.talanta.2021.122532. PubMed DOI PMC
Zheng Y.Q., Bian S.M., Sun J.C., Wen L.Y., Rong G.G., Sawan M. Label-Free LSPR-Vertical Microcavity Biosensor for On-Site SARS-CoV-2 Detection. Biosensors. 2022;12:151. doi: 10.3390/bios12030151. PubMed DOI PMC
Peng Y., Pan Y.H., Sun Z.W., Li J.L., Yi Y.X., Yang J., Li G.X. An electrochemical biosensor for sensitive analysis of the SARS-CoV-2 RNA. Biosens. Bioelectron. 2021;186:113309. doi: 10.1016/j.bios.2021.113309. PubMed DOI PMC
Gutierrez-Galvez L., del Cano R., Menendez-Luque I., Garcia-Nieto D., Rodriguez-Pena M., Luna M., Pineda T., Pariente F., Garcia-Mendiola T., Lorenzo E. Electrochemiluminescent nanostructured DNA biosensor for SARS-CoV-2 detection. Talanta. 2022;240:123203. doi: 10.1016/j.talanta.2021.123203. PubMed DOI PMC
Forinova M., Pilipenco A., Visova I., Kuncak J., Lynn N.S., Yudin P., Dostalek J., Honig V., Palus M., Maskova H., et al. Biosensor for rapid detection of SARS-CoV-2 in real-world samples; Proceedings of the 20th IEEE Sensors Conference; Sydney, Australia. 31 October–3 November 2021; DOI
Park S., Kim H., Woo K., Kim J.M., Jo H.J., Jeong Y., Lee K.H. SARS-CoV-2 Variant Screening Using a Virus-Receptor-Based Electrical Biosensor. Nano Lett. 2022;22:50–57. doi: 10.1021/acs.nanolett.1c03108. PubMed DOI
Lee J.H., Jung Y., Lee S.K., Kim J., Lee C.S., Kim S., Lee J.S., Kim N.H., Kim H.G. Rapid Biosensor of SARS-CoV-2 Using Specific Monoclonal Antibodies Recognizing Conserved Nucleocapsid Protein Epitopes. Viruses. 2022;14:255. doi: 10.3390/v14020255. PubMed DOI PMC
Kim H.Y., Lee J.H., Kim M.J., Park S.C., Choi M., Lee W., Ku K.B., Kim B.T., Park E.C., Kim H.G., et al. Development of a SARS-CoV-2-specific biosensor for antigen detection using scFv-Fc fusion proteins. Biosens. Bioelectron. 2021;175:112868. doi: 10.1016/j.bios.2020.112868. PubMed DOI PMC
Kim S., Ryu H., Tai S., Pedowitz M., Rzasa J.R., Pennachio D.J., Hajzus J.R., Milton D.K., Myers-Ward R., Daniels K.M. Real-time ultra-sensitive detection of SARS-CoV-2 by quasi-freestanding epitaxial graphene-based biosensor. Biosens. Bioelectron. 2022;197:113803. doi: 10.1016/j.bios.2021.113803. PubMed DOI PMC
Yakoh A., Pimpitak U., Rengpipat S., Hirankarn N., Chailapakul O., Chaiyo S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens. Bioelectron. 2021;176:112912. doi: 10.1016/j.bios.2020.112912. PubMed DOI PMC