Bayesian inference supports the host selection hypothesis in explaining adaptive host specificity by European bitterling
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27888335
PubMed Central
PMC5306149
DOI
10.1007/s00442-016-3780-5
PII: 10.1007/s00442-016-3780-5
Knihovny.cz E-resources
- Keywords
- Brood parasite, Host–parasite co-evolution, Oviposition, Spawning site, Superparasitism,
- MeSH
- Bayes Theorem MeSH
- Cyprinidae MeSH
- Host Specificity * MeSH
- Host-Parasite Interactions * MeSH
- Parasites MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Generalist parasites have the capacity to infect multiple hosts. The temporal pattern of host specificity by generalist parasites is rarely studied, but is critical to understanding what variables underpin infection and thereby the impact of parasites on host species and the way they impose selection on hosts. Here, the temporal dynamics of infection of four species of freshwater mussel by European bitterling fish (Rhodeus amarus) was investigated over three spawning seasons. Bitterling lay their eggs in the gills of freshwater mussels, which suffer reduced growth, oxygen stress, gill damage and elevated mortality as a result of parasitism. The temporal pattern of infection of mussels by European bitterling in multiple populations was examined. Using a Bernoulli Generalized Additive Mixed Model with Bayesian inference it was demonstrated that one mussel species, Unio pictorum, was exploited over the entire bitterling spawning season. As the season progressed, bitterling showed a preference for other mussel species, which were inferior hosts. Temporal changes in host use reflected elevated density-dependent mortality in preferred hosts that were already infected. Plasticity in host specificity by bitterling conformed with the predictions of the host selection hypothesis. The relationship between bitterling and their host mussels differs qualitatively from that of avian brood parasites.
See more in PubMed
Bauer G. The adaptive value of offspring size among freshwater mussels (Bivalvia; Unionoidea) J Anim Ecol. 1994;1:933–944. doi: 10.2307/5270. DOI
Briskie JV, Sealy SG, Hobson KA. Differential parasitism of least flycatchers and yellow warblers by the brown-headed cowbird. Behav Ecol Sociobiol. 1990;27:403–410. doi: 10.1007/BF00164066. DOI
Briskie JV, Sealy SG, Hobson KA. Behavioral defenses against avian brood parasitism in sympatric and allopatric host populations. Evolution. 1992;46:334–340. doi: 10.2307/2409854. PubMed DOI
Brooker LC, Brooker MG. Why are cuckoos host specific? Oikos. 1990;57:301–309. doi: 10.2307/3565958. DOI
Bryja J, Smith C, Reichard M. Range-wide population genetic structure of the European bitterling based on microsatellites and mtDNA. Mol Ecol. 2010;19:4708–4722. doi: 10.1111/j.1365-294X.2010.04844.x. PubMed DOI
Burnham KP, Anderson DR. P values are only an index to evidence: 20th-vs. 21st-century statistical science. Ecology. 2014;95:627–630. doi: 10.1890/13-1066.1. PubMed DOI
Chang C-H, Li F, Shao K-T, Lin Y-S, Morosawa T, Kim S, Koo H, Kim W, Lee J-S, He S, Smith C, Reichard M, Miya M, Chen W-J, Mayden RL. Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species. Mol Phylogenet Evol. 2014;81:182–194. doi: 10.1016/j.ympev.2014.08.026. PubMed DOI
Davies N. Cuckoo: cheating by nature. London: Bloomsbury; 2015.
Detwiler JT, Minchella DJ. Intermediate host availability masks the strength of experimentally-derived colonisation patterns in echinostome trematodes. Int J Parasitol. 2009;39:585–590. doi: 10.1016/j.ijpara.2008.10.008. PubMed DOI
Feeney WE, Welbergen JA, Langmore NE. Advances in the study of coevolution between avian brood parasites and their hosts. Ann Rev Ecol Evol Syst. 2014;45:227–246. doi: 10.1146/annurev-ecolsys-120213-091603. DOI
Giorgi MS, Arlettaz R, Guillaume F, Nusslé S, Ossola C, Vogel P, Christe P. Causal mechanisms underlying host specificity in bat ectoparasites. Oecologia. 2004;138:648–654. doi: 10.1007/s00442-003-1475-1. PubMed DOI
Honza M, Taborsky B, Taborsky M, Teuschl Y, Vogl W, Moksnes A, Røskaft E. Behaviour of female common cuckoo Cuculus canorus, in the vicinity of host nests before and during egg laying: a radiotelemetry study. Anim Behav. 2002;64:861–868. doi: 10.1006/anbe.2002.1969. DOI
Hoover JP, Brittingham MC. Regional variation in cowbird parasitism of wood thrushes. Wilson Bull. 1993;105:228–238.
Hornbach DJ, Deneka T. A comparison of a qualitative and a quantitative collection method for examining freshwater mussel assemblages. J N Am Benthol Soc. 1996;1:587–596. doi: 10.2307/1467809. DOI
Ieno EN, Zuur AF. Data exploration and visualisation with R. Newburgh: Highland Statistics Ltd; 2015.
Kaltz O, Shykoff JA. Local adaptation in host–parasite systems. Heredity. 1998;81:361–370. doi: 10.1046/j.1365-2540.1998.00435.x. DOI
Karplus I. Symbiosis in fishes: the biology of interspecific partnerships. Oxford: Wiley-Blackwell; 2014.
Kawamura K, Ueda T, Arai R, Smith C. Phylogenetic relationships of bitterling fishes (Teleostei: Cypriniformes: Acheilognathinae), inferred from mitochondrial cytochrome b sequences. Zool Sci. 2014;31:321–341. doi: 10.2108/zs130233. PubMed DOI
Kitamura J, Nagata N, Nakajima J, Sota T. Divergence of ovipositor length and egg shape in a brood parasitic bitterling fish through the use of different mussel hosts. J Evol Biol. 2012;25:566–573. doi: 10.1111/j.1420-9101.2011.02453.x. PubMed DOI
Kruschke JK. Doing Bayesian data analysis. London: Academic Press; 2015.
Liu H, Yurong Z, Reichard M, Smith C. Evidence of host specificity and congruence between phylogenies of bitterlings and freshwater mussels. Zool Stud. 2006;45:428–434.
Lopes-Lima M, Teixeira A, Froufe E, Lopes A, Varandas S, Sousa R. Biology and conservation of freshwater bivalves: past, present and future perspectives. Hydrobiologia. 2014;735:1–13. doi: 10.1007/s10750-014-1902-9. DOI
Lopes-Lima M, Froufe E, Ghamizi M, Mock KE, Kebapçi Ü, Klishko O, Kovitvadhi S, Kovitvadhi U, Paulo OS, Pfeiffer JM, Raley M, Riccardi N, Şereflişan H, Sousa R, Teixeira A, Varandas S, Wu X, Zanatta DT, Zieritz A, Bogan AE. Phylogeny of the most species rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): Defining modern subfamilies and tribes. Mol Phyl Evol. 2017;106:174–191. doi: 10.1016/j.ympev.2016.08.021. PubMed DOI
Mason P. Brood parasitism in a host generalist, the shiny cowbird: II. Host selection. Auk. 1986;103:61–69.
Medina I, Langmore NE. The evolution of host specialisation in avian brood parasites. Ecol Lett. 2016;19:1110–1118. doi: 10.1111/ele.12649. PubMed DOI
Mendlová M, Šimková A. Evolution of host specificity in monogeneans parasitizing African cichlid fish. Parasit Vectors. 2014;7:69. doi: 10.1186/1756-3305-7-69. PubMed DOI PMC
Miller AC, Payne BS. Qualitative versus quantitative sampling to evaluate population and community characteristics at a large-river mussel bed. Am Midl Nat. 1993;1:133–145. doi: 10.2307/2426282. DOI
Pateman-Jones C, Rasotto MB, Reichard M, Liao C, Liu H, Zięba G, Smith C. Variation in male reproductive traits among three bitterling fishes (Acheilognathinae: Cyprinidae) in relation to mating system. Biol J Linn Soc. 2011;103:622–632. doi: 10.1111/j.1095-8312.2011.01648.x. DOI
Patten MA, Reinking DL, Wolfe DH. Hierarchical cues in brood parasite nest selection. J Ornithol. 2011;152:521–532. doi: 10.1007/s10336-010-0608-7. DOI
Payne RB. Avian brood parasitism. Host-parasite evolution: general principles and avian models. In: Clayton DH, Moore J, editors. Host-parasite evolution: general principles and avian models. Oxford: Oxford University Press; 1997. pp. 338–369.
Poulin R. Evolutionary ecology of parasites. Princeton: Princeton University Press; 2011.
Poulin R, Krasnov BR, Mouillot D. Host specificity in phylogenetic and geographic space. Trends Parasitol. 2011;27:355–361. doi: 10.1016/j.pt.2011.05.003. PubMed DOI
R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Reichard M, Ondračková M, Przybylski M, Liu H, Smith C. The costs and benefits in an unusual symbiosis: experimental evidence that bitterling fish (Rhodeus sericeus) are parasites of unionid mussels in Europe. J Evol Biol. 2006;19:788–796. doi: 10.1111/j.1420-9101.2005.01051.x. PubMed DOI
Reichard M, Liu H, Smith C. The co-evolutionary relationship between bitterling fishes and freshwater mussels: insights from interspecific comparisons. Evol Ecol Res. 2007;9:1–21.
Reichard M, Przybylski M, Kaniewska P, Liu H, Smith C. A possible evolutionary lag in the relationship between freshwater mussels and European bitterling. J Fish Biol. 2007;70:709–725. doi: 10.1111/j.1095-8649.2007.01333.x. DOI
Reichard M, Smith C, Bryja P. Seasonal change in the opportunity for sexual selection. Mol Ecol. 2008;17:642–651. doi: 10.1111/j.1365-294X.2007.03602.x. PubMed DOI
Reichard M, Ondračová M, Bryjova A, Smith C, Bryja J. Breeding resource distribution affects selection gradients on male phenotypic traits: experimental study on lifetime reproductive success in the bitterling fish (Rhodeus amarus) Evolution. 2009;63:377–390. doi: 10.1111/j.1558-5646.2008.00572.x. PubMed DOI
Reichard M, Polačik M, Tarkan AS, Spence R, Gaygusuz Ö, Ercan E, Ondračková M, Smith C. The bitterling–mussel coevolutionary relationship in areas of recent and ancient sympatry. Evolution. 2010;64:3047–3056. PubMed
Reichard M, Vrtílek M, Douda K, Smith C. An invasive species causes role reversal in a host-parasite relationship. Biol Lett. 2012;8:601–604. doi: 10.1098/rsbl.2011.1234. PubMed DOI PMC
Reichard M, Douda K, Przybylski M, Popa OP, Karbanová E, Matasová K, Rylková K, Polačik M, Blažek R, Smith C. Population-specific responses to an invasive species. Proc R Soc Lond B. 2015;282:20151063. doi: 10.1098/rspb.2015.1063. PubMed DOI PMC
Shimizu A, Aida K, Hanyu I. Effects of photoperiod and temperature on gonadal activity and plasma steroid levels in an autumn-spawning bitterling, Acheilognathus rhombea, during different phases of its annual reproductive cycle. Gen Comp Endocrinol. 1994;93:137–150. doi: 10.1006/gcen.1994.1016. PubMed DOI
Smith JN, Myers-Smith IH. Spatial variation in parasitism of song sparrows by brown-headed cowbirds. Oxf Ornithol Ser. 1998;9:296–312.
Smith C, Reichard M. A sperm competition model for the European bitterling (Rhodeus amarus) Behaviour. 2013;150:1709–1730. doi: 10.1163/1568539X-00003116. DOI
Smith C, Reynolds JD, Sutherland WJ. Adaptive host choice and avoidance of superparasitism in the spawning decisions of bitterling (Rhodeus sericeus) Behav Ecol Sociobiol. 2000;48:29–35. doi: 10.1007/s002650000212. DOI
Smith C, Reynolds JD, Sutherland WJ, Jurajda P. The population consequences of reproductive decisions. Proc R Soc Lond B. 2000;267:1327–1334. doi: 10.1098/rspb.2000.1146. PubMed DOI PMC
Smith C, Rippon K, Douglas A, Jurajda P. A proximate cue for oviposition site choice in the bitterling (Rhodeus sericeus) Freshw Biol. 2001;46:903–911. doi: 10.1046/j.1365-2427.2001.00725.x. DOI
Smith C, Reichard M, Jurajda P, Przybylski M. The reproductive ecology of the European bitterling (Rhodeus sericeus) J Zool. 2004;262:107–124. doi: 10.1017/S0952836903004497. DOI
Smith C, Warren M, Rouchet R, Reichard M. The function of multiple ejaculations in bitterling. J Evol Biol. 2014;27:1819–1829. doi: 10.1111/jeb.12432. PubMed DOI
Soler M. Long-term coevolution between avian brood parasites and their hosts. Biol Rev Camb Philos Soc. 2014;89:688–704. doi: 10.1111/brv.12075. PubMed DOI
Soler JJ, Møller AP, Soler M, Martínez JG. Interactions between a brood parasite and its host in relation to parasitism and immune defence. Evol Ecol Res. 1999;1:189–210.
Spence R, Smith C. Rose bitterling (Rhodeus ocellatus) embryos parasitise freshwater mussels by competing for nutrients and oxygen. Acta Zool. 2013;94:113–118. doi: 10.1111/j.1463-6395.2011.00532.x. DOI
Stadnichenko AP, Stadnichenko YA. On the effect of bitterling larvae on the lamellibranchid mollusc Unio rostratus gentilis Haas. Gidrobiol Zhurnal. 1980;1980:57–61.
Su Y-S, Yajima M (2012) R2jags: a package for running JAGS from R. http://CRAN.R-project.org/package=R2jags
Van Damme D, Bogutskaya N, Hoffmann RC, Smith C. The introduction of the European bitterling (Rhodeus amarus) to West and Central Europe. Fish Fish. 2007;8:79–106. doi: 10.1111/j.1467-2679.2007.00239.x. DOI
van Dijken MJ, Waage JK. Self and conspecific superparasitism by the egg parasitoid Trichogramma evanescens. Entomol Exp Appl. 1987;43:183–192. doi: 10.1111/j.1570-7458.1987.tb03604.x. DOI
Wand MP, Ormerod JT. On semiparametric regression with O’Sullivan penalized splines. Aust NZ J Stat. 2008;50:179–198. doi: 10.1111/j.1467-842X.2008.00507.x. DOI
Ward D, Smith JNM. Interhabitat differences in parasitism frequencies by brown-headed cowbirds in the Okanagan Valley, British Columbia. In: Smith JNM, Cook TL, Rothstein SI, Robinson SK, Sealy SG, editors. Ecology and management of cowbirds and their hosts. Austin: University of Texas Press; 2000. pp. 210–219.
Wiepkema PR. An ethological analysis of the reproductive behaviour of the bitterling (Rhodeus amarus Bloch) Arch Neerl Zool. 1961;14:103–199. doi: 10.1163/036551661X00052. DOI
Wootton RJ, Smith C. Reproductive biology of teleost fishes. Oxford: Wiley-Blackwell; 2015.
Zaki SAH, Jordan WC, Reichard M, Przybylski M, Smith C. A morphological and genetic analysis of the European bitterling species complex. Biol J Linn Soc. 2008;95:337–347. doi: 10.1111/j.1095-8312.2008.01050.x. DOI
Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. Mixed effects models and extensions in ecology with R. New York: Springer; 2009.
Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1:3–14. doi: 10.1111/j.2041-210X.2009.00001.x. DOI
Zuur AF, Saveliev AA, Ieno EN. A beginner’s guide to generalised additive mixed models with R. Newburgh: Highland Statistics Ltd; 2014.