Population-specific responses to an invasive species
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26180070
PubMed Central
PMC4528524
DOI
10.1098/rspb.2015.1063
PII: rspb.2015.1063
Knihovny.cz E-zdroje
- Klíčová slova
- Anodonta woodiana, alien species, glochidia, host–parasite dynamics, intraspecific variation, symbiosis,
- MeSH
- Anodonta genetika růst a vývoj fyziologie MeSH
- Cyprinidae parazitologie fyziologie MeSH
- interakce hostitele a parazita MeSH
- kladení vajíček * MeSH
- larva genetika růst a vývoj fyziologie MeSH
- rozmnožování MeSH
- učení vyhýbat se * MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling-mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions.
Department of Ecology and Vertebrate Zoology University of Łodz Banacha 12 16 Łodz 90 237 Poland
Grigore Antipa National Museum of Natural History Kiseleff Street no 1 Bucharest 011341 Romania
Zobrazit více v PubMed
Blackburn TM, et al. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12, e1001850. (10.1371/journal.pbio.1001850) PubMed DOI PMC
Lockwood JL, Hoopes ML, Marchetti MP. 2013. Invasion ecology, 2nd edn New York, NY: Wiley-Blackwell.
Simberloff D, et al. 2013. Impacts of biological invasions: what's what and the way forward. Trends Ecol. Evol. 28, 58–66. (10.1016/j.tree.2012.07.013) PubMed DOI
Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL. 2013. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83, 263–282. (10.1890/13-0183.1) DOI
Jeschke JM, et al. 2014. Defining the impact of non-native species. Conserv. Biol. 28, 1188–1194. (10.1111/cobi.12299) PubMed DOI PMC
Strayer DL. 2012. Eight questions about invasions and ecosystem functioning. Ecol. Lett. 15, 1199–1210. (10.1111/j.1461-0248.2012.01817.x) PubMed DOI
Hulme PE, Pyšek P, Jarošík V, Pergl J, Schaffner U, Vilà M. 2013. Bias and error in understanding plant invasion impacts. Trends Ecol. Evol. 28, 212–218. (10.1016/j.tree.2012.10.010) PubMed DOI
Shine R. 2012. Invasive species as drivers of evolutionary change: cane toads in tropical Australia. Evol. Appl. 5, 107–116. (10.1111/j.1752-4571.2011.00201.x) PubMed DOI PMC
Prior KM, Robinson JM, Dunphy SAM, Frederickson ME. 2015. Mutualism between co-introduced species facilitates invasion and alters plant community structure. Proc. R. Soc. B 282, 20142846 (10.1098/rspb.2014.2846) PubMed DOI PMC
Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB. 2014. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466. (10.1126/science.1257008) PubMed DOI
Saltonstall K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl Acad. Sci. USA 99, 2445–2449. (10.1073/pnas.032477999) PubMed DOI PMC
Chang CH, et al. 2014. Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species. Mol. Phyl. Evol. 81C, 182–194. (10.1016/j.ympev.2014.08.026) PubMed DOI
Reichard M, Liu H, Smith C. 2007. The co-evolutionary relationship between bitterling fishes and freshwater mussels: insights from interspecific comparisons. Evol. Ecol. Res. 9, 239–259.
Kitamura J, Nagata N, Nakajima J, Sota T. 2012. Divergence of ovipositor length and egg shape in a brood parasitic bitterling fish through the use of different mussel hosts. J. Evol. Biol. 25, 566–573. (10.1111/j.1420-9101.2011.02453.x) PubMed DOI
Reichard M, Bryja J, Polačik M, Smith C. 2011. No evidence for host specialization or host-race formation in the European bitterling (Rhodeus amarus), a fish that parasitizes freshwater mussels. Mol. Ecol. 20, 3631–3643. (10.1111/j.1365-294X.2011.05198.x) PubMed DOI
Smith C, Reichard M, Jurajda P, Przybylski M. 2004. The reproductive ecology of the European bitterling (Rhodeus sericeus). J. Zool. 262, 107–124. (10.1017/S0952836903004497) DOI
Mills SC, Reynolds JD. 2002. Host species preferences by bitterling, Rhodeus sericeus, spawning in freshwater mussels and consequences for offspring survival. Anim. Behav. 63, 1029–1036. (10.1006/anbe.2001.1988) DOI
Reichard M, Polačik M, Tarkan AS, Spence R, Gaygusuz O, Ercan E, Ondračková M, Smith C. 2010. The bitterling mussel coevolutionary relationship in areas of recent and ancient sympatry. Evolution 64, 3047–3056. (10.1111/j.1558-5646.2010.01032.x) PubMed DOI
Fritts MW, Fritts AK, Carleton SA, Bringolf RB. 2013. Shifts in stable-isotope signatures confirm parasitic relationship of freshwater mussel glochidia attached to host fish. J. Mollusc. Stud. 79, 163–167. (10.1093/mollus/eyt008) DOI
Barnhart MC, Haag WR, Roston WN. 2008. Adaptations to host infection and larval parasitism in Unionoida. J. North Am. Benthol. Soc. 27, 370–394. (10.1899/07-093.1) DOI
Douda K, Sell J, Kubíková-Peláková L, Horký P, Kaczmarczyk A, Mioduchowska M. 2014. Host compatibility as a critical factor in management unit recognition: population-level differences in mussel-fish relationships. J. Appl. Ecol. 51, 1085–1095. (10.1111/1365-2664.12264) DOI
Bohlen J, Šlechtová V, Bogutskaya N, Freyhof J. 2006. Across Siberia and over Europe: phylogenetic relationships of the freshwater fish genus Rhodeus in Europe and the phylogenetic position of R sericeus from the River Amur. Mol. Phyl. Evol. 40, 856–865. (10.1016/j.ympev.2006.04.020) PubMed DOI
Bryja J, Smith C, Konečný A, Reichard M. 2010. Range-wide population genetic structure of the European bitterling (Rhodeus amarus) based on microsatellite and mitochondrial DNA analysis. Mol. Ecol. 19, 4708–4722. (10.1111/j.1365-294X.2010.04844.x) PubMed DOI
Kawamura K, Ueda T, Arai R, Smith C. 2014. Phylogenetic relationships of bitterling fishes (Teleostei: Cypriniformes: Acheilognathinae), inferred from mitochondrial cytochrome b sequences. Zool. Sci. 31, 321–329. (10.2108/zs130233) PubMed DOI
Holčík J. 1999. Rhodeus sericeus In The freshwater fishes of Europe 5/I. Cyprinidae 2, Part I (ed. Banarescu PM.), pp. 1–32. Wiebelsheim, Germany: AULA-Verlag.
Van Damme D, Bogutskaya N, Hoffmann RC, Smith C. 2007. The introduction of the European bitterling Rhodeus amarus to west and central Europe. Fish Fish. 8, 79–106. (10.1111/j.1467-2679.2007.00239.x) DOI
Reynolds JD, Debuse VJ, Aldridge DC. 1997. Host specialisation in an unusual symbiosis: European bitterlings spawning in freshwater mussels. Oikos 78, 539–545. (10.2307/3545615) DOI
Blažek R, Gelnar M. 2006. Temporal and spatial distribution of glochidial larval stages of European unionid mussels (Mollusca: Unionidae) on host fishes. Folia Parasitol. 53, 98–106. (10.14411/fp.2006.013) PubMed DOI
Reichard M, Ondračková M, Przybylski M, Liu HZ, Smith C. 2006. The costs and benefits in an unusual symbiosis: experimental evidence that bitterling fish (Rhodeus sericeus) are parasites of unionid mussels in Europe. J. Evol. Biol. 19, 788–796. (10.1111/j.1420-9101.2005.01051.x) PubMed DOI
Watters GT. 1997. A synthesis and review of the expanding range of the Asian freshwater mussel Anodonta woodiana (Lea, 1834) (Bivalvia: Unionidae). Veliger 40, 152–156.
Kondo T, Yamashita J, Kano M. 1984. Breeding ecology of five species of bitterling (Pisces: Cyprinidae) in a small creek. Physiol. Ecol. Jpn 21, 53–62.
Kraszewski A, Zdanowski B. 2007. Sinanodonta woodiana (Lea, 1834) (Mollusca) – a new mussel species in Poland: occurrence and habitat preferences in a heated lake system. Polish J. Ecol. 55, 337–356.
Douda K, Vrtílek M, Slavík O, Reichard M. 2012. The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biol. Inv. 14, 127–137. (10.1007/s10530-011-9989-7) DOI
Reichard M, Przybylski M, Kaniewska P, Liu HZ, Smith C. 2007. A possible evolutionary lag in the relationship between freshwater mussels and European bitterling. J. Fish. Biol. 70, 709–725. (10.1111/j.1095-8649.2007.01333.x) DOI
Reichard M, Vrtílek M, Douda K, Smith C. 2012. An invasive species reverses the roles in a host–parasite relationship between bitterling fish and unionid mussels. Biol. Lett. 8, 601–604. (10.1098/rsbl.2011.1234) PubMed DOI PMC
Smith C, Reynolds JD, Sutherland WJ. 2000. Adaptive host choice and avoidance of superparasitism in the spawning decisions of bitterling (Rhodeus sericeus). Behav. Ecol. Sociobiol. 48, 29–35. (10.1007/s002650000212) DOI
Beran L. 2013. Freshwater molluscs of the Dyje (Thaya) River and its tributaries: the role of these water bodies in expansion of alien species and as a refuge for endangered gastropods and bivalves. Fol. Malacol. 21, 143–160. (10.12657/folmal.021.018) DOI
Jurajda P. 1999. Comparative nursery habitat use by 0+ fish in a modified lowland river. Regul. Riv. 15, 113–124. (10.1002/(SICI)1099-1646(199901/06) DOI
Pyšek P, et al. 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737. (10.1111/j.1365-2486.2011.02636.x) DOI
Tanaka S, Nishida T, Ohsaki N. 2007. Sequential rapid adaptation of indigenous parasitoid wasps to the invasive butterfly Pieris brassicae. Evolution 61, 1791–1802. (10.1111/j.1558-5646.2007.00165.x) PubMed DOI
Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL. 2010. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13, 1459–1474. (10.1111/j.1461-0248.2010.01538.x) PubMed DOI
Thompson JN. 1994. The coevolutionary process. Chicago, IL: University Chicago Press.
Taraschewski H. 2006. Hosts and parasites as aliens. J. Helminthol. 80, 99–128. (10.1079/JOH2006364) PubMed DOI
Hein JL, Arnott SA, Roumillat WA, Allen DM, de Buron I. 2014. Invasive swimbladder parasite Anguillicoloides crassus: infection status 15 years after discovery in wild populations of American eel Anguilla rostrata. Dis. Aquat. Organ. 107, 199–209. (10.3354/dao02686) PubMed DOI
Bakke TA, Harris PD, Cable J. 2002. Host specificity dynamics: observations on gyrodactylid monogeneans. Int. J. Parasitol. 32, 281–308. (10.1016/S0020-7519(01)00331-9) PubMed DOI
Miyake T, Nakajima J, Onikura N, Ikemoto S, Iguchi KI, Komaru A, Kawamura K. 2011. The genetic status of two subspecies of Rhodeus atremius, an endangered bitterling in Japan. Conserv. Genet. 12, 383–400. (10.1007/s10592-010-0146-0) DOI
Strayer DL, Eviner VT, Jeschke JM, Pace ML. 2006. Understanding the long-term effects of species invasions. Trends Ecol. Evol. 21, 645–651. (10.1016/j.tree.2006.07.007) PubMed DOI
Dostál P, Müllerová J, Pyšek P, Pergl J, Klinerová T. 2013. The impact of an invasive plant changes over time. Ecol. Lett. 16, 1277–1284. (10.1111/ele.12166) PubMed DOI
Lankau RA, Nuzzo V, Spyreas G, Davis AS. 2009. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl Acad. Sci. USA 106, 15 362–15 367. (10.1073/pnas.0905446106) PubMed DOI PMC
Intensity-dependent energetic costs in a reciprocal parasitic relationship