Population-specific responses to an invasive species

. 2015 Aug 07 ; 282 (1812) : 20151063.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26180070

Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling-mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions.

Zobrazit více v PubMed

Blackburn TM, et al. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12, e1001850. (10.1371/journal.pbio.1001850) PubMed DOI PMC

Lockwood JL, Hoopes ML, Marchetti MP. 2013. Invasion ecology, 2nd edn New York, NY: Wiley-Blackwell.

Simberloff D, et al. 2013. Impacts of biological invasions: what's what and the way forward. Trends Ecol. Evol. 28, 58–66. (10.1016/j.tree.2012.07.013) PubMed DOI

Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL. 2013. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83, 263–282. (10.1890/13-0183.1) DOI

Jeschke JM, et al. 2014. Defining the impact of non-native species. Conserv. Biol. 28, 1188–1194. (10.1111/cobi.12299) PubMed DOI PMC

Strayer DL. 2012. Eight questions about invasions and ecosystem functioning. Ecol. Lett. 15, 1199–1210. (10.1111/j.1461-0248.2012.01817.x) PubMed DOI

Hulme PE, Pyšek P, Jarošík V, Pergl J, Schaffner U, Vilà M. 2013. Bias and error in understanding plant invasion impacts. Trends Ecol. Evol. 28, 212–218. (10.1016/j.tree.2012.10.010) PubMed DOI

Shine R. 2012. Invasive species as drivers of evolutionary change: cane toads in tropical Australia. Evol. Appl. 5, 107–116. (10.1111/j.1752-4571.2011.00201.x) PubMed DOI PMC

Prior KM, Robinson JM, Dunphy SAM, Frederickson ME. 2015. Mutualism between co-introduced species facilitates invasion and alters plant community structure. Proc. R. Soc. B 282, 20142846 (10.1098/rspb.2014.2846) PubMed DOI PMC

Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB. 2014. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466. (10.1126/science.1257008) PubMed DOI

Saltonstall K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl Acad. Sci. USA 99, 2445–2449. (10.1073/pnas.032477999) PubMed DOI PMC

Chang CH, et al. 2014. Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species. Mol. Phyl. Evol. 81C, 182–194. (10.1016/j.ympev.2014.08.026) PubMed DOI

Reichard M, Liu H, Smith C. 2007. The co-evolutionary relationship between bitterling fishes and freshwater mussels: insights from interspecific comparisons. Evol. Ecol. Res. 9, 239–259.

Kitamura J, Nagata N, Nakajima J, Sota T. 2012. Divergence of ovipositor length and egg shape in a brood parasitic bitterling fish through the use of different mussel hosts. J. Evol. Biol. 25, 566–573. (10.1111/j.1420-9101.2011.02453.x) PubMed DOI

Reichard M, Bryja J, Polačik M, Smith C. 2011. No evidence for host specialization or host-race formation in the European bitterling (Rhodeus amarus), a fish that parasitizes freshwater mussels. Mol. Ecol. 20, 3631–3643. (10.1111/j.1365-294X.2011.05198.x) PubMed DOI

Smith C, Reichard M, Jurajda P, Przybylski M. 2004. The reproductive ecology of the European bitterling (Rhodeus sericeus). J. Zool. 262, 107–124. (10.1017/S0952836903004497) DOI

Mills SC, Reynolds JD. 2002. Host species preferences by bitterling, Rhodeus sericeus, spawning in freshwater mussels and consequences for offspring survival. Anim. Behav. 63, 1029–1036. (10.1006/anbe.2001.1988) DOI

Reichard M, Polačik M, Tarkan AS, Spence R, Gaygusuz O, Ercan E, Ondračková M, Smith C. 2010. The bitterling mussel coevolutionary relationship in areas of recent and ancient sympatry. Evolution 64, 3047–3056. (10.1111/j.1558-5646.2010.01032.x) PubMed DOI

Fritts MW, Fritts AK, Carleton SA, Bringolf RB. 2013. Shifts in stable-isotope signatures confirm parasitic relationship of freshwater mussel glochidia attached to host fish. J. Mollusc. Stud. 79, 163–167. (10.1093/mollus/eyt008) DOI

Barnhart MC, Haag WR, Roston WN. 2008. Adaptations to host infection and larval parasitism in Unionoida. J. North Am. Benthol. Soc. 27, 370–394. (10.1899/07-093.1) DOI

Douda K, Sell J, Kubíková-Peláková L, Horký P, Kaczmarczyk A, Mioduchowska M. 2014. Host compatibility as a critical factor in management unit recognition: population-level differences in mussel-fish relationships. J. Appl. Ecol. 51, 1085–1095. (10.1111/1365-2664.12264) DOI

Bohlen J, Šlechtová V, Bogutskaya N, Freyhof J. 2006. Across Siberia and over Europe: phylogenetic relationships of the freshwater fish genus Rhodeus in Europe and the phylogenetic position of R sericeus from the River Amur. Mol. Phyl. Evol. 40, 856–865. (10.1016/j.ympev.2006.04.020) PubMed DOI

Bryja J, Smith C, Konečný A, Reichard M. 2010. Range-wide population genetic structure of the European bitterling (Rhodeus amarus) based on microsatellite and mitochondrial DNA analysis. Mol. Ecol. 19, 4708–4722. (10.1111/j.1365-294X.2010.04844.x) PubMed DOI

Kawamura K, Ueda T, Arai R, Smith C. 2014. Phylogenetic relationships of bitterling fishes (Teleostei: Cypriniformes: Acheilognathinae), inferred from mitochondrial cytochrome b sequences. Zool. Sci. 31, 321–329. (10.2108/zs130233) PubMed DOI

Holčík J. 1999. Rhodeus sericeus In The freshwater fishes of Europe 5/I. Cyprinidae 2, Part I (ed. Banarescu PM.), pp. 1–32. Wiebelsheim, Germany: AULA-Verlag.

Van Damme D, Bogutskaya N, Hoffmann RC, Smith C. 2007. The introduction of the European bitterling Rhodeus amarus to west and central Europe. Fish Fish. 8, 79–106. (10.1111/j.1467-2679.2007.00239.x) DOI

Reynolds JD, Debuse VJ, Aldridge DC. 1997. Host specialisation in an unusual symbiosis: European bitterlings spawning in freshwater mussels. Oikos 78, 539–545. (10.2307/3545615) DOI

Blažek R, Gelnar M. 2006. Temporal and spatial distribution of glochidial larval stages of European unionid mussels (Mollusca: Unionidae) on host fishes. Folia Parasitol. 53, 98–106. (10.14411/fp.2006.013) PubMed DOI

Reichard M, Ondračková M, Przybylski M, Liu HZ, Smith C. 2006. The costs and benefits in an unusual symbiosis: experimental evidence that bitterling fish (Rhodeus sericeus) are parasites of unionid mussels in Europe. J. Evol. Biol. 19, 788–796. (10.1111/j.1420-9101.2005.01051.x) PubMed DOI

Watters GT. 1997. A synthesis and review of the expanding range of the Asian freshwater mussel Anodonta woodiana (Lea, 1834) (Bivalvia: Unionidae). Veliger 40, 152–156.

Kondo T, Yamashita J, Kano M. 1984. Breeding ecology of five species of bitterling (Pisces: Cyprinidae) in a small creek. Physiol. Ecol. Jpn 21, 53–62.

Kraszewski A, Zdanowski B. 2007. Sinanodonta woodiana (Lea, 1834) (Mollusca) – a new mussel species in Poland: occurrence and habitat preferences in a heated lake system. Polish J. Ecol. 55, 337–356.

Douda K, Vrtílek M, Slavík O, Reichard M. 2012. The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biol. Inv. 14, 127–137. (10.1007/s10530-011-9989-7) DOI

Reichard M, Przybylski M, Kaniewska P, Liu HZ, Smith C. 2007. A possible evolutionary lag in the relationship between freshwater mussels and European bitterling. J. Fish. Biol. 70, 709–725. (10.1111/j.1095-8649.2007.01333.x) DOI

Reichard M, Vrtílek M, Douda K, Smith C. 2012. An invasive species reverses the roles in a host–parasite relationship between bitterling fish and unionid mussels. Biol. Lett. 8, 601–604. (10.1098/rsbl.2011.1234) PubMed DOI PMC

Smith C, Reynolds JD, Sutherland WJ. 2000. Adaptive host choice and avoidance of superparasitism in the spawning decisions of bitterling (Rhodeus sericeus). Behav. Ecol. Sociobiol. 48, 29–35. (10.1007/s002650000212) DOI

Beran L. 2013. Freshwater molluscs of the Dyje (Thaya) River and its tributaries: the role of these water bodies in expansion of alien species and as a refuge for endangered gastropods and bivalves. Fol. Malacol. 21, 143–160. (10.12657/folmal.021.018) DOI

Jurajda P. 1999. Comparative nursery habitat use by 0+ fish in a modified lowland river. Regul. Riv. 15, 113–124. (10.1002/(SICI)1099-1646(199901/06) DOI

Pyšek P, et al. 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737. (10.1111/j.1365-2486.2011.02636.x) DOI

Tanaka S, Nishida T, Ohsaki N. 2007. Sequential rapid adaptation of indigenous parasitoid wasps to the invasive butterfly Pieris brassicae. Evolution 61, 1791–1802. (10.1111/j.1558-5646.2007.00165.x) PubMed DOI

Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL. 2010. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13, 1459–1474. (10.1111/j.1461-0248.2010.01538.x) PubMed DOI

Thompson JN. 1994. The coevolutionary process. Chicago, IL: University Chicago Press.

Taraschewski H. 2006. Hosts and parasites as aliens. J. Helminthol. 80, 99–128. (10.1079/JOH2006364) PubMed DOI

Hein JL, Arnott SA, Roumillat WA, Allen DM, de Buron I. 2014. Invasive swimbladder parasite Anguillicoloides crassus: infection status 15 years after discovery in wild populations of American eel Anguilla rostrata. Dis. Aquat. Organ. 107, 199–209. (10.3354/dao02686) PubMed DOI

Bakke TA, Harris PD, Cable J. 2002. Host specificity dynamics: observations on gyrodactylid monogeneans. Int. J. Parasitol. 32, 281–308. (10.1016/S0020-7519(01)00331-9) PubMed DOI

Miyake T, Nakajima J, Onikura N, Ikemoto S, Iguchi KI, Komaru A, Kawamura K. 2011. The genetic status of two subspecies of Rhodeus atremius, an endangered bitterling in Japan. Conserv. Genet. 12, 383–400. (10.1007/s10592-010-0146-0) DOI

Strayer DL, Eviner VT, Jeschke JM, Pace ML. 2006. Understanding the long-term effects of species invasions. Trends Ecol. Evol. 21, 645–651. (10.1016/j.tree.2006.07.007) PubMed DOI

Dostál P, Müllerová J, Pyšek P, Pergl J, Klinerová T. 2013. The impact of an invasive plant changes over time. Ecol. Lett. 16, 1277–1284. (10.1111/ele.12166) PubMed DOI

Lankau RA, Nuzzo V, Spyreas G, Davis AS. 2009. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl Acad. Sci. USA 106, 15 362–15 367. (10.1073/pnas.0905446106) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...