Exogenous melatonin affects photosynthesis in characeae Chara australis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23299331
PubMed Central
PMC3676496
DOI
10.4161/psb.23279
PII: 23279
Knihovny.cz E-zdroje
- Klíčová slova
- Characeae, antioxidants, chlorophyll fluorescence, melatonin, photosynthesis, reactive oxygen species,
- MeSH
- antioxidancia metabolismus farmakologie MeSH
- Chara účinky léků metabolismus MeSH
- Characeae MeSH
- chlorofyl metabolismus MeSH
- chloroplasty MeSH
- fotosyntéza * účinky léků MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- melatonin metabolismus farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- transport elektronů * účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- chlorofyl MeSH
- fotosystém II - proteinový komplex MeSH
- melatonin MeSH
- reaktivní formy kyslíku MeSH
- světlosběrné proteinové komplexy MeSH
Melatonin was found in the fresh water characeae Chara australis. The concentrations (~4 μg/g of tissue) were similar in photosynthesizing cells, independent of their position on the plant and rhizoids (roots) without chloroplasts. Exogenous melatonin, added at 10 μM to the artificial pond water, increased quantum yield of photochemistry of photosystem II by 34%. The increased efficiency appears to be due to the amount of open reaction centers of photosystem II, rather than increased efficiency of each reaction center. More open reaction centers reflect better functionality of all photosynthetic transport chain constituents. We suggest that melatonin protection against reactive oxygen species covers not only chlorophyll, but also photosynthetic proteins in general.
Zobrazit více v PubMed
Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int. 1995;35:627–34. PubMed
Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res. 1995;18:28–31. doi: 10.1111/j.1600-079X.1995.tb00136.x. PubMed DOI
Murch SJ, Simmons CB, Saxena PK. Melatonin in feverfew and other medicinal plants. Lancet. 1997;350:1598–9. doi: 10.1016/S0140-6736(05)64014-7. PubMed DOI
Murch SJ. KrishnaRaj S, Saxena PK. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep. 2000;19:698–704. doi: 10.1007/s002990000206. PubMed DOI
Pöggeler B, Balzer I, Hardeland R, Lerchl A. Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften. 1991;78:268–9. doi: 10.1007/BF01134354. DOI
Wolf K, Kolář J, Witters E, van Dongen W, van Onckelen H, Macháčková I. Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. J Plant Physiol. 2001;158:1491–3. doi: 10.1078/0176-1617-00561. DOI
Murch SJ. Neurotransmitters, neuroregulators and neurotoxins in plants. In: Baluska F, Mancuso S, Volkmann D., eds. Communication in Plants: Neuronal Aspects of Plant Life. Berlin, D:Springer-Verlag, 2006:137-48.
Afreen F, Zobayed SMA, Kozai T. Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J Pineal Res. 2006;41:108–15. doi: 10.1111/j.1600-079X.2006.00337.x. PubMed DOI
Tan D-X, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J. 2007;21:1724–9. doi: 10.1096/fj.06-7745com. PubMed DOI
Boccalandro HE, González CV, Wunderlin DA, Silva MF. Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J Pineal Res. 2011;51:226–32. doi: 10.1111/j.1600-079X.2011.00884.x. PubMed DOI
Byeon Y, Park S, Kim Y-S, Park D-H, Lee S, Back K. Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves. J Pineal Res. 2012;53:107–11. doi: 10.1111/j.1600-079X.2012.00976.x. PubMed DOI
Kolár J, Machácková I. Melatonin in higher plants: occurrence and possible functions. J Pineal Res. 2005;39:333–41. doi: 10.1111/j.1600-079X.2005.00276.x. PubMed DOI
Cao J, Murch SJ, O’Brien R, Saxena PK. Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2006;1134:333–7. doi: 10.1016/j.chroma.2006.09.079. PubMed DOI
Cao J, Cole IB, Murch SJ. Neurotransmitters, neuroregulators and neurotoxins in the life of plants. Can J Plant Sci. 2006;86:1183–8. doi: 10.4141/P06-034. DOI
Park WJ. Melatonin as an endogenous plant regulatory signal: Debates and perspectives. J Plant Biol. 2011;54:143–9. doi: 10.1007/s12374-011-9159-6. DOI
McCourt RM, Delwiche CF, Karol KG. Charophyte algae and land plant origins. Trends Ecol Evol. 2004;19:661–6. doi: 10.1016/j.tree.2004.09.013. PubMed DOI
Hope AB, Walker NA. The physiology of giant algal cells. Cambridge, UK:Cambridge University Press, 1975.
Schreiber U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Pepageorgiou C, Govindjee, eds. Chlorophyll a fluorescence: a signature of photosynthesis. Dordrecht, NL:Springer, 2004:279-319.
Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol. 2006;33:9–30. doi: 10.1071/FP05095. PubMed DOI
Kitajima M, Butler WL. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta. 1975;376:105–15. doi: 10.1016/0005-2728(75)90209-1. PubMed DOI
Genty B, Briantais J-M, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, Gen Subj. 1989;990:87–92. doi: 10.1016/S0304-4165(89)80016-9. DOI
Hendrickson L, Furbank RT, Chow WS. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth Res. 2004;82:73–81. doi: 10.1023/B:PRES.0000040446.87305.f4. PubMed DOI
Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta. 2010;1797:1313–26. doi: 10.1016/j.bbabio.2010.03.008. PubMed DOI
Beilby MJ, Shepherd VA. Cytoplasm-enriched fragments of Chara: structure and electrophysiology. Protoplasma. 1989;148:150–63. doi: 10.1007/BF02079334. DOI
Murch SJ, Alan AR, Cao J, Saxena PK. Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res. 2009;47:277–83. doi: 10.1111/j.1600-079X.2009.00711.x. PubMed DOI
Murch SJ, Hall BA, Le CH, Saxena PK. Changes in the levels of indoleamine phytochemicals during véraison and ripening of wine grapes. J Pineal Res. 2010;49:95–100. PubMed
Paredes SD, Korkmaz A, Manchester LC, Tan D-X, Reiter RJ. Phytomelatonin: a review. J Exp Bot. 2009;60:57–69. doi: 10.1093/jxb/ern284. PubMed DOI
Murch SJ, Rupasinghe HPV, Goodenowe D, Saxena PK. A metabolomic analysis of medicinal diversity in Huang-qin (Scutellaria baicalensis Georgi) genotypes: discovery of novel compounds. Plant Cell Rep. 2004;23:419–25. doi: 10.1007/s00299-004-0862-3. PubMed DOI
Brown PN, Turi CE, Shipley PR, Murch SJ. Phytochemical discovery in large cranberry (Vaccinium macrocarpon Ait.) and small cranberry (Vaccinium oxycoccus L. and Vaccinium vitis-idaea L.) in British Columbia. Planta Med. 2012;78:1–11. doi: 10.1055/s-0031-1298239. PubMed DOI
Hernández-Ruiz J, Arnao MB. Distribution of melatonin in different zones of lupin and barley plants at different ages in the presence and absence of light. J Agric Food Chem. 2008;56:10567–73. doi: 10.1021/jf8022063. PubMed DOI
Tan D-X, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res. 2012 doi: 10.1111/jpi.12026. In press. PubMed DOI
Wang P, Yin L, Liang D, Li C, Ma F, Yue Z. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. J Pineal Res. 2012;53:11–20. doi: 10.1111/j.1600-079X.2011.00966.x. PubMed DOI
Zhang N, Zhao B, Zhang H-J, Weeda S, Yang C, Yang Z-C, et al. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.) J Pineal Res. 2012;54:15–23. PubMed
Tan D-X, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, et al. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot. 2012;63:577–97. doi: 10.1093/jxb/err256. PubMed DOI
Arnao MB, Hernández-Ruiz J. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res. 2009;46:58–63. doi: 10.1111/j.1600-079X.2008.00625.x. PubMed DOI