Exogenous melatonin alleviates nicosulfuron toxicity by regulating the growth, photosynthetic capacity, and antioxidative defense of sweet corn seedlings
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650638
PubMed Central
PMC11609774
DOI
10.32615/ps.2024.004
PII: PS62058
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidative system, herbicide stress, melatonin, photosystem, sweet corn seedlings,
- Publikační typ
- časopisecké články MeSH
Improper use of nicosulfuron (NSF) may induce harmful effects on plants during weed control. Melatonin (MT) regulates photosynthetic and physiological processes in plants. This study aimed to explore the effects of MT on alleviating NSF toxicity by measuring the growth parameters, photosynthetic capacity, and antioxidative responses in sweet corn seedlings. Compared to NSF alone, exogenous MT increased chlorophyll content, transpiration rate, net photosynthetic rate, stomatal conductance, and maximum efficiency of PSII photochemistry, while reduced malondialdehyde, hydrogen peroxide, superoxide anion radical, and proline contents. Moreover, MT also increased the activity of ascorbate peroxidase and the expression levels of ZmAPX1, ZmAPX2, ZmALS1, and ZmCYP81A9. The inhibition of p-chlorophenylalanine inhibited the positive effects of MT on photosynthetic and physiological indexes. The results indicated that pretreatment with MT might effectively mitigate NSF toxicity in sweet corn seedlings.
Zobrazit více v PubMed
Abedi T., Pakniyat H.: Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). – Czech J. Genet. Plant Breed. 46: 27-34, 2010. 10.17221/67/2009-CJGPB DOI
Aebi H.: Catalase in vitro. – Method. Enzymol. 105: 121-126, 1984. 10.1016/S0076-6879(84)05016-3 PubMed DOI
Ahmad P., Jaleel C.A., Salem M.A. et al.: Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. – Crit. Rev. Biotechnol. 30: 161-175, 2010. 10.3109/07388550903524243 PubMed DOI
Ahmad S., Kamran M., Ding R. et al.: Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. – PeerJ. 7: e7793, 2019. 10.7717/peerj.7793 PubMed DOI PMC
Ahmad S., Muhammad I., Wang G.Y. et al.: Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. – BMC Plant Biol. 21: 368, 2021. 10.1186/s12870-021-03160-w PubMed DOI PMC
Ahmad S., Wang G.Y., Muhammad I. et al.: Application of melatonin-mediated modulation of drought tolerance by regulating photosynthetic efficiency, chloroplast ultrastructure, and endogenous hormones in maize. – Chem. Biol. Technol. Agric. 9: 5, 2022. 10.1186/s40538-021-00272-1 DOI
Alam P., Balawi T.A., Qadir S.U., Ahmad P.: Gibberellic acid and silicon ameliorate NaCl toxicity in Brassica juncea: possible involvement of antioxidant system and ascorbate-glutathione cycle. – Plants-Basel 12: 1210, 2023. 10.3390/plants12061210 PubMed DOI PMC
Al-Huqail A.A., Khan M.N., Ali H.M. et al.: Exogenous melatonin mitigates boron toxicity in wheat. – Ecotox. Environ. Safe. 201: 110822, 2020. https://doi.org/10/ghp8m4 PubMed
Alscher R.G., Erturk N., Heath L.S.: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. – J. Exp. Bot. 53: 1331-1341, 2002. 10.1093/jexbot/53.372.1331 PubMed DOI
Altaf M.A., Hao Y., Shu H. et al.: Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation. – J. Hazard. Mater. 454: 131468, 2023. 10.1016/j.jhazmat.2023.131468 PubMed DOI
Askari M., Hamid N., Abideen Z. et al.: Exogenous melatonin application stimulates growth, photosynthetic pigments and antioxidant potential of white beans under salinity stress. – S. Afr. J. Bot. 160: 219-228, 2023. 10.1016/j.sajb.2023.07.014 DOI
Ayyaz A., Amir M., Umer S. et al.: Melatonin induced changes in photosynthetic efficiency as probed by OJIP associated with improved chromium stress tolerance in canola (Brassica napus L.). – Heliyon 6: e04364, 2020. 10.1016/j.heliyon.2020.e04364 PubMed DOI PMC
Bambach N., U K.T.P., Gilbert M.E.: A dynamic model of RuBP-regeneration limited photosynthesis accounting for photoinhibition, heat and water stress. – Agr. Forest Meteorol. 285-286: 107911, 2020. 10.1016/j.agrformet.2020.107911 DOI
Barand A., Nasibi F., Kalantari K.M., Moradi M.: The effects of foliar application of melatonin on some physiological and biochemical characteristics and expression of fatty acid desaturase gene in pistachio seedlings (Pistacia vera L.) under freezing stress. – J. Plant Interact. 15: 257-265, 2020. 10.1080/17429145.2020.1781271 DOI
Basit F., Bhat J.A., Hu J. et al.: Brassinosteroid supplementation alleviates chromium toxicity in soybean (Glycine max L.) via reducing its translocation. – Plants-Basel 11: 2292, 2022. 10.3390/plants11172292 PubMed DOI PMC
Boulahia K., Ould said C., Abrous-Belbachir O.: Exogenous application of salicylic acid improve growth and some physio-biochemical parameters in herbicide stressed Phaseolus vulgaris L. – Gesunde Pflanz. 75: 2301-2318, 2023. 10.1007/s10343-023-00878-5 DOI
Can H.: Melatonin application at different doses changes the physiological responses in favor of cabbage seedlings (Brassica oleracea var. capitata) against flooding stress. – Gesunde Pflanz. 75: 2733-2745, 2023. 10.1007/s10343-023-00873-w DOI
Chen H., Li J., Wang Y. et al.: Residue determination and dietary risk assessment of mesotrione, nicosulfuron, atrazine and its four metabolites in maize in China. – Front. Sustain. Food Syst. 7: 1263879, 2023. 10.3389/fsufs.2023.1263879 DOI
Choe E., Williams II M.M.: Expression and comparison of sweet corn CYP81A9s in relation to nicosulfuron sensitivity. – Pest Manag. Sci. 76: 3012-3019, 2020. 10.1002/ps.5848 PubMed DOI
Corbett C.-A.L., Soltani N., Hamill A.S. et al.: Tolerance of three sweet corn hybrids to a postemergence tankmix of nicosulfuron plus bromoxynil. – HortScience 40: 616-619, 2005. 10.21273/HORTSCI.40.3.616 DOI
Dey S., Biswas A., Deng Y. et al.: Exogenous melatonin enhances low-temperature stress of jute seedlings through modulation of photosynthesis and antioxidant potential. – Heliyon 9: e19125, 2023. 10.1016/j.heliyon.2023.e19125 PubMed DOI PMC
Dimaano N.G., Iwakami S: Cytochrome P450-mediated herbicide metabolism in plants: current understanding and prospects. – Pest Manag. Sci. 77: 22-32, 2021. 10.1002/ps.6040 PubMed DOI
Fathi N., Kazemeini S.A., Alinia M., Mastinu A.: The effect of seed priming with melatonin on improving the tolerance of Zea mays L. var saccharata to paraquat-induced oxidative stress through photosynthetic systems and enzymatic antioxidant activities. – Physiol. Mol. Plant Pathol. 124: 101967, 2023. 10.1016/j.pmpp.2023.101967 DOI
Fontem Lum A., Chikoye D., Adesiyan S.O.: Effect of nicosulfuron dosages and timing on the postemergence control of cogongrass (Imperata cylindrica) in corn. – Weed Technol. 19: 122-127, 2005. 10.1614/WT-03-276R2 DOI
Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. – Plant Physiol. Biochem. 48: 909-930, 2010. 10.1016/j.plaphy.2010.08.016 PubMed DOI
Green J.M., Ulrich J.F.: Response of corn (Zea mays L.) inbreds and hybrids to sulfonylurea herbicides. – Weed Sci. 41: 508-516, 1993. 10.1017/S0043174500052267 DOI
Greenland R.G.: Injury to vegetable crops from herbicides applied in previous years. – Weed Technol. 17: 73-78, 2003. 10.1614/0890-037X(2003)017[0073:ITVCFH]2.0.CO;2 DOI
Guo Y.Y., Li H.J., Zhao C.F. et al.: Exogenous melatonin improves drought tolerance in maize seedlings by regulating photosynthesis and the ascorbate-glutathione cycle. – Russ. J. Plant Physiol. 67: 809-821, 2020. 10.1134/S1021443720050064 DOI
Hasan Md.K., Ahammed G.J., Yin L. et al.: Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. – Front. Plant Sci. 6: 601, 2015. https://doi.org/10/f7pfc5 PubMed PMC
Havaux M., Davaud A.: Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of Photosystem-II activity. – Photosynth. Res. 40: 75-92, 1994. 10.1007/BF00019047 PubMed DOI
Hodges D.M., DeLong J.M., Forney C.F., Prange R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. – Planta 207: 604-611, 1999. 10.1007/s004250050524 PubMed DOI
Hong Z., Lakkineni K., Zhang Z., Verma D.P.S.: Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. – Plant Physiol. 122: 1129-1136, 2000. 10.1104/pp.122.4.1129 PubMed DOI PMC
Hu D., Zhang X., Xue P. et al.: Exogenous melatonin ameliorates heat damages by regulating growth, photosynthetic efficiency and leaf ultrastructure of carnation. – Plant Physiol. Biochem. 198: 107698, 2023. 10.1016/j.plaphy.2023.107698 PubMed DOI
Hu W., Tie W., Ou W. et al.: Crosstalk between calcium and melatonin affects postharvest physiological deterioration and quality loss in cassava. – Postharvest Biol. Tec. 140: 42-49, 2018. 10.1016/j.postharvbio.2018.02.007 DOI
Huang B., Chen Y.-E., Zhao Y.-Q. et al.: Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. – Front. Plant Sci. 10: 677, 2019. 10.3389/fpls.2019.00677 PubMed DOI PMC
Hussain H.A., Men S., Hussain S. et al.: Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. – Sci. Rep.-UK 9: 3890, 2019. 10.1038/s41598-019-40362-7 PubMed DOI PMC
Jahan M.S., Zhao C.J., Shi L.B. et al.: Physiological mechanism of melatonin attenuating to osmotic stress tolerance in soybean seedlings. – Front. Plant Sci. 14: 1193666, 2023. 10.3389/fpls.2023.1193666 PubMed DOI PMC
Kaya A., Doganlar Z.B.: Melatonin improves the multiple stress tolerance in pepper (Capsicum annuum). – Sci. Hortic.-Amsterdam 256: 108509, 2019. 10.1016/j.scienta.2019.05.036 DOI
Kaya C., Okant M., Ugurlar F. et al.: Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. – Chemosphere 225: 627-638, 2019. 10.1016/j.chemosphere.2019.03.026 PubMed DOI
Khan M.Q.N., Sevgin N., Rizwana H., Arif N.: Exogenous melatonin mitigates the adverse effects of drought stress in strawberry by upregulating the antioxidant defense system. – S. Afr. J. Bot. 162: 658-666, 2023. 10.1016/j.sajb.2023.09.055 DOI
Khanna K., Bhardwaj R., Alam P. et al.: Phytomelatonin: A master regulator for plant oxidative stress management. – Plant Physiol. Biochem. 196: 260-269, 2023. 10.1016/j.plaphy.2023.01.035 PubMed DOI
Kohli S.K., Khanna K., Bhardwaj R. et al.: Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. – Antioxidants 8: 641, 2019. 10.3390/antiox8120641 PubMed DOI PMC
Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. – Photosynth. Res. 79: 209-218, 2004. 10.1023/B:PRES.0000015391.99477.0d PubMed DOI
Kuppusamy A., Alagarswamy S., Karuppusami K.M. et al.: Melatonin enhances the photosynthesis and antioxidant enzyme activities of mung bean under drought and high-temperature stress conditions. – Plants-Basel 12: 2535, 2023. https://www.mdpi.com/2223-7747/12/13/2535 PubMed PMC
Lazar D., Murch S.J., Beilby M.J., Al Khazaaly S.: Exogenous melatonin affects photosynthesis in characeae Chara australis. – Plant Signal. Behav. 8: e23279, 2013. 10.4161/psb.23279 PubMed DOI PMC
Li J., Liu Y., Zhang M. et al.: Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. – BMC Plant Biol. 22: 16, 2022. 10.1186/s12870-021-03402-x PubMed DOI PMC
Li J., Yang Y., Sun K. et al.: Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). – Molecules 24: 1826, 2019. 10.3390/molecules24091826 PubMed DOI PMC
Li Y.-F., Huang L.-L., Liu X.-L. et al.: Exogenous salicylic acid alleviates halosulfuron-methyl toxicity by coordinating the antioxidant system and improving photosynthesis in soybean (Glycine max Merr.). – Acta Physiol. Plant. 42: 85, 2020. 10.1007/s11738-020-03075-3 DOI
Lichtenthaler H.K., Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. – Biochem. Soc. T. 11: 591-592, 1983. 10.1042/bst0110591 DOI
Lin S., Song X.-F., Mao H.-T. et al.: Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress. – Front. Plant Sci. 13: 966181, 2022. 10.3389/fpls.2022.966181 PubMed DOI PMC
Liu J., Zhang R., Sun Y. et al.: The beneficial effects of exogenous melatonin on tomato fruit properties. – Sci. Hortic.-Amsterdam 207: 14-20, 2016. https://doi.org/10/f8v4zm
Liu N., Li J., Lv J. et al.: Melatonin alleviates imidacloprid phytotoxicity to cucumber (Cucumis sativus L.) through modulating redox homeostasis in plants and promoting its metabolism by enhancing glutathione dependent detoxification. – Ecotox. Environ. Safe. 217: 112248, 2021. 10.1016/j.ecoenv.2021.112248 PubMed DOI
Liu S., He Y., Tian H. et al.: Application of brassinosteroid mimetics improves growth and tolerance of maize to nicosulfuron toxicity. – J. Plant Growth Regul. 38: 701-712, 2019. 10.1007/s00344-018-9883-y DOI
Liu X., Xu X., Li B. et al.: RNA-Seq transcriptome analysis of maize inbred carrying nicosulfuron-tolerant and nicosulfuron-susceptible alleles. – Int. J. Mol. Sci. 16: 5975-5989, 2015. 10.3390/ijms16035975 PubMed DOI PMC
Mahajan S., Tuteja N.: Cold, salinity and drought stresses: An overview. – Arch. Biochem. Biophys. 444: 139-158, 2005. 10.1016/j.abb.2005.10.018 PubMed DOI
Mittler R.: Oxidative stress, antioxidants and stress tolerance. – Trends Plant Sci. 7: 405-410, 2002. 10.1016/S1360-1385(02)02312-9 PubMed DOI
Muhammad I., Yang L., Ahmad S. et al.: Melatonin-priming enhances maize seedling drought tolerance by regulating the antioxidant defense system. – Plant Physiol. 191: 2301-2315, 2023. 10.1093/plphys/kiad027 PubMed DOI PMC
Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress. – BBA-Bioenergetics 1767: 414-421, 2007. 10.1016/j.bbabio.2006.11.019 PubMed DOI
Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. – Plant Cell Physiol. 22: 867-880, 1981. 10.1093/oxfordjournals.pcp.a076232 DOI
Namdjoyan S., Soorki A.A., Elyasi N. et al.: Melatonin alleviates lead-induced oxidative damage in safflower (Carthamus tinctorius L.) seedlings. – Ecotoxicology 29: 108-118, 2020. https://doi.org/10/ghp8t7 PubMed
Niu M., Zhao T., Xu D. et al.: Physiological responses of Chionanthus retusus seedlings to drought and waterlogging stresses. – Forests 14: 429, 2023. 10.3390/f14020429 DOI
Nordby J.N., Williams II M.M., Pataky J.K. et al.: A common genetic basis in sweet corn inbred Cr1 for cross sensitivity to multiple cytochrome P450-metabolized herbicides. – Weed Sci. 56: 376-382, 2008. 10.1614/WS-07-145.1 DOI
Nurjanah U., Memed, Setyowati N. et al.: Effect of planting patterns and mulch types on weed growth and yield of sweet corn and red bean. – Int. J. Plant Soil Sci. 35: 37-45, 2023. 10.9734/ijpss/2023/v35i52817 DOI
Ou C., Cheng W., Wang Z. et al.: Exogenous melatonin enhances Cd stress tolerance in Platycladus orientalis seedlings by improving mineral nutrient uptake and oxidative stress. – Ecotox. Environ. Safe. 252: 114619, 2023. 10.1016/j.ecoenv.2023.114619 PubMed DOI
Paul A., Mondal S., Pal A. et al.: Seed priming with NaCl helps to improve tissue tolerance, potassium retention ability of plants, and protects the photosynthetic ability in two different legumes, chickpea and lentil, under salt stress. – Planta 257: 111, 2023. 10.1007/s00425-023-04150-y PubMed DOI
Raja V., Qadir S.U., Kumar N. et al.: Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. – Plant Physiol. Biochem. 201: 107872, 2023. 10.1016/j.plaphy.2023.107872 PubMed DOI
Ramasamy K., Karuppasami K.M., Alagarswamy S. et al.: Role of melatonin in directing plant physiology. – Agronomy 13: 2405, 2023. https://www.mdpi.com/2073-4395/13/9/2405
Rao M.V., Paliyath G., Ormrod D.P.: Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. – Plant Physiol. 110: 125-136, 1996. PubMed PMC
Ren J., Ye J., Yin L. et al.: Exogenous melatonin improves salt tolerance by mitigating osmotic, ion, and oxidative stresses in maize seedlings. – Agronomy 10: 663, 2020. https://doi.org/10/ghp8rh
Rey-Caballero J., Menéndez J., Giné-Bordonaba J. et al.: Unravelling the resistance mechanisms to 2,4-D (2,4-dichlorophenoxyacetic acid) in corn poppy (Papaver rhoeas). – Pestic. Biochem. Phys. 133: 67-72, 2016. 10.1016/j.pestbp.2016.03.002 PubMed DOI
Robinson D.K., Monks D.W., Schultheis J.R.: Effect of nicosulfuron applied postemergence and post-directed on sweet corn (Zea mays) tolerance. – Weed Technol. 8: 630-634, 1994. 10.1017/S0890037X00039816 DOI
Robinson D.K., Monks D.W., Schultheis J.R., Worsham A.D.: Sweet corn (Zea mays) cultivar tolerance to application timing of nicosulfuron. – Weed Technol. 7: 840-843, 1993. 10.1017/S0890037X00037854 DOI
Ros-Barceló A., Pomar F., López-Serrano M. et al.: Developmental regulation of the H2O2-producing system and of a basic peroxidase isoenzyme in the Zinnia elegans lignifying xylem. – Plant Physiol. Biochem. 40: 325-332, 2002. 10.1016/S0981-9428(02)01376-1 DOI
Schützendübel A., Polle A.: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. – J. Exp. Bot. 53: 1351-1365, 2002. 10.1093/jexbot/53.372.1351 PubMed DOI
Sharma A., Wang J., Xu D. et al.: Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. – Sci. Total Environ. 713: 136675, 2020. https://doi.org/10/ghp8rm PubMed
Sharma S.S., Dietz K.-J.: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. – J. Exp. Bot. 57: 711-726, 2006. 10.1093/jxb/erj073 PubMed DOI
Sher A., Hassan M.U., Sattar A. et al.: Exogenous application of melatonin alleviates the drought stress by regulating the antioxidant systems and sugar contents in sorghum seedlings. – Biochem. Syst. Ecol. 107: 104620, 2023. 10.1016/j.bse.2023.104620 DOI
Shi R.-J., Ye M.-Y., Liu Y. et al.: Exogenous melatonin regulates physiological responses and active ingredient levels in Polygonum cuspidatum under drought stress. – Plants-Basel 12: 2141, 2023. https://www.mdpi.com/2223-7747/12/11/2141 PubMed PMC
Siddiqui M.H., Alamri S., Al-Khaishany M.Y. et al.: Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. – Int. J. Mol. Sci. 20: 353, 2019. 10.3390/ijms20020353 PubMed DOI PMC
Siminszky B.: Plant cytochrome P450-mediated herbicide metabolism. – Phytochem. Rev. 5: 445-458, 2006. 10.1007/s11101-006-9011-7 DOI
Su X., Xin L., Li Z. et al.: Physiology and transcriptome analyses reveal a protective effect of the radical scavenger melatonin in aging maize seeds. – Free Radical Res. 52: 1094-1109, 2018. 10.1080/10715762.2018.1472378 PubMed DOI
Sun C., Meng S., Wang B. et al.: Exogenous melatonin enhances tomato heat resistance by regulating photosynthetic electron flux and maintaining ROS homeostasis. – Plant Physiol. Biochem. 196: 197-209, 2023. 10.1016/j.plaphy.2023.01.043 PubMed DOI
Sun L., Wu R., Su W. et al.: Physiological basis for isoxadifen-ethyl induction of nicosulfuron detoxification in maize hybrids. – PLoS ONE 12: e0173502, 2017. 10.1371/journal.pone.0173502 PubMed DOI PMC
Szafrańska K., Reiter R.J., Posmyk M.M.: Melatonin improves the photosynthetic apparatus in pea leaves stressed by paraquat via chlorophyll breakdown regulation and its accelerated de novo synthesis. – Front. Plant Sci. 8: 878, 2017. 10.3389/fpls.2017.00878 PubMed DOI PMC
Tang M., Xu L., Wang Y. et al.: Melatonin-induced DNA demethylation of metal transporters and antioxidant genes alleviates lead stress in radish plants. – Hortic. Res. 8: 124, 2021. 10.1038/s41438-021-00561-8 PubMed DOI PMC
Tao B., Su S.Q.: [Study on tolerance of crops to sulfonylurea herbicides.] – J. Northeast Agric. Univ. 26: 105-110, 1995. [In Chinese] 10.19720/j.cnki.issn.1005-9369.1995.02.001 DOI
Troll W., Lindsley J.: A photometric method for the determination of proline. – J. Biol. Chem. 215: 655-660, 1955. 10.1016/S0021-9258(18)65988-5 PubMed DOI
Vafadar F., Amooaghaie R., Ehsanzadeh P. et al.: Crosstalk between melatonin and Ca2+/CaM evokes systemic salt tolerance in Dracocephalum kotschyi. – J. Plant Physiol. 252: 153237, 2020. https://doi.org/10/ghp8m6 PubMed
Wang D.Y., Wang J., Shi S.H. et al.: Exogenous melatonin ameliorates salinity-induced oxidative stress and improves photosynthetic capacity in sweet corn seedlings. – Photosynthetica 59: 327-336, 2021a. 10.32615/ps.2021.031 DOI
Wang J., Gao H., Guo Z. et al.: Adaptation responses in C4 photosynthesis of sweet maize (Zea mays L.) exposed to nicosulfuron. – Ecotox. Environ. Safe. 214: 112096, 2021c. 10.1016/j.ecoenv.2021.112096 PubMed DOI
Wang J., Shi S.H., Wang D.Y. et al.: Exogenous salicylic acid ameliorates waterlogging stress damages and improves photosynthetic efficiency and antioxidative defense system in waxy corn. – Photosynthetica 59: 84-94, 2021b. https://ps.ueb.cas.cz/artkey/phs-202101-0009_exogenous-salicylic-acid-ameliorates-waterlogging-stress-damages-and-improves-photosynthetic-efficiency-and-an.php?back=%2Fsearch.php%3Fquery%3D%2BExogenous%2Bsalicylic%2Bacid%2Bameliorates%2Bwaterlogging%2Bstress%2Bdamages%2Band%2Bimproves%2Bphotosynthetic%2Befficiency%2Band%2Bantioxidative%2Bdefense%2Bsystem%2Bin%2Bwaxy%2Bcorn%2Bin%253Aauth%2Bname%2Bkey%2Babstr%26sfrom%3D0%26spage%3D30
Wang J., Zhong X., Zhu K. et al.: Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). – Environ. Sci. Pollut. Res. 25: 19012-19027, 2018. 10.1007/s11356-018-2105-0 PubMed DOI
Wang L., Riaz M., Song B. et al.: Study on phytotoxicity evaluation and physiological properties of nicosulfuron on sugar beet (Beta vulgaris L.). – Front. Plant Sci. 13: 998867, 2022. PubMed PMC
Wang X., Hu W., Li Y. et al.: Cytochrome P450s-involved enhanced metabolism contributes to the high level of nicosulfuron resistance in Digitaria sanguinalis from China. – Biology 12: 1192, 2023. 10.3390/biology12091192 PubMed DOI PMC
Wang Z.X., Chen L., Ai J. et al.: Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (Vitis amurensis Rupr.). – Photosynthetica 50: 189-196, 2012. 10.1007/s11099-012-0023-9 DOI
Wu C., Cao S., Xie K. et al.: Melatonin delays yellowing of broccoli during storage by regulating chlorophyll catabolism and maintaining chloroplast ultrastructure. – Postharvest Biol. Tec. 172: 111378, 2021. 10.1016/j.postharvbio.2020.111378 DOI
Wu Z.-X., Xu N.-W., Yang M. et al.: Responses of photosynthesis, antioxidant enzymes, and related gene expression to nicosulfuron stress in sweet maize (Zea mays L.). – Environ. Sci. Pollut. Res. 29: 37248-37265, 2022. 10.1007/s11356-022-18641-0 PubMed DOI
Yan F., Zhang J., Li W. et al.: Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. – Plant Physiol. Biochem. 163: 367-375, 2021. 10.1016/j.plaphy.2021.03.058 PubMed DOI
Yang H., Dai L., Wei Y. et al.: Melatonin enhances salt stress tolerance in rubber tree (Hevea brasiliensis) seedlings. – Ind. Crop. Prod. 145: 111990, 2020. 10.1016/j.indcrop.2019.111990 DOI
Yasmeen S., Wahab A., Saleem M.H. et al.: Melatonin as a foliar application and adaptation in lentil (Lens culinaris Medik.) crops under drought stress. – Sustainability 14: 16345, 2022. https://www.mdpi.com/2071-1050/14/24/16345
Yin L., Wang P., Li M. et al.: Exogenous melatonin improves Malus resistance to Marssonina apple blotch. – J. Pineal Res. 54: 426-434, 2013. 10.1111/jpi.12038 PubMed DOI
Yin Y.-L., Xu Y.-N., Li X.-N. et al.: Physiological integration between Bermudagrass ramets improves overall salt resistance under heterogeneous salt stress. – Physiol. Plantarum 174: e13655, 2022. 10.1111/ppl.13655 PubMed DOI
Yuan J.S., Tranel P.J., Stewart C.N.: Non-target-site herbicide resistance: a family business. – Trends Plant Sci. 12: 6-13, 2007. 10.1016/j.tplants.2006.11.001 PubMed DOI
Zhang M., He S., Zhan Y. et al.: Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. – PLoS ONE 14: e0226542, 2019b. 10.1371/journal.pone.0226542 PubMed DOI PMC
Zhang Q., Liu X., Zhang Z. et al.: Melatonin improved waterlogging tolerance in alfalfa (Medicago sativa) by reprogramming polyamine and ethylene metabolism. – Front. Plant Sci. 10: 44, 2019a. 10.3389/fpls.2019.00044 PubMed DOI PMC
Zhang S., Zheng X., Reiter R.J. et al.: Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. – Front. Plant Sci. 8: 1993, 2017. https://doi.org/10/gcmp3g PubMed PMC
Zhao N., Sun Y., Wang D.Y. et al.: [Effects of exogenous melatonin on nitrogen metabolism in cucumber seedlings under high temperature stress.] – Plant Physiol. J. 48: 557-564, 2012. [In Chinese] 10.13592/j.cnki.ppj.2012.06.007 DOI
Zoufan P., Bavani M.R.Z., Tousi S., Rahnama A.: Effect of exogenous melatonin on improvement of chlorophyll content and photochemical efficiency of PSII in mallow plants (Malva parviflora L.) treated with cadmium. – Physiol. Mol. Biol. Plants 29: 145-157, 2023. 10.1007/s12298-022-01271-8 PubMed DOI PMC
Zulfiqar F., Moosa A., Ferrante A. et al.: Exogenous foliar application of melatonin mitigates salt induced oxidative stress and promotes growth in Gerbera jamosonii. – S. Afr. J. Bot. 161: 678-684, 2023. 10.1016/j.sajb.2023.08.055 DOI