• This record comes from PubMed

Ascorbic acid is involved in melatonin-induced salinity tolerance of maize (Zea mays L.) by regulating antioxidant and photosynthetic capacities

. 2024 ; 62 (4) : 361-371. [epub] 20241203

Language English Country Czech Republic Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress. Additionally, exogenous MT and AsA also improved antioxidant enzyme activities, promoted regeneration of AsA and GSH, decreased reactive oxygen species contents, suppressed Na+ accumulation, and improved the K+/Na+ ratio of maize seedlings. Additionally, the AsA inhibitor lycorine decreased the endogenous content of AsA and eliminated the positive effects of MT, while the MT inhibitor p-chlorophenyl alanine (CPA) reduced the endogenous content of MT, which could not eliminate the promoting effects of AsA. The results suggested that AsA may act as a downstream signal involved in the regulatory effects of MT on maize under salinity stress.

See more in PubMed

Abedi T., Pakniyat H.: Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). – Czech J. Genet. Plant Breed. 46: 27-34, 2010. 10.17221/67/2009-CJGPB DOI

Ahmad P.A., Ahanger M.A., Alam P. et al.: Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. – J. Plant Growth Regul. 38: 70-82, 2019. 10.1007/s00344-018-9810-2 DOI

Akhlaghi H., Mahdavi B., Rezaei H.: Characterization of chemical composition and antioxidant properties of Trachyspermum ammi seed as a potential medicinal plant. – J. Chem. Health Risks 4: 9-16, 2014. https://www.jchr.org/index.php/JCHR/article/view/411/413

Alscher R.G., Erturk N., Heath L.S.: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. – J. Exp. Bot. 53: 1331-1341, 2002. PubMed

Altaf M.A., Shahid R., Ren M.-X. et al.: Melatonin alleviates salt damage in tomato seedling: A root architecture system, photosynthetic capacity, ion homeostasis, and antioxidant enzymes analysis. – Sci. Hortic.-Amsterdam 285: 110145, 2021. 10.1016/j.scienta.2021.110145 DOI

Azeem M., Sultana R., Mahmood A. et al.: Ascorbic and salicylic acids vitalized growth, biochemical responses, antioxidant enzymes, photosynthetic efficiency, and ionic regulation to alleviate salinity stress in Sorghum bicolor. – J. Plant Growth Regul. 42: 5266-5279, 2023. 10.1007/s00344-023-10907-2 DOI

Aziz U., Qadir I., Yasin G. et al.: Potential of priming in improving germination, seedling growth and nutrient status of Calotropis procera under salinity. – Pak. J. Bot. 53: 1953-1958, 2021. 10.30848/PJB2021-6(35) DOI

Barzegar T., Fateh M., Razavi F.: Enhancement of postharvest sensory quality and antioxidant capacity of sweet pepper fruits by foliar applying calcium lactate and ascorbic acid. – Sci. Hortic.-Amsterdam 241: 293-303, 2018. 10.1016/j.scienta.2018.07.011 DOI

Bawa G., Feng L., Shi J. et al.: Evidence that melatonin promotes soybean seedlings growth from low-temperature stress by mediating plant mineral elements and genes involved in the antioxidant pathway. – Funct. Plant Biol. 47: 815-824, 2020. 10.1071/FP19358 PubMed DOI

Bybordi A.: Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. – J. Integr. Agr. 11: 1610-1620, 2012. 10.1016/S2095-3119(12)60164-6 DOI

Cao Y., Liang X., Yin P. et al.: A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. – New Phytol. 222: 301-317, 2018. 10.1111/nph.15605 PubMed DOI

Chen X.J., Zhou Y., Cong Y.D. et al.: Ascorbic acid-induced photosynthetic adaptability of processing tomatoes to salt stress probed by fast OJIP fluorescence rise. – Front. Plant Sci. 12: 594400, 2021. 10.3389/fpls.2021.594400 PubMed DOI PMC

Davey M.W., Persiau G., De Bruyn A. et al.: Purification of the alkaloid lycorine and simultaneous analysis of ascorbic acid and lycorine by micellar electrokinetic capillary chromatography. – Anal. Biochem. 257: 80-88, 1998. 10.1006/abio.1997.2544 PubMed DOI

Dubbels R., Reiter R.J., Klenke E. et al.: Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. – J. Pineal Res. 18: 28-31, 1995. 10.1111/j.1600-079X.1995.tb00136.x PubMed DOI

El-Katony T.M., Deyab M.A., El-Adl M.F., El-Nabway F.M.: The aqueous extract and powder of the brown alga Dictyota dichotoma (Hudson) differentially alleviate the impact of abiotic stress on rice (Oryza sativa L.). – Physiol. Mol. Biol. Pla. 26: 1155-1171, 2020. 10.1007/s12298-020-00805-2 PubMed DOI PMC

Fu Q., Cao H., Wang L. et al.: Transcriptome analysis reveals that ascorbic acid treatment enhances the cold tolerance of tea plants through cell wall remodeling. – Int. J. Mol. Sci. 24: 10059, 2023. 10.3390/ijms241210059 PubMed DOI PMC

Gao H.S., Huang L.Z., Gong Z.J. et al.: Exogenous melatonin application improves resistance to high manganese stress through regulating reactive oxygen species scavenging and ion homeostasis in tobacco. – Plant Growth Regul. 98: 219-233, 2022a. 10.1007/s10725-022-00857-2 DOI

Gao Z., Zhang J., Zhang J. et al.: Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate–glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr. – Plant Physiol. Biochem. 173: 46-58, 2022b. 10.1016/j.plaphy.2022.01.017 PubMed DOI

Ghorbani A., Omran V.O.G., Razavi S.M. et al.: Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status. – Plant Cell Rep. 38: 1151-1163, 2019. 10.1007/s00299-019-02434-w PubMed DOI

Hao L., Chang J.J., Chen H.J. et al.: Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. – Front. Plant Sci. 8: 295, 2017. 10.3389/fpls.2017.00295 PubMed DOI PMC

Hasan M.K., Xing Q.-F., Zhou C.-Y. et al.: Melatonin mediates elevated carbon dioxide-induced photosynthesis and thermotolerance in tomato. – J. Pineal Res. 74: e12858, 2023. 10.1111/jpi.12858 PubMed DOI

Hasanuzzaman M., Nahar K., Anee T.I., Fujita M.: Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. – Front. Plant Sci. 8: 1061, 2017. 10.3389/fpls.2017.01061 PubMed DOI PMC

Hasanuzzaman M., Raihan M.R.H., Alharby H.F. et al.: Foliar application of ascorbic acid and tocopherol in conferring salt tolerance in rapeseed by enhancing K+/Na+ homeostasis, osmoregulation, antioxidant defense, and glyoxalase system. – Agronomy 13: 361, 2023. 10.3390/agronomy13020361 DOI

Hassan A., Amjad S.F., Saleem M.H. et al.: Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. – Saudi J. Biol. Sci. 28: 4276-4290, 2021. 10.1016/j.sjbs.2021.03.045 PubMed DOI PMC

Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. – Arch. Biochem. Biophys. 125: 189-198, 1968. 10.1016/0003-9861(68)90654-1 PubMed DOI

Huang J.X., Liu Y.B., Xiao R. et al.: Exogenous melatonin alleviates nicosulfuron toxicity by regulating the growth, photosynthetic capacity, and antioxidative defense of sweet corn seedlings. – Photosynthetica 62: 58-70, 2024. PubMed PMC

Kamran M., Wennan S., Ahmad I. et al.: Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. – Sci. Rep.-UK 8: 4818, 2018. 10.1038/s41598-018-23166-z PubMed DOI PMC

Khan Z., Jan R., Asif S. et al.: Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. – Sci. Rep.-UK 14: 1214, 2024. 10.1038/s41598-024-51369-0 PubMed DOI PMC

Li C., Wang P., Wei Z. et al.: The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. – J. Pineal Res. 53: 298-306, 2012. 10.1111/j.1600-079X.2012.00999.x PubMed DOI

Li J., Yang Y., Sun K. et al.: Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). – Molecules 24: 1826, 2019. PubMed PMC

Lichtenthaler H.K., Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. – Biochem. Soc. T. 11: 591-592, 1983. 10.1042/bst0110591 DOI

Liu J., Zhang R., Sun Y. et al.: The beneficial effects of exogenous melatonin on tomato fruit properties. – Sci. Hortic.-Amsterdam 207: 14-20, 2016. 10.1016/j.scienta.2016.05.003 DOI

Luo Z., Zhang J., Xiang M. et al.: Exogenous melatonin treatment affects ascorbic acid metabolism in postharvest ‘Jinyan’ kiwifruit. – Front. Nutr. 9: 1081476, 2022. 10.3389/fnut.2022.1081476 PubMed DOI PMC

Mittler R.: Abiotic stress, the field environment and stress combination. – Trends Plant Sci. 11: 15-19, 2006. 10.1016/j.tplants.2005.11.002 PubMed DOI

Munns R., Tester M.: Mechanisms of salinity tolerance. – Annu. Rev. Plant Biol. 59: 651-681, 2008. 10.1146/annurev.arplant.59.032607.092911 PubMed DOI

Munns R., Wallace P.A., Teakle N.L., Colmer T.D.: Measuring soluble ion concentrations (Na+, K+, Cl–) in salt-treated plants. – In: Sunkar R. (ed.): Plant Stress Tolerance. Methods in Molecular Biology. Vol. 639. Pp. 371-382. Humana Press, Totowa: 2010. 10.1007/978-1-60761-702-0_23 PubMed DOI

Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. – Plant Cell Physiol. 22: 867-880, 1981. 10.1093/oxfordjournals.pcp.a076232 DOI

Nie M., Ning N., Chen J. et al.: Melatonin enhances salt tolerance in sorghum by modulating photosynthetic performance, osmoregulation, antioxidant defense, and ion homeostasis. – Open Life Sci. 18: 20220734, 2023. 10.1515/biol-2022-0734 PubMed DOI PMC

Niu J.P., Chen Z., Yu S., Wang Q.: Ascorbic acid regulates nitrogen, energy, and gas exchange metabolisms of alfalfa in response to high-nitrate stress. – Environ. Sci. Pollut. Res. 29: 24085-24097, 2022. 10.1007/s11356-021-17672-3 PubMed DOI

Noreen S., Sultan M., Akhter M.S. et al.: Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. – Plant Physiol. Biochem. 158: 244-254, 2021. 10.1016/j.plaphy.2020.11.007 PubMed DOI

Okamoto O.K., Pinto E., Latorre L.R. et al.: Antioxidant modulation in response to metal induced oxidative stress in algal chloroplast. – Arch. Environ. Con. Tox. 40: 18-24, 2001. 10.1007/s002440010144 PubMed DOI

Rao M.V., Paliyath G., Ormrod D.P.: Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. – Plant Physiol. 110: 125-136, 1996. 10.1104/pp.110.1.125 PubMed DOI PMC

Ros-Barceló A., Pomar F., López-Serrano M. et al.: Developmental regulation of the H2O2-producing system and of a basic peroxidase isoenzyme in the Zinnia elegans lignifying xylem. – Plant Physiol. Biochem. 40: 325-332, 2002. 10.1016/S0981-9428(02)01376-1 DOI

Sezer İ., Kiremit M.S., Öztürk E. et al.: Role of melatonin in improving leaf mineral content and growth of sweet corn seedlings under different soil salinity levels. – Sci. Hortic.-Amsterdam 288: 110376, 2021. 10.1016/j.scienta.2021.110376 DOI

Shabala S., Demidchik V., Shabala L. et al.: Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. – Plant Physiol. 141: 1653-1665, 2006. 10.1104/pp.106.082388 PubMed DOI PMC

Shah S.H.A., Wang H., Xu H. et al.: Comparative transcriptome analysis reveals the protective role of melatonin during salt stress by regulating the photosynthesis and ascorbic acid metabolism pathways in Brassica campestris. – Int. J. Mol. Sci. 25: 5092, 2024. 10.3390/ijms25105092 PubMed DOI PMC

Siddiqui M.H., Alamri S., Al-Khaishany M.Y. et al.: Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. – Int. J. Mol. Sci. 20: 353, 2019. 10.3390/ijms20020353 PubMed DOI PMC

Vafadar F., Amooaghaie R., Ehsanzadeh P. et al.: Crosstalk between melatonin and Ca2+/CaM evokes systemic salt tolerance in Dracocephalum kotschyi. – J. Plant Physiol. 252: 153237, 2020. 10.1016/j.jplph.2020.153237 PubMed DOI

Wang C.Y.: Effect of temperature preconditioning on catalase, peroxidase, and superoxide dismutase in chilled zucchini squash. – Postharvest Biol. Tec. 5: 67-76, 1995. 10.1016/0925-5214(94)00020-S DOI

Wang D.Y., Wang J., Shi S.H. et al.: Exogenous melatonin ameliorates salinity-induced oxidative stress and improves photosynthetic capacity in sweet corn seedlings. – Photosynthetica 59: 327-336, 2021a. 10.32615/ps.2021.031 DOI

Wang J., Wang D.Y., Zhu M., Li F.H.: Exogenous 6-benzyladenine improves waterlogging tolerance in maize seedlings by mitigating oxidative stress and upregulating the ascorbate-glutathione cycle. – Front. Plant Sci. 12: 680376, 2021b. 10.3389/fpls.2021.680376 PubMed DOI PMC

Wang J., Wang Y.L., Wang D.Y. et al.: Mitigative effect of 6-benzyladenine on photosynthetic capacity and leaf ultrastructure of maize seedlings under waterlogging stress. – Photosynthetica 60: 389-399, 2022. 10.32615/ps.2022.027 PubMed DOI PMC

Wang Y., Zhao H., Qin H. et al.: The synthesis of ascorbic acid in rice roots plays an important role in the salt tolerance of rice by scavenging ROS. – Int. J. Mol. Sci. 19: 3347, 2018. 10.3390/ijms19113347 PubMed DOI PMC

Wang Z., Li Q., Wu W. et al.: Cadmium stress tolerance in wheat seedlings induced by ascorbic acid was mediated by NO signaling pathways. – Ecotox. Environ. Safe. 135: 75-81, 2017. 10.1016/j.ecoenv.2016.09.013 PubMed DOI

Wu X., Khan R., Gao H. et al.: Low light alters the photosynthesis process in cigar tobacco via modulation of the chlorophyll content, chlorophyll fluorescence, and gene expression. – Agriculture 11: 755, 2021. 10.3390/agriculture11080755 DOI

Yan R.Y., Liu J.Y., Zhang S.Y., Guo J.: Exogenous melatonin and salicylic acid enhance the drought tolerance of hibiscus (Hibiscus syriacus L.) by regulating photosynthesis and antioxidant system. – J. Soil Sci. Plant Nutr. 24: 497-511, 2024. 10.1007/s42729-023-01560-5 DOI

Yin Z., Lu J., Meng S. et al.: Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. – J. Plant Interact. 14: 453-463, 2019. 10.1080/17429145.2019.1645895 DOI

Zhan H., Nie X., Zhang T. et al.: Melatonin: a small molecule but important for salt stress tolerance in plants. – Int. J. Mol Sci. 20: 709, 2019. 10.3390/ijms20030709 PubMed DOI PMC

Zhang T., Wang Y., Ma X. et al.: Melatonin alleviates copper toxicity via improving ROS metabolism and antioxidant defense response in tomato seedlings. – Antioxidants 11: 758, 2022. 10.3390/antiox11040758 PubMed DOI PMC

Zhang Z., Wang J., Zhang R. et al.: The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. – Plant J. 71: 273-287, 2012. 10.1111/j.1365-313X.2012.04996.x PubMed DOI

Zhou R., Cen B., Jiang F. et al.: Reducing the halotolerance gap between sensitive and resistant tomato by spraying melatonin. – Agronomy 12: 84, 2022. 10.3390/agronomy12010084 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...