Intensity-dependent energetic costs in a reciprocal parasitic relationship
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-5510S
Grantová Agentura České Republiky
PubMed
31494712
DOI
10.1007/s00442-019-04504-y
PII: 10.1007/s00442-019-04504-y
Knihovny.cz E-zdroje
- Klíčová slova
- Acheilognathinae, Coevolution, Evolutionary arms race, Host–parasite relationship, Unionidae,
- MeSH
- Cyprinidae * MeSH
- interakce hostitele a parazita MeSH
- kyslík MeSH
- paraziti * MeSH
- spotřeba kyslíku MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyslík MeSH
Parasitic infections elicit host defences that pose energetic trade-offs with other fitness-related traits. Bitterling fishes and unionid mussels are involved in a two-way parasitic interaction. Bitterling exploit mussels by ovipositing into their gills. In turn, mussel larvae (glochidia) develop on the epidermis and gills of fish. Hosts have evolved behavioural responses to reduce parasite load, suggesting that glochidia and bitterling parasitism are costly. We examined the energetic cost of parasitism on both sides of this relationship. We used intermittent flow-through respirometry to measure (1) standard metabolic rate (SMR) of individual duck mussels Anodonta anatina (a common bitterling host) before and during infection by embryos of the European bitterling Rhodeus amarus, and (2) SMR and maximum oxygen uptake (MO2max) of individual R. amarus before and during infection with glochidia of the Chinese pond mussel Sinanodonta woodiana (a mussel species that successfully infects bitterling). As predicted, we observed an increase in mussel SMR when infected by bitterling embryos and an increased SMR in glochidia-infected bitterling, though this was significantly mediated by the time post-infection. Contrary to our predictions, glochidia infection did not impair MO2max and the number of glochidia attached to gills positively (rather than negatively) correlated with MO2max. The results suggest that tolerance is the prevailing coping mechanism for both fish and mussels when infected, while resistance mechanisms appear to be confined to the behavioural level.
Department of Zoology and Fisheries Czech University of Life Sciences Prague Prague Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 603 65 Brno Czech Republic
Zobrazit více v PubMed
Proc Biol Sci. 2001 Jun 7;268(1472):1175-81 PubMed
Proc Biol Sci. 2001 Jan 7;268(1462):71-6 PubMed
Proc Biol Sci. 2003 Jan 22;270(1511):153-8 PubMed
J Evol Biol. 2006 May;19(3):788-96 PubMed
Mol Phylogenet Evol. 2006 Sep;40(3):856-65 PubMed
Fish Shellfish Immunol. 2006 Nov;21(5):473-84 PubMed
Dev Comp Immunol. 2007;31(2):143-55 PubMed
Vet Pathol. 2006 Nov;43(6):1004-8 PubMed
Evolution. 2010 Oct;64(10):3047-56 PubMed
Trends Ecol Evol. 1996 Aug;11(8):317-21 PubMed
Integr Comp Biol. 2009 Sep;49(3):246-53 PubMed
J Evol Biol. 2012 Mar;25(3):566-73 PubMed
Biol Lett. 2012 Aug 23;8(4):601-4 PubMed
Parasitol Res. 2013 Apr;112(4):1607-13 PubMed
J Exp Biol. 2013 Aug 1;216(Pt 15):2771-82 PubMed
Fish Physiol Biochem. 1989 Jan;6(1):49-59 PubMed
Mol Phylogenet Evol. 2014 Dec;81:182-94 PubMed
Proc Biol Sci. 2015 Aug 7;282(1812):20151063 PubMed
J Fish Biol. 2016 Jan;88(1):81-121 PubMed
Ecology. 2016 Apr;97(4):940-50 PubMed
Physiol Behav. 2017 Mar 15;171:127-134 PubMed
Oecologia. 2017 Apr;183(4):1031-1040 PubMed
Parasitol Res. 2017 Apr;116(4):1353-1360 PubMed
Oecologia. 2002 May;131(3):473-478 PubMed
Evol Appl. 2018 Oct 20;11(10):1975-1989 PubMed
J Parasitol. 1980 Apr;66(2):274-81 PubMed
Physiol Rev. 1997 Jul;77(3):591-625 PubMed