Intensity-dependent energetic costs in a reciprocal parasitic relationship

. 2019 Oct ; 191 (2) : 285-294. [epub] 20190907

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31494712

Grantová podpora
19-5510S Grantová Agentura České Republiky

Odkazy

PubMed 31494712
DOI 10.1007/s00442-019-04504-y
PII: 10.1007/s00442-019-04504-y
Knihovny.cz E-zdroje

Parasitic infections elicit host defences that pose energetic trade-offs with other fitness-related traits. Bitterling fishes and unionid mussels are involved in a two-way parasitic interaction. Bitterling exploit mussels by ovipositing into their gills. In turn, mussel larvae (glochidia) develop on the epidermis and gills of fish. Hosts have evolved behavioural responses to reduce parasite load, suggesting that glochidia and bitterling parasitism are costly. We examined the energetic cost of parasitism on both sides of this relationship. We used intermittent flow-through respirometry to measure (1) standard metabolic rate (SMR) of individual duck mussels Anodonta anatina (a common bitterling host) before and during infection by embryos of the European bitterling Rhodeus amarus, and (2) SMR and maximum oxygen uptake (MO2max) of individual R. amarus before and during infection with glochidia of the Chinese pond mussel Sinanodonta woodiana (a mussel species that successfully infects bitterling). As predicted, we observed an increase in mussel SMR when infected by bitterling embryos and an increased SMR in glochidia-infected bitterling, though this was significantly mediated by the time post-infection. Contrary to our predictions, glochidia infection did not impair MO2max and the number of glochidia attached to gills positively (rather than negatively) correlated with MO2max. The results suggest that tolerance is the prevailing coping mechanism for both fish and mussels when infected, while resistance mechanisms appear to be confined to the behavioural level.

Zobrazit více v PubMed

Proc Biol Sci. 2001 Jun 7;268(1472):1175-81 PubMed

Proc Biol Sci. 2001 Jan 7;268(1462):71-6 PubMed

Proc Biol Sci. 2003 Jan 22;270(1511):153-8 PubMed

J Evol Biol. 2006 May;19(3):788-96 PubMed

Mol Phylogenet Evol. 2006 Sep;40(3):856-65 PubMed

Fish Shellfish Immunol. 2006 Nov;21(5):473-84 PubMed

Dev Comp Immunol. 2007;31(2):143-55 PubMed

Vet Pathol. 2006 Nov;43(6):1004-8 PubMed

Evolution. 2010 Oct;64(10):3047-56 PubMed

Trends Ecol Evol. 1996 Aug;11(8):317-21 PubMed

Integr Comp Biol. 2009 Sep;49(3):246-53 PubMed

J Evol Biol. 2012 Mar;25(3):566-73 PubMed

Biol Lett. 2012 Aug 23;8(4):601-4 PubMed

Parasitol Res. 2013 Apr;112(4):1607-13 PubMed

J Exp Biol. 2013 Aug 1;216(Pt 15):2771-82 PubMed

Fish Physiol Biochem. 1989 Jan;6(1):49-59 PubMed

Mol Phylogenet Evol. 2014 Dec;81:182-94 PubMed

Proc Biol Sci. 2015 Aug 7;282(1812):20151063 PubMed

J Fish Biol. 2016 Jan;88(1):81-121 PubMed

Ecology. 2016 Apr;97(4):940-50 PubMed

Physiol Behav. 2017 Mar 15;171:127-134 PubMed

Oecologia. 2017 Apr;183(4):1031-1040 PubMed

Parasitol Res. 2017 Apr;116(4):1353-1360 PubMed

Oecologia. 2002 May;131(3):473-478 PubMed

Evol Appl. 2018 Oct 20;11(10):1975-1989 PubMed

J Parasitol. 1980 Apr;66(2):274-81 PubMed

Physiol Rev. 1997 Jul;77(3):591-625 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...