• This record comes from PubMed

Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance

. 2023 Sep 25 ; 12 (19) : . [epub] 20230925

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Stomata are crucial structures in plants that play a primary role in the infection process during a pathogen's attack, as they act as points of access for invading pathogens to enter host tissues. Recent evidence has revealed that stomata are integral to the plant defense system and can actively impede invading pathogens by triggering plant defense responses. Stomata interact with diverse pathogen virulence factors, granting them the capacity to influence plant susceptibility and resistance. Moreover, recent studies focusing on the environmental and microbial regulation of stomatal closure and opening have shed light on the epidemiology of bacterial diseases in plants. Bacteria and fungi can induce stomatal closure using pathogen-associated molecular patterns (PAMPs), effectively preventing entry through these openings and positioning stomata as a critical component of the plant's innate immune system; however, despite this defense mechanism, some microorganisms have evolved strategies to overcome stomatal protection. Interestingly, recent research supports the hypothesis that stomatal closure caused by PAMPs may function as a more robust barrier against pathogen infection than previously believed. On the other hand, plant stomatal closure is also regulated by factors such as abscisic acid and Ca2+-permeable channels, which will also be discussed in this review. Therefore, this review aims to discuss various roles of stomata during biotic and abiotic stress, such as insects and water stress, and with specific context to pathogens and their strategies for evading stomatal defense, subverting plant resistance, and overcoming challenges faced by infectious propagules. These pathogens must navigate specific plant tissues and counteract various constitutive and inducible resistance mechanisms, making the role of stomata in plant defense an essential area of study.

See more in PubMed

Driesen E., Van den Ende W., De Proft M., Saeys W. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy. 2020;10:1975. doi: 10.3390/agronomy10121975. DOI

Ye W., Murata Y. Microbe associated molecular pattern signaling in guard cells. Front. Plant Sci. 2016;7:583. doi: 10.3389/fpls.2016.00583. PubMed DOI PMC

Uppalapati S.R., Ayoubi P., Weng H., Palmer D.A., Mitchell R.E., Jones W., Bender C.L. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J. 2005;42:201–217. doi: 10.1111/j.1365-313X.2005.02366.x. PubMed DOI

An S.Q., Potnis N., Dow M., Vorhölter F.J., He Y.Q., Becker A., Teper D., Li Y., Wang N., Bleris L., et al. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol. Rev. 2020;44:1–32. doi: 10.1093/femsre/fuz024. PubMed DOI PMC

Gudesblat G.E., Torres P.S., Vojnov A.A. Xanthomonas Campestris Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor. Plant Physiol. 2009;149:1017–1027. doi: 10.1104/pp.108.126870. PubMed DOI PMC

Li S., Assmann S.M., Albert R. Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling. PLoS Biol. 2006;4:e312. doi: 10.1371/journal.pbio.0040312. PubMed DOI PMC

Gudesblat G.E., Torres P.S., Vojno A.A. Stomata and pathogens: Warfare at the gates. Plant Signal. Behav. 2009;4:1114–1116. doi: 10.4161/psb.4.12.10062. PubMed DOI PMC

Kashtoh H., Baek K.H. Structural and functional insights into the role of guard cell ion channels in abiotic stress-induced stomatal closure. Plants. 2021;10:2774. doi: 10.3390/plants10122774. PubMed DOI PMC

Liu H., Song S., Zhang H., Li Y., Niu L., Zhang J., Wang W. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. Int. J. Mol. Sci. 2022;23:14824. doi: 10.3390/ijms232314824. PubMed DOI PMC

Postiglione A.E., Muday G.K. The role of ROS homeostasis in ABA-induced guard cell signaling. Front. Plant Sci. 2020;11:968. doi: 10.3389/fpls.2020.00968. PubMed DOI PMC

Takahashi F., Hanada K., Kondo T., Shinozaki K. Hormone-like peptides and small coding genes in plant stress signaling and development. Curr. Opin. Plant Biol. 2019;51:88–95. doi: 10.1016/j.pbi.2019.05.011. PubMed DOI

Chakradhar T., Reddy R.A., Chandrasekhar T. Plant Signaling Molecules. Woodhead Publishing; Sawston, UK: 2019. Protein kinases and phosphatases in stress transduction: Role in crop improvement; pp. 533–547.

Patel J.S., Selvaraj V., Gunupuru L.R., Kharwar R.N., Sarma B.K. Plant G-protein signaling cascade and host defense. 3 Biotech. 2020;10:1–8. doi: 10.1007/s13205-020-02201-9. PubMed DOI PMC

Singla-Rastogi M., Charvin M., Thiébeauld O., Perez-Quintero A.L., Ravet A., Emidio-Fortunato A., Navarro L. Plant small RNA species direct gene silencing in pathogenic bacteria as well as disease protection. BioRxiv. 2019:863902

Aoki S., Toh S., Nakamichi N., Hayashi Y., Wang Y., Suzuki T., Kinoshita T. Regulation of stomatal opening and histone modification by photoperiod in Arabidopsis thaliana. Sci. Rep. 2019;9:10054. doi: 10.1038/s41598-019-46440-0. PubMed DOI PMC

Bharath P., Gahir S., Raghavendra A.S. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense against Abiotic and Biotic Stress. Front. Plant Sci. 2021;12:615114. doi: 10.3389/fpls.2021.615114. PubMed DOI PMC

Signorelli S., Tarkowski Ł.P., Van den Ende W., Bassham D.C. Linking autophagy to abiotic and biotic stress responses. Trends Plant Sci. 2019;24:413–430. doi: 10.1016/j.tplants.2019.02.001. PubMed DOI PMC

Kong L., Rodrigues B., Kim J.H., He P., Shan L. More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. Curr. Opin. Plant Biol. 2021;63:102051. doi: 10.1016/j.pbi.2021.102051. PubMed DOI

Wu J., Liu Y. Stomata–pathogen interactions: Over a century of research. Trends Plant Sci. 2022;27:964–967. doi: 10.1016/j.tplants.2022.07.004. PubMed DOI

Emlee A.M., Amri C.N.A.C., Midin M.R. Comparative Study on Leaf Anatomy in Selected Garcinia Species in Peninsular Malaysia. Pertanika, J. Trop. Agric. Sci. 2023;46:687–705. doi: 10.47836/pjtas.46.2.18. DOI

Moldenhauer J., Moerschbacher B.M., Van der Westhuizen A.J. Histological investigation of stripe rust (Puccinia striiformis f. sp. tritici) development in resistant and susceptible wheat cultivars. Plant Pathol. 2006;55:469–474. doi: 10.1111/j.1365-3059.2006.01385.x. DOI

Oguchi R., Onoda Y., Terashima I., Tholen D. The Leaf: A Platform for Performing Photosynthesis. Springer; Berlin/Heidelberg, Germany: 2018. Leaf anatomy and function; pp. 97–139.

Naqvi S.A.H., Wang J., Malik M.T., Umar U.U.D., Hasnain A., Sohail M.A., Shakeel M.T., Nauman M., Hassan M.Z., Fatima M., et al. Citrus canker—Distribution, taxonomy, epidemiology, disease cycle, pathogen biology, detection, and management: A critical review and future research agenda. Agronomy. 2022;12:1075. doi: 10.3390/agronomy12051075. DOI

Nielsen K.A., Nicholson R.L., Carver T.L., Kunoh H., Oliver R.P. First touch: An immediate response to surface recognition in conidia of Blumeria graminis. Physiol. Mol. Plant Pathol. 2000;56:63–70. doi: 10.1006/pmpp.1999.0241. DOI

Nonomura T., Xu L., Wada M., Kawamura S., Miyajima T., Nishitomi A., Kakutani K., Takikawa Y., Matsuda Y., Toyoda H. Trichome exudates of Lycopersicon pennellii form a chemical barrier to suppress leaf-surface germination of Oidium neolycopersici conidia. Plant Sci. 2009;176:31–37. doi: 10.1016/j.plantsci.2008.09.002. DOI

Łaźniewska J., Macioszek V.K., Kononowicz A.K. Plant-fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiol. Mol. Plant Pathol. 2012;78:24–30. doi: 10.1016/j.pmpp.2012.01.004. DOI

Meng Q., Gupta R., Min C.W., Kwon S.W., Wang Y., Je B.I., Kim Y.J., Jeon J.S., Agrawal G.K., Rakwal R., et al. Proteomics of Rice—Magnaporthe oryzae interaction: What have we learned so far? Front. Plant Sci. 2019;10:1383. doi: 10.3389/fpls.2019.01383. PubMed DOI PMC

Luo S., Coutinho B.G., Dadhwal P., Oda Y., Ren J., Schaefer A.L., Greenberg E.P., Harwood C.S., Tong L. Structural basis for a bacterial Pip system plant effector recognition protein. Proc. Natl. Acad. Sci. USA. 2021;118:e2019462118. doi: 10.1073/pnas.2019462118. PubMed DOI PMC

Niks R.E., Rubiales D. Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica. 2002;124:201–216. doi: 10.1023/A:1015634617334. DOI

Kochman J.K., Brown J.F. Development of the stem and crown rust fungi on leaves, sheaths, and peduncles of oats. Phytopath. 1975;65:1404–1408. doi: 10.1094/Phyto-65-1404. DOI

Jacobs T. Abortion of infection structures of wheat leaf rust in susceptible and partially resistant wheat genotypes. Euphytica. 1990;45:81–86. doi: 10.1007/BF00032153. DOI

Meshram S., Gogoi R., Bashyal B.M., Kumar A., Mandal P.K., Hossain F. Expression Analysis of Maize Genes during Bipolaris maydis Infection and Assessing Their Role in Disease Resistance and Symptom Development. NISCAIR-CSIR; New Delhi, India: 2020. pp. 82–93.

Schauffler G.P., dos Anjos Verzutti Fonseca J., Di Piero R.M. Defense mechanisms involved in the resistance of maize cultivars to Bipolaris maydis. Eur. J. Plant Pathol. 2022;163:269–277. doi: 10.1007/s10658-022-02475-0. DOI

Meshram S., Gogoi R., Bashyal B.M., Kumar A., Mandal P.K., Hossain F. Comparative Transcriptome Analysis of Fungal Pathogen Bipolaris maydis to Understand Pathogenicity Behavior on Resistant and Susceptible Non-CMS Maize Genotypes. Front. Microbiol. 2022;13:837056. doi: 10.3389/fmicb.2022.837056. PubMed DOI PMC

Sillero J.C., Rubiales D. Histological characterization of resistance to Uromyces viciae-fabae in faba bean. Phytopathology. 2002;92:294–299. doi: 10.1094/PHYTO.2002.92.3.294. PubMed DOI

Rubiales D., Sillero J.C. Uromyces viciae-fabae Haustorium Formation in Susceptible and Resistant Faba Bean Lines. Eur. J. Plant Pathol. 2003;109:71–73. doi: 10.1023/A:1022041106262. DOI

De Wit P.J.G.M. A light and scanning-electron microscopic study of infection of tomato plants by virulent and avirulent races of Cladosporium fulvum. Neth. J. Plant Pathol. 1997;83:109–122. doi: 10.1007/BF01981556. DOI

Ye W., Munemasa S., Shinya T., Wu W., Ma T., Lu J., Kinoshita T., Kaku H., Shibuya N., Murata Y. Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. Proc. Natl. Acad. Sci. USA. 2020;117:20932–20942. doi: 10.1073/pnas.1922319117. PubMed DOI PMC

Barsoum M., Sabelleck B.D., Spanu P., Panstruga R. Rumble in the effector jungle: Candidate effector proteins in interactions of plants with powdery mildew and rust fungi. Crit. Rev. Plant Sci. 2019;38:255–279. doi: 10.1080/07352689.2019.1653514. DOI

Kusch S., Qian J., Loos A., Kümmel F., Spanu P.D., Panstruga R. Long-term and rapid evolution in powdery mildew fungi. Mol. Ecol. 2023 doi: 10.1111/mec.16909. Early View . PubMed DOI

Melotto M., Underwood W., Koczan J., Nomura K., He S.Y. Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell. 2006;126:969–980. doi: 10.1016/j.cell.2006.06.054. PubMed DOI

Millet Y.A., Danna C.H., Clay N.K., Songnuan W., Simon M.D., Werck-Reichhart D., Ausubel F.M. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell. 2010;22:973–990. doi: 10.1105/tpc.109.069658. PubMed DOI PMC

Speth E.B., Melotto M., Zhang W., Assmann S.M., He S.Y. Signal Crosstalk in Plant Stress Responses. Wiley-Blackwell; Hoboken, NJ, USA: 2009. Crosstalk in pathogen and hormonal regulation of guard cell signaling; pp. 96–112.

Chinchilla D., Boller T., Robatzek S. Flagellin Signalling in Plant Immunity. Adv. Exp. Med. Biol. 2007;598:358–371. PubMed

Lee B., Park Y.S., Lee S., Song G.C., Ryu C.M. Bacterial RNAs activate innate immunity in Arabidopsis. New Phytol. 2016;209:785–797. doi: 10.1111/nph.13717. PubMed DOI

Melotto M., Underwood W., He S.Y. Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases. Annu. Rev. Phytopathol. 2008;46:101–122. doi: 10.1146/annurev.phyto.121107.104959. PubMed DOI PMC

Arnaud D., Hwang I. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Mol. Plant. 2015;8:566–581. doi: 10.1016/j.molp.2014.10.012. PubMed DOI

Leon-Kloosterziel K.M., Gil M.A., Ruijs G.J., Jacobsen S.E., Olszewski N.E. Isolation and Characterization of Abscisic Acid-Deficient Arabidopsis Mutants at Two Loci. Plant J. 1996;10:655–661. doi: 10.1046/j.1365-313X.1996.10040655.x. PubMed DOI

Mustilli A.C., Merlot S., Vavasseur A., Fenzi F., Giraudat J. Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production. Plant Cell. 2002;12:3089–3099. doi: 10.1105/tpc.007906. PubMed DOI PMC

Liu Y., Zhang H. Reactive oxygen species and nitric oxide as mediators in plant hypersensitive response and stomatal closure. Plant Signal. Behav. 2021;16:1985860. doi: 10.1080/15592324.2021.1985860. PubMed DOI PMC

Doehlemann G., Requena N., Schaefer P., Brunner F., O’Connell R., Parker J.E. Reprogramming of plant cells by filamentous plant-colonizing microbes. New Phytol. 2014;204:803–814. doi: 10.1111/nph.12938. PubMed DOI

Balint-Kurti P. The plant hypersensitive response: Concepts, control and consequences. Mol. Plant Pathol. 2019;20:1163–1178. doi: 10.1111/mpp.12821. PubMed DOI PMC

Merlot S., Mustilli A.C., Genty B., North H., Lefebvre V., Sotta B., Vavasseur A., Giraudat J. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 2002;30:601–609. doi: 10.1046/j.1365-313X.2002.01322.x. PubMed DOI

Acharya B.R., Jeon B.W., Zhang W., Assmann S.M. Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol. 2013;200:1049–1063. doi: 10.1111/nph.12469. PubMed DOI

Baranova E.N., Kurenina L.V., Smirnov A.N., Beloshapkina O.O., Gulevich A.A. Formation of the hypersensitivity response due to the expression of FeSOD1 gene in tomato when it is inoculated with Phytophthora infestans. Russ. Agric. Sci. 2017;43:15–21. doi: 10.3103/S1068367417010049. DOI

Hu C.H., Wang P.Q., Zhang P.P., Nie X.M., Li B.B., Tai L., Chen K.M. NADPH oxidases: The vital performers and center hubs during plant growth and signaling. Cells. 2020;9:437. doi: 10.3390/cells9020437. PubMed DOI PMC

Liu J., Elmore J.M., Fuglsang A.T., Palmgren M.G., Staskawicz B.J., Coaker G. RIN4 Functions with Plasma Membrane H+-ATPases to Regulate Stomatal Apertures during Pathogen Attack. PLoS. Biol. 2009;7:e1000139. doi: 10.1371/journal.pbio.1000139. PubMed DOI PMC

Emi T., Kinoshita T., Shimazaki K. Specific Binding of Vf14-3-3a Isoform to the Plasma Membrane H+-ATPase in Response to Blue Light and Fusicoccin in Guard Cells of Broad Bean. Plant Physiol. 2001;125:1115–1125. doi: 10.1104/pp.125.2.1115. PubMed DOI PMC

Torres P.S., Malamud F., Rigano L.A., Russo D.M., Marano M.R., Castagnaro A.P., Zorreguieta A., Bouarab K., Dow J.M., Vojnov A.A. Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ. Microbiol. 2007;9:2101–2109. doi: 10.1111/j.1462-2920.2007.01332.x. PubMed DOI PMC

Allègre M., Daire X., Héloir M.C., Trouvelot S., Mercier L., Adrian M., Pugin A. Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. New Phytol. 2007;173:832–840. doi: 10.1111/j.1469-8137.2006.01959.x. PubMed DOI

Zhang H., Zheng X., Zhang Z. The role of vacuolar processing enzymes in plant immunity. Plant Signal. Behav. 2010;5:1565–1567. doi: 10.4161/psb.5.12.13809. PubMed DOI PMC

Kakumanu A., Ambavaram M.M., Klumas C., Krishnan A., Batlang U., Myers E., Grene R., Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol. 2012;160:846–867. doi: 10.1104/pp.112.200444. PubMed DOI PMC

Jiang F., Hartung W. Long-Distance Signalling of Abscisic Acid (ABA): The Factors Regulating the Intensity of the ABA Signal. J. Exp. Bot. 2007;59:37–43. doi: 10.1093/jxb/erm127. PubMed DOI

Zegada-Lizarazu W., Monti A. Deep Root Growth, ABA Adjustments and Root Water Uptake Response to Soil Water Deficit in Giant Reed. Ann. Bot. 2019;124:605–615. doi: 10.1093/aob/mcz001. PubMed DOI PMC

Haworth M., Marino G., Cosentino S.L., Brunetti C., De Carlo A., Avola G. Increased Free Abscisic Acid during Drought Enhances Stomatal Sensitivity and Modifies Stomatal Behaviour in Fast Growing Giant Reed (Arundo donax L.) Environ. Exp. Bot. 2018;147:116–124. doi: 10.1016/j.envexpbot.2017.11.002. DOI

Beattie G.A. Water relations in the interaction of foliar bacterial pathogens with plants. Annu. Rev. Phytopathol. 2011;49:533–555. doi: 10.1146/annurev-phyto-073009-114436. PubMed DOI

Fu M., Bai Q., Zhang H., Guo Y., Peng Y., Zhang P., Shen L., Hong N., Xu W., Wang G. Transcriptome analysis of the molecular patterns of pear plants infected by two Colletotrichum fructicola pathogenic strains causing contrasting sets of leaf symptoms. Front. Plant Sci. 2022;13:761133. doi: 10.3389/fpls.2022.761133. PubMed DOI PMC

Camisón Á., Martín M.Á., Sánchez-Bel P., Flors V., Alcaide F., Morcuende D., Pinto G., Solla A. Hormone and Secondary Metabolite Profiling in Chestnut during Susceptible and Resistant Interactions with Phytophthora cinnamomi. J. Plant Physiol. 2019;241:153030. doi: 10.1016/j.jplph.2019.153030. PubMed DOI

Asselbergh B., De Vleesschauwer D., Höfte M. Global Switches and Fine-Tuning—ABA Modulates Plant Pathogen Defense. Mol. Plant-Microbe Interact. MPMI. 2008;21:709–719. doi: 10.1094/MPMI-21-6-0709. PubMed DOI

Maksimov I.V. Abscisic Acid in the Plants-Pathogen Interaction. Russ. J. Plant Physiol. 2009;56:742–752. doi: 10.1134/S102144370906003X. DOI

Tan Y.-Q., Yang Y., Shen X., Zhu M., Shen J., Zhang W., Hu H., Wang Y.-F. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomata closure in Arabidopsis. Plant Cell. 2022;35:239–259. doi: 10.1093/plcell/koac274. PubMed DOI PMC

Dou L., He K., Peng J., Wang X., Mao T. The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA. Nat. Commun. 2021;12:2181. doi: 10.1038/s41467-021-22455-y. PubMed DOI PMC

Wang P., Qi S., Wang X., Dou L., Jia M.A., Mao T., Guo Y., Wang X. The OPEN STOMATA1–SPIRAL1 module regulates microtubule stability during abscisic acid-induced stomatal closure in Arabidopsis. Plant Cell. 2023;35:260–278. doi: 10.1093/plcell/koac307. PubMed DOI PMC

Nguyen Q.M., Iswanto A., Son G.H., Kim S.H. Recent Advances in Effector-Triggered Immunity in Plants: New Pieces in the Puzzle Create a Different Paradigm. Int. J. Mol. Sci. 2021;22:4709. doi: 10.3390/ijms22094709. PubMed DOI PMC

Kohli S.K., Khanna K., Bhardwaj R., Allah E.F.A., Ahmad P., Corpas F.J. Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants. 2019;8:641. doi: 10.3390/antiox8120641. PubMed DOI PMC

Gahir S., Bharath P., Raghavendra A.S. The Role of Gasotransmitters in Movement of Stomata: Mechanisms of Action and Importance for Plant Immunity. Biol. Plant. 2020;64:623–632. doi: 10.32615/bp.2020.071. DOI

Thor K., Jiang S., Michard E., George J., Scherzer S., Huang S., Zipfel C. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature. 2020;585:569–573. doi: 10.1038/s41586-020-2702-1. PubMed DOI PMC

McLachlan D.H., Kopischke M., Robatzek S. Gate Control: Guard Cell Regulation by Microbial Stress. New Phytol. 2014;203:1049–1063. doi: 10.1111/nph.12916. PubMed DOI

Lim C.W., Baek W., Jung J., Kim J.H., Lee S.C. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. Int. J. Mol. Sci. 2015;16:15251–15270. doi: 10.3390/ijms160715251. PubMed DOI PMC

Murata Y., Mori I.C., Munemasa S. Diverse stomatal signaling and the signal integration mechanism. Annu. Rev. Plant Biol. 2015;66:369–392. doi: 10.1146/annurev-arplant-043014-114707. PubMed DOI

Zhang L., Takahashi Y., Hsu P.K., Kollist H., Merilo E., Krysan P.J., Schroeder J.I. FRET Kinase Sensor Development Reveals SnRK2/OST1 Activation by ABA but Not by MeJA and High CO2 during Stomatal Closure. eLife. 2020;9:e56351. doi: 10.7554/eLife.56351. PubMed DOI PMC

Hsu P.K., Takahashi Y., Munemasa S., Merilo E., Laanemets K., Waadt R., Pater D., Kollist H., Schroeder J.I. Abscisic Acid-Independent Stomatal CO2 Signal Transduction Pathway and Convergence of CO2 and ABA Signaling Downstream of OST1 Kinase. Proc. Natl. Acad. Sci. USA. 2018;115:E9971–E9980. doi: 10.1073/pnas.1809204115. PubMed DOI PMC

Zheng X., Kang S., Jing Y., Ren Z., Li L., Zhou J.M., Berkowitz G. Danger-Associated Peptides Close Stomata by OST1-Independent Activation of Anion Channels in Guard Cells. Plant Cell. 2018;30:1132–1146. doi: 10.1105/tpc.17.00701. PubMed DOI PMC

Prodhan M.Y., Munemasa S., Nahar M.N., Nakamura Y., Murata Y. Guard Cell Salicylic Acid Signaling Is Integrated into Abscisic Acid Signaling via the Ca2+/CPK-Dependent Pathway. Plant Physiol. 2018;178:441–450. doi: 10.1104/pp.18.00321. PubMed DOI PMC

Fürstenberg-Hägg J., Zagrobelny M., Bak S. Plant Defense against Insect Herbivores. Int. J. Mol. Sci. 2013;14:10242–10297. doi: 10.3390/ijms140510242. PubMed DOI PMC

Ellinger D., Voigt C.A. Callose Biosynthesis in Arabidopsis with a Focus on Pathogen Response: What We Have Learned within the Last Decade. Ann. Bot. 2014;114:1349–1358. doi: 10.1093/aob/mcu120. PubMed DOI PMC

Lewandowska M., Keyl A., Feussner I. Wax biosynthesis in response to danger: Its regulation upon abiotic and biotic stress. New Phytol. 2020;227:698–713. doi: 10.1111/nph.16571. PubMed DOI

Kaliff M., Staal J., Myrenås M., Dixelius C. ABA is required for Leptosphaeria maculans resistance via ABI1-and ABI4-dependent signaling. Mol. Plant-Microbe Interact. 2007;20:335–345. doi: 10.1094/MPMI-20-4-0335. PubMed DOI

Cao F.Y., Yoshioka K., Desveaux D. The roles of ABA in plant–pathogen interactions. J. Plant Res. 2011;124:489–499. doi: 10.1007/s10265-011-0409-y. PubMed DOI

Yang C., Li W., Cao J., Meng F., Yu Y., Huang J., Jiang L., Liu M., Zhang Z., Chen X., et al. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J. 2017;89:338–353. doi: 10.1111/tpj.13388. PubMed DOI

Khokon M.A., Jahan M.S., Rahman T., Hossain M.A., Muroyama D., Minami I., Munemasa S., Mori I.C., Nakamura Y., Murata Y. Allyl Isothiocyanate (AITC) Induces Stomatal Closure in Arabidopsis: AITC Signalling in Arabidopsis. Plant Cell Env. 2011;34:1900–1906. doi: 10.1111/j.1365-3040.2011.02385.x. PubMed DOI

Hossain M.A., Munemasa S., Uraji M., Nakamura Y., Mori I.C., Murata Y. Involvement of Endogenous Abscisic Acid in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis. Plant Physiol. 2011;156:430–438. doi: 10.1104/pp.111.172254. PubMed DOI PMC

Gayatri G., Agurla S., Kuchitsu K., Anil K., Podile A.R., Raghavendra A.S. Stomatal Closure and Rise in ROS/NO of Arabidopsis Guard Cells by Tobacco Microbial Elicitors: Cryptogein and Harpin. Front. Plant Sci. 2017;8:1096. doi: 10.3389/fpls.2017.01096. PubMed DOI PMC

Baccelli I., Lombardi L., Luti S., Bernardi R., Picciarelli P., Scala A., Pazzagli L. Cerato-Platanin Induces Resistance in Arabidopsis Leaves through Stomatal Perception, Overexpression of Salicylic Acid- and Ethylene-Signalling Genes and Camalexin Biosynthesis. PLoS ONE. 2014;9:e100959. doi: 10.1371/journal.pone.0100959. PubMed DOI PMC

Wu L., Wu H., Chen L., Zhang H., Gao X. Induction of Systemic Disease Resistance in Nicotiana benthamiana by the Cyclodipeptides Cyclo (l-Prol-Pro) and Cyclo (d-Pro-d-Pro) Mol. Plant Pathol. 2017;18:67–74. doi: 10.1111/mpp.12381. PubMed DOI PMC

Novák J., Pavlů J., Novák O., Nožková-Hlaváčková V., Špundová M., Hlavinka J., Koukalová Š., Skalák J., Černý M., Brzobohatý B. High Cytokinin Levels Induce a Hypersensitive-like Response in Tobacco. Ann. Bot. 2013;112:41–55. doi: 10.1093/aob/mct092. PubMed DOI PMC

Benjamin G., Pandharikar G., Frendo P. Salicylic acid in plant symbioses: Beyond plant pathogen interactions. Biology. 2022;11:861. doi: 10.3390/biology11060861. PubMed DOI PMC

Laxalt A.M., García-Mata C., Lamattina L. The dual role of nitric oxide in guard cells: Promoting and attenuating the ABA and phospholipid-derived signals leading to the stomatal closure. Front. Plant Sci. 2016;7:476. doi: 10.3389/fpls.2016.00476. PubMed DOI PMC

Raghavendra A.S., Reddy K.B. Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate. Plant Physiol. 1987;83:732–734. doi: 10.1104/pp.83.4.732. PubMed DOI PMC

Koo Y.M., Heo A.Y., Choi H.W. Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathol. J. 2020;36:1–10. doi: 10.5423/PPJ.RW.12.2019.0295. PubMed DOI PMC

Khokon M.A.R., Salam M.A., Jammes F., Ye W., Hossain M.A., Okuma E., Nakamura Y., Mori I.C., Kwak J.M., Murata Y. MPK9 and MPK12 function in SA-induced stomatal closure in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2017;81:1394–1400. doi: 10.1080/09168451.2017.1308244. PubMed DOI

Salam M.A., Jammes F., Hossain M.A., Ye W., Nakamura Y., Mori I.C., Kwak J.M., Murata Y. MAP Kinases, MPK9 and MPK12, Regulate Chitosan-Induced Stomatal Closure. Biosci. Biotechnol. Biochem. 2012;76:1785–1787. doi: 10.1271/bbb.120228. PubMed DOI

Bright J., Desikan R., Hancock J.T., Weir I.S., Neill S.J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 2006;45:113–122. doi: 10.1111/j.1365-313X.2005.02615.x. PubMed DOI

Du Y.L., Wang Z.Y., Fan J.W., Turner N.C., Wang T., Li F.M. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. J. Exp. Bot. 2012;63:4849–4860. doi: 10.1093/jxb/ers164. PubMed DOI PMC

Mekonnen D.W., Flügge U.I., Ludewig F. Gamma-Aminobutyric Acid Depletion Affects Stomata Closure and Drought Tolerance of Arabidopsis thaliana. Plant Sci. 2016;245:25–34. doi: 10.1016/j.plantsci.2016.01.005. PubMed DOI

Agurla S., Gayatri G., Raghavendra A.S. Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide. 2014;43:89–96. doi: 10.1016/j.niox.2014.07.004. PubMed DOI

Suhita D., Raghavendra A.S., Kwak J.M., Vavasseur A. Cytoplasmic Alkalization Precedes Reactive Oxygen Species Production during Methyl Jasmonate- and Abscisic Acid-Induced Stomatal Closure. Plant Physiol. 2004;134:1536–1545. doi: 10.1104/pp.103.032250. PubMed DOI PMC

Lee S., Choi H., Suh S., Doo I.S., Oh K.Y., Choi E.J., Taylor A.T.S., Low P.S., Lee Y. Oligogalacturonic Acid and Chitosan Reduce Stomatal Aperture by Inducing the Evolution of Reactive Oxygen Species from Guard Cells of Tomato and Commelina communis. Plant Physiol. 1999;121:147–152. doi: 10.1104/pp.121.1.147. PubMed DOI PMC

Nazareno A.L., Hernandez B.S. A mathematical model of the interaction of abscisic acid, ethylene and methyl jasmonate on stomatal closure in plants. PLoS ONE. 2017;12:e0171065. doi: 10.1371/journal.pone.0171065. PubMed DOI PMC

Chen H., Bullock D.A., Jr., Alonso J.M., Stepanova A.N. To fight or to grow: The balancing role of ethylene in plant abiotic stress responses. Plants. 2022;11:33. doi: 10.3390/plants11010033. PubMed DOI PMC

Sarkar D., Pal S., Singh H.B., Yadav R.S., Rakshit A. Harnessing biopriming for integrated resource management under changing climate. In: Singh H.B., Sarma B.K., Keswani C., editors. Advances in PGPR Research. CAB International; Wallingford, UK: 2017. pp. 349–363..

Berrabah F., Balliau T., Aït-Salem E.H., George J., Zivy M., Ratet P., Gourion B. Control of the ethylene signaling pathway prevents plant defenses during intracellular accommodation of the rhizobia. New Phytol. 2018;219:310–323. doi: 10.1111/nph.15142. PubMed DOI

LaO M., Arencibia A.D., Carmona E.R., Acevedo R., Rodríguez E., León O., Santana I. Differential expression analysis by cDNA-AFLP of Saccharum spp. after inoculation with the host pathogen Sporisorium scitamineum. Plant Cell Rep. 2008;27:1103–1111. doi: 10.1007/s00299-008-0524-y. PubMed DOI

Mano J.I., Biswas M.S., Sugimoto K. Reactive carbonyl species: A missing link in ROS signaling. Plants. 2019;8:391. doi: 10.3390/plants8100391. PubMed DOI PMC

Xia X.J., Zhou Y.H., Shi K., Zhou J., Foyer C.H., Yu J.Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 2015;66:2839–2856. doi: 10.1093/jxb/erv089. PubMed DOI

Sewelam N., Kazan K., Schenk P.M. Global Plant Stress Signaling: Reactive Oxygen Species at the Crossroad. Front. Plant Sci. 2016;7:187. doi: 10.3389/fpls.2016.00187. PubMed DOI PMC

Bellin D., Asai S., Delledonne M., Yoshioka H. Nitric Oxide as a Mediator for Defense Responses. Mol. Plant-Microbe Interact. MPMI. 2013;26:271–277. doi: 10.1094/MPMI-09-12-0214-CR. PubMed DOI

Suzuki N., Katano K. Coordination between ROS Regulatory Systems and Other Pathways under Heat Stress and Pathogen Attack. Front. Plant Sci. 2018;9:490. doi: 10.3389/fpls.2018.00490. PubMed DOI PMC

Li J., Wang X. Phospholipase D and phosphatidic acid in plant immunity. Plant Sci. 2019;279:45–50. doi: 10.1016/j.plantsci.2018.05.021. PubMed DOI

Khan M.S.S., Islam F., Ye Y., Ashline M., Wang D., Zhao B., Fu Z.Q., Chen J. The interplay between hydrogen sulfide and phytohormone signaling pathways under challenging environments. Int. J. Mol. Sci. 2022;23:4272. doi: 10.3390/ijms23084272. PubMed DOI PMC

Adie B.A., Perez-Perez J., Perez-Perez M.M., Godoy M., Sanchez-Serrano J.J., Schmelz E.A., Solano R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell. 2007;19:1665–1681. doi: 10.1105/tpc.106.048041. PubMed DOI PMC

Contreras-Cornejo H.A., Macías-Rodríguez L., Vergara A.G., López-Bucio J. Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. J. Plant Growth Regul. 2015;34:425–432. doi: 10.1007/s00344-014-9471-8. DOI

Lee S., Rojas C.M., Ishiga Y., Pandey S., Mysore K.S. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens. PLoS ONE. 2013;8:e82445. doi: 10.1371/journal.pone.0082445. PubMed DOI PMC

Su J., Zhang M., Zhang L., Sun T., Liu Y., Lukowitz W., Xu J., Zhang S. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell. 2017;29:526–542. doi: 10.1105/tpc.16.00577. PubMed DOI PMC

Guzel Deger A., Scherzer S., Nuhkat M., Kedzierska J., Kollist H., Brosché M., Unyayar S., Boudsocq M., Hedrich R., Roelfsema M.R.G. Guard cell SLAC 1-type anion channels mediate flagellin-induced stomatal closure. New Phytol. 2015;208:162–173. doi: 10.1111/nph.13435. PubMed DOI PMC

Jalakas P., Huang Y.C., Yeh Y.H., Zimmerli L., Merilo E., Kollist H., Brosché M. The role of ENHANCED RESPONSES TO ABA1 (ERA1) in Arabidopsis stomatal responses is beyond ABA signaling. Plant Physiol. 2017;174:665–671. doi: 10.1104/pp.17.00220. PubMed DOI PMC

Montillet J.L., Leonhardt N., Mondy S., Tranchimand S., Rumeau D., Boudsocq M., Garcia A.V. An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis. PLoS Biol. 2013;11:e1001513. doi: 10.1371/journal.pbio.1001513. PubMed DOI PMC

Peng P., Li R., Chen Z.H., Wang Y. Stomata at the crossroad of molecular interaction between biotic and abiotic stress responses in plants. Front. Plant Sci. 2022;13:1031891. doi: 10.3389/fpls.2022.1031891. PubMed DOI PMC

Lin P.A., Chen Y., Chaverra-Rodriguez D., Heu C.C., Zainuddin N.B., Sidhu J.S., Peiffer M. Silencing the Alarm: An Insect Salivary Enzyme Closes Plant Stomata and Inhibits Volatile Release. New Phytol. 2021;230:793–803. doi: 10.1111/nph.17214. PubMed DOI PMC

Mouttet R., Bearez P., Thomas C., Desneux N. Phytophagous Arthropods and a Pathogen Sharing a Host Plant: Evidence for Indirect Plant-Mediated Interactions. PLoS ONE. 2011;6:e18840. doi: 10.1371/journal.pone.0018840. PubMed DOI PMC

Lin P.A., Chen Y., Ponce G., Acevedo F.E., Lynch J.P., Anderson C.T., Ali J.G., Felton G.W. Stomata-mediated interactions between plants, herbivores, and the environment. Trends Plant Sci. 2022;27:287–300. doi: 10.1016/j.tplants.2021.08.017. PubMed DOI

Nabity P.D. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann. Bot. 2009;103:655–663. doi: 10.1093/aob/mcn127. PubMed DOI PMC

Manzar N., Kashyap A.S., Maurya A., Rajawat M.V.S., Sharma P.K., Srivastava A.K., Roy M., Saxena A.K., Singh H.V. Multi-Gene Phylogenetic Approach for Identification and Diversity Analysis of Bipolaris maydis and Curvularia lunata Isolates Causing Foliar Blight of Zea mays. J. Fungus. 2022;8:802. doi: 10.3390/jof8080802. PubMed DOI PMC

Meshram S., Patel J.S., Yadav S.K., Kumar G., Singh D.P., Singh H.B., Sarma B.K. Trichoderma Mediate Early and Enhanced Lignifications in Chickpea during Fusarium oxysporum f. sp. ciceris Infection. J. Basic. Microbiol. 2019;59:74–86. doi: 10.1002/jobm.201800212. PubMed DOI

Kashyap A.S., Manzar N., Rajawat M.V.S., Kesharwani A.K., Singh R.P., Dubey S.C., Pattanayak D., Dhar S., Lal S.K., Singh D. Screening and Biocontrol Potential of Rhizobacteria Native to Gangetic Plains and Hilly Regions to Induce Systemic Resistance and Promote Plant Growth in Chilli against Bacterial Wilt Disease. Plants. 2021;10:2125. doi: 10.3390/plants10102125. PubMed DOI PMC

Sarkar D., Rakshit A. Safeguarding the fragile rice–wheat ecosystem of the Indo-Gangetic Plains through bio-priming and bioaugmentation interventions. FEMS Microbiol. Ecol. 2020;96:fiaa221. doi: 10.1093/femsec/fiaa221. PubMed DOI

Zavala J.A., Nabity P.D., DeLucia E.H. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 2013;58:79–97. doi: 10.1146/annurev-ento-120811-153544. PubMed DOI

Sun Y. Plant stomatal closure improves aphid feeding under elevated CO2. Glob. Chang. Biol. 2015;21:2739–2748. doi: 10.1111/gcb.12858. PubMed DOI

Havko N.E., Kapali G., Das M.R., Howe G.A. Stimulation of insect herbivory by elevated temperature outweighs protection by the jasmonate pathway. Plants. 2020;9:172. doi: 10.3390/plants9020172. PubMed DOI PMC

Urban M.C., Richardson J.L. The evolution of foraging rate across local and geographic gradients in predation risk and competition. Am. Nat. 2015;186:E16–E32. doi: 10.1086/681716. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...