Effect of Initial Powders on Properties of FeAlSi Intermetallics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-07559S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000778
European Regional Development Fund
PubMed
31487811
PubMed Central
PMC6766020
DOI
10.3390/ma12182846
PII: ma12182846
Knihovny.cz E-zdroje
- Klíčová slova
- FeAlSi, intermetallic alloys, mechanical alloying, mechanical properties, microstructure, nanoindentation, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
FeAlSi intermetallics are materials with promising high-temperature mechanical properties and oxidation resistance. Nevertheless, their production by standard metallurgical processes is complicated. In this study, preparation of powders by mechanical alloying and properties of the samples compacted by spark plasma sintering was studied. Various initial feedstock materials were mixed to prepare the material with the same chemical composition. Time of mechanical alloying leading to complete homogenization of powders was estimated based on the microstructure observations, results of XRD and indentation tests. Microstructure, phase composition, hardness and fracture toughness of sintered samples was studied and compared with the properties of powders before the sintering process. It was found that independently of initial feedstock powder, the resulting phase composition was the same (Fe3Si + FeSi). The combination of hard initial powders required the longest milling time, but it led to the highest values of fracture toughness.
Zobrazit více v PubMed
Deevi S.C., Sikka V.K. Nickel and iron aluminides: An overview on properties, processing, and applications. Intermetallics. 1996;4:357–375. doi: 10.1016/0966-9795(95)00056-9. DOI
Zhu X., Yao Z., Gu X., Cong W., Zhang P. Microstructure and corrosion resistance of Fe-Al intermetallic coating on 45 steel synthesized by double glow plasma surface alloying technology. Trans. Nonferrous Met. Soc. China. 2009;19:143–148. doi: 10.1016/S1003-6326(08)60242-3. DOI
Janda D., Fietzek H., Galetz M., Heilmaier M. The effect of micro-alloying with Zr and Nb on the oxidation behavior of Fe3Al and FeAl alloys. Intermetallics. 2013;41:51–57. doi: 10.1016/j.intermet.2013.04.016. DOI
Zamanzade M., Vehoff H., Barnoush A. Effect of chromium on elastic and plastic deformation of Fe3Al intermetallics. Intermetallics. 2013;41:28–34. doi: 10.1016/j.intermet.2013.04.013. DOI
Kratochvíl P., Karlík M., Haušild P., Cieslar M. Influence of Annealing on Mechanical Properties of an Fe-28Al-4Cr-0.1Ce Alloy. Intermetallics. 1999;7:847–853. doi: 10.1016/S0966-9795(98)00134-4. DOI
Karlík M., Haušild P., Šíma V., Málek P., Vlasák T. High Temperature Mechanical Properties of Fe-40-at% Al Based Intermetallic Alloys with C or Ti Addition. Int. J. Mater. Res. 2009;100:386–390. doi: 10.3139/146.110020. DOI
Prahl J., Haušild P., Karlík M., Crenn J.-F. Fracture Behaviour of Fe3Al Alloy with Additions of Zr and C at Different Temperatures. Kovové Materiály. 2005;43:134–144.
Novák P., Nová K. Oxidation Behavior of Fe-Al, Fe-Si and Fe-Al-Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC
Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI
Critical Raw Materials. [(accessed on 28 July 2019)]; Available online: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_cs.
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Bhadeshia H.K.D.H. Mechanically alloyed metals. Mater. Sci. Technol. 2000;16:1404–1411. doi: 10.1179/026708300101507361. DOI
Novák P., Průša F., Nová K., Bernatiková A., Salvetr P., Kopeček J., Haušild P. Application of Mechanical Alloying in Synthesis of Intermetallics. Acta Phys. Pol. A. 2018;134:720–723. doi: 10.12693/APhysPolA.134.720. DOI
Zakeri M., Ramezanib M., Nazari A. Effect of Ball to Powder Weight Ratio on the Mechanochemical Synthesis of MoSi2-TiC Nanocomposite Powder. Mater. Res. 2012;15:891–897. doi: 10.1590/S1516-14392012005000111. DOI
Baig Z., Mamat O., Mustapha M., Mumtaz A., Sarfraz M., Haider S. An Efficient Approach to Address Issues of Graphene Nanoplatelets (GNPs) Incorporation in Aluminium Powders and Their Compaction Behaviour. Metals. 2018;8:90. doi: 10.3390/met8020090. DOI
Hao X.-N., Zhang H.-P., Zheng R.-X., Zhang Y.-T., Ameyama K., Ma C.-L. Effect of mechanical alloying time and rotation speed on evolution of CNTs/Al-2024 composite powders. Trans. Nonferrous Met. Soc. China. 2014;24:2380–2386. doi: 10.1016/S1003-6326(14)63360-4. DOI
Nová K., Novák P., Průša F., Kopeček J., Čech J. Synthesis of Intermetallics in Fe-Al-Si System by Mechanical Alloying. Metals. 2019;12:20. doi: 10.3390/met9010020. DOI
Orru R., Licheri R., Locci A.M., Cincotti A., Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R Rep. 2009;63:127–287. doi: 10.1016/j.mser.2008.09.003. DOI
Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P. Structure and properties of Fe-Al-Si alloy prepared by mechanical alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC
Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
ISO 14577 . Metallic Materials—Instrumented Indentation Test for Hardness and Material Parameters. ISO; Geneva, Switzerland: 2002.
Čech J., Haušild P., Karlík M., Kadlecová V., Čapek J., Průša F., Novák P. Mechanical properties of FeAlSi powders prepared by mechanical alloying from different initial feedstock materials. Matériaux Tech. 2019;107:207. doi: 10.1051/mattech/2018063. DOI
Niihara K. A Fracture Mechanics Analysis of Indentation-Induced Palmqvist Crack in Ceramics. J. Mater. Sci. Lett. 1983;2:221–223. doi: 10.1007/BF00725625. DOI
Jems Website. [(accessed on 28 July 2019)]; Available online: http://www.jems-saas.ch/Home/jemsWebSite/jems.html.
Nová K., Novák P., Vanka T., Průša F. The effect of production process on properties of FeAl20Si20. Manuf. Technol. 2018;18:295–298. doi: 10.21062/ujep/94.2018/a/1213-2489/MT/18/2/295. DOI
Kruger M., Schmelzer J., Helmecke M. Similarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders. Metals. 2016;6:241. doi: 10.3390/met6100241. DOI
Hegde M.R., Surendranathan A.O. Phase Transformation, Structural Evolution and Mechanical Property of Nanostructured FeAl as a Result of Mechanical Alloying. Russ. J. Non-Ferr. Met. 2009;50:474–484. doi: 10.3103/S1067821209050095. DOI
Schmelzer J., Baumann T., Dieck S., Kruger M. Hardening of V–Si alloys during high energy ball milling. Powder Technol. 2016;294:493–497. doi: 10.1016/j.powtec.2016.03.014. DOI
Lei R., Wang M., Xu S., Wang H., Chen G. Microstructure, Hardness Evolution, and Thermal Stability Mechanism of Mechanical Alloyed Cu-Nb Alloy during Heat Treatment. Metals. 2016;6:194. doi: 10.3390/met6090194. DOI
Marker M.C., Skolyszewska-Kühberger B., Effenberger H.S., Schmetterer C., Richter K.W. Phase equilibria and structural investigations in the system Al–Fe–Si. Intermetallics. 2011;19:1919–1929. doi: 10.1016/j.intermet.2011.05.003. PubMed DOI PMC
Huang B.L., Perez R.J., Lavernia E.J., Luton M.J. Formation of supersaturated solid solutions by mechanical alloying. Nanostruct. Mater. 1996;7:67–79. doi: 10.1016/0965-9773(95)00299-5. DOI
Nix W.D., Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids. 1998;46:411–425. doi: 10.1016/S0022-5096(97)00086-0. DOI
Ponton C.B., Rawlings R.D. Vickers indentation fracture toughness test Part 1 Review of literature and formulation of standardised indentation toughness equations. Mater. Sci. Technol. 1989;5:865–872. doi: 10.1179/mst.1989.5.9.865. DOI
Zhang S., Zhang X. Toughness evaluation of hard coatings and thin films. Thin Solid Films. 2012;520:2375–2389. doi: 10.1016/j.tsf.2011.09.036. DOI
Laugier M.T. New formula for indentation toughness in ceramics. J. Mater. Sci. Lett. 1987;6:355–356. doi: 10.1007/BF01729352. DOI
Lawn B.R., Evans A.G., Marshall D.B. Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 1980;63:574–581. doi: 10.1111/j.1151-2916.1980.tb10768.x. DOI
Chen J. Indentation-based methods to assess fracture toughness for thin coatings. J. Phys. D Appl. Phys. 2012;45:203001. doi: 10.1088/0022-3727/45/20/203001. DOI
Feng Y., Zhang T. Determination of Fracture toughness of Brittle Materials by Indentation. Acta Mech. Solidica Sin. 2015;28:221–234. doi: 10.1016/S0894-9166(15)30010-0. DOI
Gogotsi G.A. Fracture toughness of ceramics and ceramic composites. Ceram. Int. 2003;29:777–784. doi: 10.1016/S0272-8842(02)00230-4. DOI
Advanced Powder Metallurgy Technologies