Effect of Initial Powders on Properties of FeAlSi Intermetallics

. 2019 Sep 04 ; 12 (18) : . [epub] 20190904

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31487811

Grantová podpora
17-07559S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000778 European Regional Development Fund

FeAlSi intermetallics are materials with promising high-temperature mechanical properties and oxidation resistance. Nevertheless, their production by standard metallurgical processes is complicated. In this study, preparation of powders by mechanical alloying and properties of the samples compacted by spark plasma sintering was studied. Various initial feedstock materials were mixed to prepare the material with the same chemical composition. Time of mechanical alloying leading to complete homogenization of powders was estimated based on the microstructure observations, results of XRD and indentation tests. Microstructure, phase composition, hardness and fracture toughness of sintered samples was studied and compared with the properties of powders before the sintering process. It was found that independently of initial feedstock powder, the resulting phase composition was the same (Fe3Si + FeSi). The combination of hard initial powders required the longest milling time, but it led to the highest values of fracture toughness.

Zobrazit více v PubMed

Deevi S.C., Sikka V.K. Nickel and iron aluminides: An overview on properties, processing, and applications. Intermetallics. 1996;4:357–375. doi: 10.1016/0966-9795(95)00056-9. DOI

Zhu X., Yao Z., Gu X., Cong W., Zhang P. Microstructure and corrosion resistance of Fe-Al intermetallic coating on 45 steel synthesized by double glow plasma surface alloying technology. Trans. Nonferrous Met. Soc. China. 2009;19:143–148. doi: 10.1016/S1003-6326(08)60242-3. DOI

Janda D., Fietzek H., Galetz M., Heilmaier M. The effect of micro-alloying with Zr and Nb on the oxidation behavior of Fe3Al and FeAl alloys. Intermetallics. 2013;41:51–57. doi: 10.1016/j.intermet.2013.04.016. DOI

Zamanzade M., Vehoff H., Barnoush A. Effect of chromium on elastic and plastic deformation of Fe3Al intermetallics. Intermetallics. 2013;41:28–34. doi: 10.1016/j.intermet.2013.04.013. DOI

Kratochvíl P., Karlík M., Haušild P., Cieslar M. Influence of Annealing on Mechanical Properties of an Fe-28Al-4Cr-0.1Ce Alloy. Intermetallics. 1999;7:847–853. doi: 10.1016/S0966-9795(98)00134-4. DOI

Karlík M., Haušild P., Šíma V., Málek P., Vlasák T. High Temperature Mechanical Properties of Fe-40-at% Al Based Intermetallic Alloys with C or Ti Addition. Int. J. Mater. Res. 2009;100:386–390. doi: 10.3139/146.110020. DOI

Prahl J., Haušild P., Karlík M., Crenn J.-F. Fracture Behaviour of Fe3Al Alloy with Additions of Zr and C at Different Temperatures. Kovové Materiály. 2005;43:134–144.

Novák P., Nová K. Oxidation Behavior of Fe-Al, Fe-Si and Fe-Al-Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC

Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI

Critical Raw Materials. [(accessed on 28 July 2019)]; Available online: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_cs.

Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI

Bhadeshia H.K.D.H. Mechanically alloyed metals. Mater. Sci. Technol. 2000;16:1404–1411. doi: 10.1179/026708300101507361. DOI

Novák P., Průša F., Nová K., Bernatiková A., Salvetr P., Kopeček J., Haušild P. Application of Mechanical Alloying in Synthesis of Intermetallics. Acta Phys. Pol. A. 2018;134:720–723. doi: 10.12693/APhysPolA.134.720. DOI

Zakeri M., Ramezanib M., Nazari A. Effect of Ball to Powder Weight Ratio on the Mechanochemical Synthesis of MoSi2-TiC Nanocomposite Powder. Mater. Res. 2012;15:891–897. doi: 10.1590/S1516-14392012005000111. DOI

Baig Z., Mamat O., Mustapha M., Mumtaz A., Sarfraz M., Haider S. An Efficient Approach to Address Issues of Graphene Nanoplatelets (GNPs) Incorporation in Aluminium Powders and Their Compaction Behaviour. Metals. 2018;8:90. doi: 10.3390/met8020090. DOI

Hao X.-N., Zhang H.-P., Zheng R.-X., Zhang Y.-T., Ameyama K., Ma C.-L. Effect of mechanical alloying time and rotation speed on evolution of CNTs/Al-2024 composite powders. Trans. Nonferrous Met. Soc. China. 2014;24:2380–2386. doi: 10.1016/S1003-6326(14)63360-4. DOI

Nová K., Novák P., Průša F., Kopeček J., Čech J. Synthesis of Intermetallics in Fe-Al-Si System by Mechanical Alloying. Metals. 2019;12:20. doi: 10.3390/met9010020. DOI

Orru R., Licheri R., Locci A.M., Cincotti A., Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R Rep. 2009;63:127–287. doi: 10.1016/j.mser.2008.09.003. DOI

Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P. Structure and properties of Fe-Al-Si alloy prepared by mechanical alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC

Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI

Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI

ISO 14577 . Metallic Materials—Instrumented Indentation Test for Hardness and Material Parameters. ISO; Geneva, Switzerland: 2002.

Čech J., Haušild P., Karlík M., Kadlecová V., Čapek J., Průša F., Novák P. Mechanical properties of FeAlSi powders prepared by mechanical alloying from different initial feedstock materials. Matériaux Tech. 2019;107:207. doi: 10.1051/mattech/2018063. DOI

Niihara K. A Fracture Mechanics Analysis of Indentation-Induced Palmqvist Crack in Ceramics. J. Mater. Sci. Lett. 1983;2:221–223. doi: 10.1007/BF00725625. DOI

Jems Website. [(accessed on 28 July 2019)]; Available online: http://www.jems-saas.ch/Home/jemsWebSite/jems.html.

Nová K., Novák P., Vanka T., Průša F. The effect of production process on properties of FeAl20Si20. Manuf. Technol. 2018;18:295–298. doi: 10.21062/ujep/94.2018/a/1213-2489/MT/18/2/295. DOI

Kruger M., Schmelzer J., Helmecke M. Similarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders. Metals. 2016;6:241. doi: 10.3390/met6100241. DOI

Hegde M.R., Surendranathan A.O. Phase Transformation, Structural Evolution and Mechanical Property of Nanostructured FeAl as a Result of Mechanical Alloying. Russ. J. Non-Ferr. Met. 2009;50:474–484. doi: 10.3103/S1067821209050095. DOI

Schmelzer J., Baumann T., Dieck S., Kruger M. Hardening of V–Si alloys during high energy ball milling. Powder Technol. 2016;294:493–497. doi: 10.1016/j.powtec.2016.03.014. DOI

Lei R., Wang M., Xu S., Wang H., Chen G. Microstructure, Hardness Evolution, and Thermal Stability Mechanism of Mechanical Alloyed Cu-Nb Alloy during Heat Treatment. Metals. 2016;6:194. doi: 10.3390/met6090194. DOI

Marker M.C., Skolyszewska-Kühberger B., Effenberger H.S., Schmetterer C., Richter K.W. Phase equilibria and structural investigations in the system Al–Fe–Si. Intermetallics. 2011;19:1919–1929. doi: 10.1016/j.intermet.2011.05.003. PubMed DOI PMC

Huang B.L., Perez R.J., Lavernia E.J., Luton M.J. Formation of supersaturated solid solutions by mechanical alloying. Nanostruct. Mater. 1996;7:67–79. doi: 10.1016/0965-9773(95)00299-5. DOI

Nix W.D., Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids. 1998;46:411–425. doi: 10.1016/S0022-5096(97)00086-0. DOI

Ponton C.B., Rawlings R.D. Vickers indentation fracture toughness test Part 1 Review of literature and formulation of standardised indentation toughness equations. Mater. Sci. Technol. 1989;5:865–872. doi: 10.1179/mst.1989.5.9.865. DOI

Zhang S., Zhang X. Toughness evaluation of hard coatings and thin films. Thin Solid Films. 2012;520:2375–2389. doi: 10.1016/j.tsf.2011.09.036. DOI

Laugier M.T. New formula for indentation toughness in ceramics. J. Mater. Sci. Lett. 1987;6:355–356. doi: 10.1007/BF01729352. DOI

Lawn B.R., Evans A.G., Marshall D.B. Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 1980;63:574–581. doi: 10.1111/j.1151-2916.1980.tb10768.x. DOI

Chen J. Indentation-based methods to assess fracture toughness for thin coatings. J. Phys. D Appl. Phys. 2012;45:203001. doi: 10.1088/0022-3727/45/20/203001. DOI

Feng Y., Zhang T. Determination of Fracture toughness of Brittle Materials by Indentation. Acta Mech. Solidica Sin. 2015;28:221–234. doi: 10.1016/S0894-9166(15)30010-0. DOI

Gogotsi G.A. Fracture toughness of ceramics and ceramic composites. Ceram. Int. 2003;29:777–784. doi: 10.1016/S0272-8842(02)00230-4. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microstructure and Mechanical Properties of Spark Plasma Sintered CoCrFeNiNbX High-Entropy Alloys with Si Addition

. 2023 Mar 21 ; 16 (6) : . [epub] 20230321

Advanced Powder Metallurgy Technologies

. 2020 Apr 08 ; 13 (7) : . [epub] 20200408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...