Microstructure and Mechanical Properties of Spark Plasma Sintered CoCrFeNiNbX High-Entropy Alloys with Si Addition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-11313S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000778
European Regional Development Fund
PubMed
36984376
PubMed Central
PMC10056826
DOI
10.3390/ma16062491
PII: ma16062491
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray diffraction, compression testing, electron microscopy, high-entropy alloys, instrumented indentation, mechanical alloying, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
Three mechanically alloyed (MA) and spark plasma sintered (SPS) CoCrFeNiNbX (X = 5, 20, and 35 at.%) alloys with an addition of 5 at.% of SiC were investigated. The face-centered cubic (FCC) high-entropy solid solution, NbC carbides, and hexagonal Laves phase already developed during MA. In addition, the SPS compacting led to the formation of oxide particles in all alloys, and the Cr7C3 carbides in the Nb5 alloy. The fraction of the FCC solid solution decreased with increasing Nb concentration at the expense of the NbC carbide and the Laves phase. Long-term annealing at 800 °C led to the disappearance of the Cr7C3 carbide in the Nb5 alloy, and new oxides-Ni6Nb6O, Cr2O3, and CrNbO4-were formed. At laboratory temperature, the Nb5 alloy, containing only the FCC matrix and carbide particles, was relatively strong and very ductile. At a higher Nb content (Nb20 and Nb35), the alloys became brittle. After annealing for 100 h at 800 °C, the Nb5 alloy conserved its plasticity and the Nb20 and Nb35 alloys maintained or even increased their brittleness. When tested at 800 °C, the Nb5 and Nb20 alloys deformed almost identically (CYS ~450 MPa, UTS ~500 MPa, plasticity ~18%), whereas the Nb35 alloy was much stronger (CYS of 1695 MPa, UCS of 1817 MPa) and preserved comparable plasticity.
Zobrazit více v PubMed
He F., Wang Z., Wang J., Wu Q., Chen D., Han B., Li J., Wang J., Kai J.J. Abnormal γ″—ε phase transformation in the CoCrFeNiNb0.25 high entropy alloy. Scr. Mater. 2018;146:281–285. doi: 10.1016/j.scriptamat.2017.12.009. DOI
Otto F., Dlouhý A., Pradeep K.G., Kuběnová M., Raabe D., Eggeler G., George E.P. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 2016;112:40–52. doi: 10.1016/j.actamat.2016.04.005. DOI
He F., Wang Z., Cheng P., Wang Q., Li J., Dang Y., Wang J., Liu C.T. Designing eutectic high entropy alloys of CoCrFeNiNbX. J. Alloys Compd. 2016;656:284–289. doi: 10.1016/j.jallcom.2015.09.153. DOI
Cheng J.B., Liang X.B., Xu B.S. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surf. Coat. Technol. 2014;240:184–190. doi: 10.1016/j.surfcoat.2013.12.053. DOI
Liu W.H., He J.Y., Huang H.L., Wang H., Lu Z.P., Liu C.T. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics. 2015;60:1–8. doi: 10.1016/j.intermet.2015.01.004. DOI
Jiang H., Jiang L., Qiao D., Lu Y., Wang T., Cao Z., Li T. Effect of Niobium on Microstructure and Properties of the CoCrFeNbxNi High Entropy Alloys. J. Mater. Sci. Technol. 2017;33:712–717. doi: 10.1016/j.jmst.2016.09.016. DOI
He F., Wang Z., Shang X., Leng C., Li J., Wang J. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 2016;104:259–264. doi: 10.1016/j.matdes.2016.05.044. DOI
Tsai M.H., Fan A.-C., Wang H.-A. Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys. J. Alloys Compd. 2017;695:1479–1487. doi: 10.1016/j.jallcom.2016.10.286. DOI
Yu Y., He F., Qiao Z., Wang Z., Liu W., Yang J. Effects of temperature and microstructure on the tribological properties of CoCrFeNiNbx eutectic high entropy alloys. J. Alloys Compd. 2019;775:1376–1385. doi: 10.1016/j.jallcom.2018.10.138. DOI
Jiang H., Han K., Gao X., Lu Y., Cao Z., Gao M.C., Hawk J.A., Li T. A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater. Des. 2018;142:101–105. doi: 10.1016/j.matdes.2018.01.025. DOI
Fan A.-C., Li J.-H., Tsai M.-H. On the phase constituents of three CoCrFeNiX (X = V, Nb, Ta) high-entropy alloys after prolonged annealing. J. Alloys Compd. 2020;823:153524. doi: 10.1016/j.jallcom.2019.153524. DOI
Fan R., Wang L., Zhao L., Wang L., Zhao S., Zhang Y., Cui B. Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Mater. Sci. Eng. A. 2022;829:142153. doi: 10.1016/j.msea.2021.142153. DOI
Chanda B., Jana P.P., Das J. A tool to predict the evolution of phase and Young’s modulus in high entropy alloys using an artificial neural network. Comput. Mater. Sci. 2021;197:110619. doi: 10.1016/j.commatsci.2021.110619. DOI
An X., Chu C., Zhao H., Shen B., Zhou L., Chu P.K. CoNiFeNb0.45 eutectic multi-principal element alloy with excellent mechanical properties and corrosion resistance. Mater. Sci. Eng. A. 2020;777:139026. doi: 10.1016/j.msea.2020.139026. DOI
Chanda B., Das J. Evolution of microstructure homogeneity and mechanical properties in nano-/ultrafine eutectic CoCrFeNiNbx (0.45 ≤ x ≤ 0.65) high entropy alloy ingots and cast rods. J. Alloys Compd. 2022;901:163610. doi: 10.1016/j.jallcom.2022.163610. DOI
Zhou K., Li J., Wang L., Yang H., Wang Z., Wang J. Direct laser deposited bulk CoCrFeNiNbx high entropy alloys. Intermetallics. 2019;114:106592. doi: 10.1016/j.intermet.2019.106592. DOI
Zhang Y., Chen X., Jayalakshmi S., Singh R.A., Deev V.B., Prusov E.S. Factors determining solid solution phase formation and stability in CoCrFeNiX0.4 (X = Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing. J. Alloys Compd. 2021;857:157625. doi: 10.1016/j.jallcom.2020.157625. PubMed DOI PMC
Matěj Z., Kužel R. MStruct—Software/Library for MicroStructure Analysis by Powder Diffraction. X-ray Group, School of Physics, Charles University; Prague, Czech Republic: Lund University; Lund, Sweden: [(accessed on 17 October 2022)]. Available online: http://www.xray.cz/mstruct.
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
ISO 14577 [(accessed on 17 March 2023)];Metallic Materials—Instrumented Indentation Test for Hardness and Material Parameters. 2002 Available online: https://www.iso.org/standard/56626.html.
Sergi A., Khan R.H.U., Georgilas K., Meisnar M., Makaya A., Attallah M.M. Powder HIP of pure Nb and C-103 alloy: The influence of powder characteristics on mechanical properties. Int. J. Refract. Met. Hard Mater. 2022;104:105803. doi: 10.1016/j.ijrmhm.2022.105803. DOI
Čech J., Haušild P., Karlík M., Bouček V., Nová K., Průša F., Novák P., Kopeček J. Effect of initial powders on properties of FeAlSi intermetallics. Materials. 2019;12:2846. doi: 10.3390/ma12182846. PubMed DOI PMC
Průša F., Cabibbo M., Šenková A., Kučera V., Veselka Z., Školáková A., Vojtěch D., Cibulková J., Čapek J. High-strength ultrafine-grained CoCrFeNiNb high-entropy alloy prepared by mechanical alloying: Proper-ties and strengthening mechanism. J. Alloys Compd. 2020;835:155308. doi: 10.1016/j.jallcom.2020.155308. DOI
Liu W.H., Yang T., Liu C.T. Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater. Chem. Phys. 2018;210:2–11. doi: 10.1016/j.matchemphys.2017.07.037. DOI
He F., Wang Z., Niu S., Wu Q., Li J., Wang J., Liu C.T., Dang Y. Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. J. Alloys Compd. 2016;667:53–57. doi: 10.1016/j.jallcom.2016.01.153. DOI
Cao X., Wu C., Liu Y., Peng H., Su X. Eutectic Reaction and Microstructure Stability in CoCrFeNiNbx High-Entropy Alloys. Metals. 2022;12:756. doi: 10.3390/met12050756. DOI
Freund M., Andre D., Zehnder C., Rempel H., Gerber D., Zubair M., Sandlöbes-Haut S., Gibson J.S.K.-L., Korte-Kerzel S. Plastic deformation of the CaMg2 C14-Laves phase from 50–250 °C. Materialia. 2021;20:101237. doi: 10.1016/j.mtla.2021.101237. DOI
Lin D., Xi X., Li X., Hu J., Xu L., Han Y., Zhang Y., Zhao L. High-temperature mechanical properties of FeCoCrNi high-entropy alloys fabricated via selective laser melting. Mater. Sci. Eng. A. 2022;832:142354. doi: 10.1016/j.msea.2021.142354. DOI