Microstructure and Mechanical Properties of Spark Plasma Sintered CoCrFeNiNbX High-Entropy Alloys with Si Addition

. 2023 Mar 21 ; 16 (6) : . [epub] 20230321

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36984376

Grantová podpora
21-11313S Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000778 European Regional Development Fund

Three mechanically alloyed (MA) and spark plasma sintered (SPS) CoCrFeNiNbX (X = 5, 20, and 35 at.%) alloys with an addition of 5 at.% of SiC were investigated. The face-centered cubic (FCC) high-entropy solid solution, NbC carbides, and hexagonal Laves phase already developed during MA. In addition, the SPS compacting led to the formation of oxide particles in all alloys, and the Cr7C3 carbides in the Nb5 alloy. The fraction of the FCC solid solution decreased with increasing Nb concentration at the expense of the NbC carbide and the Laves phase. Long-term annealing at 800 °C led to the disappearance of the Cr7C3 carbide in the Nb5 alloy, and new oxides-Ni6Nb6O, Cr2O3, and CrNbO4-were formed. At laboratory temperature, the Nb5 alloy, containing only the FCC matrix and carbide particles, was relatively strong and very ductile. At a higher Nb content (Nb20 and Nb35), the alloys became brittle. After annealing for 100 h at 800 °C, the Nb5 alloy conserved its plasticity and the Nb20 and Nb35 alloys maintained or even increased their brittleness. When tested at 800 °C, the Nb5 and Nb20 alloys deformed almost identically (CYS ~450 MPa, UTS ~500 MPa, plasticity ~18%), whereas the Nb35 alloy was much stronger (CYS of 1695 MPa, UCS of 1817 MPa) and preserved comparable plasticity.

Zobrazit více v PubMed

He F., Wang Z., Wang J., Wu Q., Chen D., Han B., Li J., Wang J., Kai J.J. Abnormal γ″—ε phase transformation in the CoCrFeNiNb0.25 high entropy alloy. Scr. Mater. 2018;146:281–285. doi: 10.1016/j.scriptamat.2017.12.009. DOI

Otto F., Dlouhý A., Pradeep K.G., Kuběnová M., Raabe D., Eggeler G., George E.P. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 2016;112:40–52. doi: 10.1016/j.actamat.2016.04.005. DOI

He F., Wang Z., Cheng P., Wang Q., Li J., Dang Y., Wang J., Liu C.T. Designing eutectic high entropy alloys of CoCrFeNiNbX. J. Alloys Compd. 2016;656:284–289. doi: 10.1016/j.jallcom.2015.09.153. DOI

Cheng J.B., Liang X.B., Xu B.S. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surf. Coat. Technol. 2014;240:184–190. doi: 10.1016/j.surfcoat.2013.12.053. DOI

Liu W.H., He J.Y., Huang H.L., Wang H., Lu Z.P., Liu C.T. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics. 2015;60:1–8. doi: 10.1016/j.intermet.2015.01.004. DOI

Jiang H., Jiang L., Qiao D., Lu Y., Wang T., Cao Z., Li T. Effect of Niobium on Microstructure and Properties of the CoCrFeNbxNi High Entropy Alloys. J. Mater. Sci. Technol. 2017;33:712–717. doi: 10.1016/j.jmst.2016.09.016. DOI

He F., Wang Z., Shang X., Leng C., Li J., Wang J. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 2016;104:259–264. doi: 10.1016/j.matdes.2016.05.044. DOI

Tsai M.H., Fan A.-C., Wang H.-A. Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys. J. Alloys Compd. 2017;695:1479–1487. doi: 10.1016/j.jallcom.2016.10.286. DOI

Yu Y., He F., Qiao Z., Wang Z., Liu W., Yang J. Effects of temperature and microstructure on the tribological properties of CoCrFeNiNbx eutectic high entropy alloys. J. Alloys Compd. 2019;775:1376–1385. doi: 10.1016/j.jallcom.2018.10.138. DOI

Jiang H., Han K., Gao X., Lu Y., Cao Z., Gao M.C., Hawk J.A., Li T. A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater. Des. 2018;142:101–105. doi: 10.1016/j.matdes.2018.01.025. DOI

Fan A.-C., Li J.-H., Tsai M.-H. On the phase constituents of three CoCrFeNiX (X = V, Nb, Ta) high-entropy alloys after prolonged annealing. J. Alloys Compd. 2020;823:153524. doi: 10.1016/j.jallcom.2019.153524. DOI

Fan R., Wang L., Zhao L., Wang L., Zhao S., Zhang Y., Cui B. Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Mater. Sci. Eng. A. 2022;829:142153. doi: 10.1016/j.msea.2021.142153. DOI

Chanda B., Jana P.P., Das J. A tool to predict the evolution of phase and Young’s modulus in high entropy alloys using an artificial neural network. Comput. Mater. Sci. 2021;197:110619. doi: 10.1016/j.commatsci.2021.110619. DOI

An X., Chu C., Zhao H., Shen B., Zhou L., Chu P.K. CoNiFeNb0.45 eutectic multi-principal element alloy with excellent mechanical properties and corrosion resistance. Mater. Sci. Eng. A. 2020;777:139026. doi: 10.1016/j.msea.2020.139026. DOI

Chanda B., Das J. Evolution of microstructure homogeneity and mechanical properties in nano-/ultrafine eutectic CoCrFeNiNbx (0.45 ≤ x ≤ 0.65) high entropy alloy ingots and cast rods. J. Alloys Compd. 2022;901:163610. doi: 10.1016/j.jallcom.2022.163610. DOI

Zhou K., Li J., Wang L., Yang H., Wang Z., Wang J. Direct laser deposited bulk CoCrFeNiNbx high entropy alloys. Intermetallics. 2019;114:106592. doi: 10.1016/j.intermet.2019.106592. DOI

Zhang Y., Chen X., Jayalakshmi S., Singh R.A., Deev V.B., Prusov E.S. Factors determining solid solution phase formation and stability in CoCrFeNiX0.4 (X = Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing. J. Alloys Compd. 2021;857:157625. doi: 10.1016/j.jallcom.2020.157625. PubMed DOI PMC

Matěj Z., Kužel R. MStruct—Software/Library for MicroStructure Analysis by Powder Diffraction. X-ray Group, School of Physics, Charles University; Prague, Czech Republic: Lund University; Lund, Sweden: [(accessed on 17 October 2022)]. Available online: http://www.xray.cz/mstruct.

Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI

ISO 14577 [(accessed on 17 March 2023)];Metallic Materials—Instrumented Indentation Test for Hardness and Material Parameters. 2002 Available online: https://www.iso.org/standard/56626.html.

Sergi A., Khan R.H.U., Georgilas K., Meisnar M., Makaya A., Attallah M.M. Powder HIP of pure Nb and C-103 alloy: The influence of powder characteristics on mechanical properties. Int. J. Refract. Met. Hard Mater. 2022;104:105803. doi: 10.1016/j.ijrmhm.2022.105803. DOI

Čech J., Haušild P., Karlík M., Bouček V., Nová K., Průša F., Novák P., Kopeček J. Effect of initial powders on properties of FeAlSi intermetallics. Materials. 2019;12:2846. doi: 10.3390/ma12182846. PubMed DOI PMC

Průša F., Cabibbo M., Šenková A., Kučera V., Veselka Z., Školáková A., Vojtěch D., Cibulková J., Čapek J. High-strength ultrafine-grained CoCrFeNiNb high-entropy alloy prepared by mechanical alloying: Proper-ties and strengthening mechanism. J. Alloys Compd. 2020;835:155308. doi: 10.1016/j.jallcom.2020.155308. DOI

Liu W.H., Yang T., Liu C.T. Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater. Chem. Phys. 2018;210:2–11. doi: 10.1016/j.matchemphys.2017.07.037. DOI

He F., Wang Z., Niu S., Wu Q., Li J., Wang J., Liu C.T., Dang Y. Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. J. Alloys Compd. 2016;667:53–57. doi: 10.1016/j.jallcom.2016.01.153. DOI

Cao X., Wu C., Liu Y., Peng H., Su X. Eutectic Reaction and Microstructure Stability in CoCrFeNiNbx High-Entropy Alloys. Metals. 2022;12:756. doi: 10.3390/met12050756. DOI

Freund M., Andre D., Zehnder C., Rempel H., Gerber D., Zubair M., Sandlöbes-Haut S., Gibson J.S.K.-L., Korte-Kerzel S. Plastic deformation of the CaMg2 C14-Laves phase from 50–250 °C. Materialia. 2021;20:101237. doi: 10.1016/j.mtla.2021.101237. DOI

Lin D., Xi X., Li X., Hu J., Xu L., Han Y., Zhang Y., Zhao L. High-temperature mechanical properties of FeCoCrNi high-entropy alloys fabricated via selective laser melting. Mater. Sci. Eng. A. 2022;832:142354. doi: 10.1016/j.msea.2021.142354. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...