Identification of a dysfunctional exon-skipping splice variant in GLUT9/SLC2A9 causal for renal hypouricemia type 2
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36733941
PubMed Central
PMC9887137
DOI
10.3389/fgene.2022.1048330
PII: 1048330
Knihovny.cz E-zdroje
- Klíčová slova
- RHUC, genetic disorder, renal urate handling, splicing variant, urate,
- Publikační typ
- časopisecké články MeSH
Renal hypouricemia (RHUC) is a pathological condition characterized by extremely low serum urate and overexcretion of urate in the kidney; this inheritable disorder is classified into type 1 and type 2 based on causative genes encoding physiologically-important urate transporters, URAT1 and GLUT9, respectively; however, research on RHUC type 2 is still behind type 1. We herein describe a typical familial case of RHUC type 2 found in a Slovak family with severe hypouricemia and hyperuricosuria. Via clinico-genetic analyses including whole exome sequencing and in vitro functional assays, we identified an intronic GLUT9 variant, c.1419+1G>A, as the causal mutation that could lead the expression of p.Gly431GlufsTer28, a functionally-null variant resulting from exon 11 skipping. The causal relationship was also confirmed in another unrelated Macedonian family with mild hypouricemia. Accordingly, non-coding regions should be also kept in mind during genetic diagnosis for hypouricemia. Our findings provide a better pathogenic understanding of RHUC and pathophysiological importance of GLUT9.
Department of Pharmacology Ajou University School of Medicine Suwon South Korea
Department of Pharmacy The University of Tokyo Hospital Tokyo Japan
Department of Rheumatology 1st Faculty of Medicine Charles University Prague Czechia
Faculty of Medicine University Ss Cyril and Methodius Skopje North Macedonia
Institute of Rheumatology Prague Czechia
Metabolic Clinic Children's Faculty Hospital Košice Slovakia
Zobrazit více v PubMed
Anna A., Monika G. (2018). Splicing mutations in human genetic disorders: Examples, detection, and confirmation. J. Appl. Genet. 59 (3), 253–268. 10.1007/s13353-018-0444-7 PubMed DOI PMC
Anzai N., Ichida K., Jutabha P., Kimura T., Babu E., Jin C. J., et al. (2008). Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J. Biol. Chem. 283 (40), 26834–26838. 10.1074/jbc.C800156200 PubMed DOI
Cheong H. I., Kang J. H., Lee J. H., Ha I. S., Kim S., Komoda F., et al. (2005). Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr. Nephrol. 20 (7), 886–890. 10.1007/s00467-005-1863-3 PubMed DOI
Dehlin M., Jacobsson L., Roddy E. (2020). Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 16 (7), 380–390. 10.1038/s41584-020-0441-1 PubMed DOI
Dinour D., Gray N. K., Campbell S., Shu X., Sawyer L., Richardson W., et al. (2010). Homozygous SLC2A9 mutations cause severe renal hypouricemia. J. Am. Soc. Nephrol. 21 (1), 64–72. 10.1681/ASN.2009040406 PubMed DOI PMC
Doring A., Gieger C., Mehta D., Gohlke H., Prokisch H., Coassin S., et al. (2008). SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet. 40 (4), 430–436. 10.1038/ng.107 PubMed DOI
Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Cha S. H., et al. (2002). Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417 (6887), 447–452. 10.1038/nature742 PubMed DOI
Halbritter J., Baum M., Hynes A. M., Rice S. J., Thwaites D. T., Gucev Z. S., et al. (2015). Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J. Am. Soc. Nephrol. 26 (3), 543–551. 10.1681/ASN.2014040388 PubMed DOI PMC
Halperin Kuhns V. L., Woodward O. M. (2021). Urate transport in health and disease. Best. Pract. Res. Clin. Rheumatol. 35 (4), 101717. 10.1016/j.berh.2021.101717 PubMed DOI PMC
Higashino T., Morimoto K., Nakaoka H., Toyoda Y., Kawamura Y., Shimizu S., et al. (2020). Dysfunctional missense variant of OAT10/SLC22A13 decreases gout risk and serum uric acid levels. Ann. Rheum. Dis. 79 (1), 164–166. 10.1136/annrheumdis-2019-216044 PubMed DOI PMC
Hosoyamada M. (2021). Hypothetical mechanism of exercise-induced acute kidney injury associated with renal hypouricemia. Biomedicines 9 (12), 1847. 10.3390/biomedicines9121847 PubMed DOI PMC
Ichida K., Hosoyamada M., Hisatome I., Enomoto A., Hikita M., Endou H., et al. (2004). Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 15 (1), 164–173. 10.1097/01.asn.0000105320.04395.d0 PubMed DOI
Iwai N., Mino Y., Hosoyamada M., Tago N., Kokubo Y., Endou H. (2004). A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int. 66 (3), 935–944. 10.1111/j.1523-1755.2004.00839.x PubMed DOI
Kawamura Y., Nakayama A., Shimizu S., Toyoda Y., Nishida Y., Hishida A., et al. (2021). A proposal for practical diagnosis of renal hypouricemia: Evidenced from genetic studies of nonfunctional variants of URAT1/slc22a12 among 30, 685 Japanese individuals. Biomedicines 9 (8), 1012. 10.3390/biomedicines9081012 PubMed DOI PMC
Kawamura Y., Toyoda Y., Ohnishi T., Hisatomi R., Higashino T., Nakayama A., et al. (2020). Identification of a dysfunctional splicing mutation in the slc22a12/URAT1 gene causing renal hypouricaemia type 1: A report on two families. Rheumatol. Oxf. 59 (12), 3988–3990. 10.1093/rheumatology/keaa461 PubMed DOI PMC
Koto R., Sato I., Kuwabara M., Seki T., Kawakami K. (2022). Temporal trends in the prevalence and characteristics of hypouricaemia: A descriptive study of medical check-up and administrative claims data. Clin. Rheumatol. 41 (7), 2113–2119. 10.1007/s10067-022-06071-9 PubMed DOI
Major T. J., Dalbeth N., Stahl E. A., Merriman T. R. (2018). An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 14 (6), 341–353. 10.1038/s41584-018-0004-x PubMed DOI
Matsuo H., Chiba T., Nagamori S., Nakayama A., Domoto H., Phetdee K., et al. (2008). Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 83 (6), 744–751. 10.1016/j.ajhg.2008.11.001 PubMed DOI PMC
Miyata H., Takada T., Toyoda Y., Matsuo H., Ichida K., Suzuki H. (2016). Identification of febuxostat as a new strong ABCG2 inhibitor: Potential applications and risks in clinical situations. Front. Pharmacol. 7, 518. 10.3389/fphar.2016.00518 PubMed DOI PMC
Mraz M., Hurba O., Bartl J., Dolezel Z., Marinaki A., Fairbanks L., et al. (2015). Modern diagnostic approach to hereditary xanthinuria. Urolithiasis 43 (1), 61–67. 10.1007/s00240-014-0734-4 PubMed DOI
Nakayama A., Kawamura Y., Toyoda Y., Shimizu S., Kawaguchi M., Aoki Y., et al. (2022). Genetic epidemiological analysis of hypouricaemia from 4993 Japanese on non-functional variants of URAT1/SLC22A12 gene. Rheumatol. Oxf. 61 (3), 1276–1281. 10.1093/rheumatology/keab545 PubMed DOI PMC
Nakayama A., Matsuo H., Abhishek A., Ichida K., Shinomiya N., members of Guideline Development Committee of Clinical Practice Guideline for Renal Hypouricaemia (2021). First clinical practice guideline for renal hypouricaemia: A rare disorder that aided the development of urate-lowering drugs for gout. Rheumatol. Oxf. 60 (9), 3961–3963. 10.1093/rheumatology/keab322( PubMed DOI
Nakayama A., Matsuo H., Ohtahara A., Ogino K., Hakoda M., Hamada T., et al. (2019). Clinical practice guideline for renal hypouricemia (1st edition). Hum. Cell 32 (2), 83–87. 10.1007/s13577-019-00239-3 PubMed DOI PMC
Nakayama A., Nakaoka H., Yamamoto K., Sakiyama M., Shaukat A., Toyoda Y., et al. (2017). GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann. Rheum. Dis. 76 (5), 869–877. 10.1136/annrheumdis-2016-209632 PubMed DOI PMC
Otani N., Ouchi M., Misawa K., Hisatome I., Anzai N. (2022). Hypouricemia and urate transporters. Biomedicines 10 (3), 652. 10.3390/biomedicines10030652 PubMed DOI PMC
Park E., Pan Z., Zhang Z., Lin L., Xing Y. (2018). The expanding landscape of alternative splicing variation in human populations. Am. J. Hum. Genet. 102 (1), 11–26. 10.1016/j.ajhg.2017.11.002 PubMed DOI PMC
Pavelcova K., Bohata J., Pavlikova M., Bubenikova E., Pavelka K., Stiburkova B. (2020). Evaluation of the influence of genetic variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the development of hyperuricemia and gout. J. Clin. Med. 9 (8), 2510. 10.3390/jcm9082510 PubMed DOI PMC
Pineda C., Soto-Fajardo C., Mendoza J., Gutierrez J., Sandoval H. (2020). Hypouricemia: What the practicing rheumatologist should know about this condition. Clin. Rheumatol. 39 (1), 135–147. 10.1007/s10067-019-04788-8 PubMed DOI
Safiri S., Kolahi A. A., Cross M., Carson-Chahhoud K., Hoy D., Almasi-Hashiani A., et al. (2020). Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990-2017: A systematic analysis of the global burden of disease study 2017. Arthritis Rheumatol. 72 (11), 1916–1927. 10.1002/art.41404 PubMed DOI
Son C. N., Kim J. M., Kim S. H., Cho S. K., Choi C. B., Sung Y. K., et al. (2016). Prevalence and possible causes of hypouricemia at a tertiary care hospital. Korean J. Intern Med. 31 (5), 971–976. 10.3904/kjim.2015.125 PubMed DOI PMC
Stiburkova B., Bohata J., Pavelcova K., Tasic V., Plaseska-Karanfilska D., Cho S. K., et al. (2021). Renal hypouricemia 1: Rare disorder as Common disease in eastern Slovakia roma population. Biomedicines 9 (11), 1607. 10.3390/biomedicines9111607 PubMed DOI PMC
Stiburkova B., Gabrikova D., Cepek P., Simek P., Kristian P., Cordoba-Lanus E., et al. (2016). Prevalence of URAT1 allelic variants in the Roma population. Nucleosides Nucleotides Nucleic Acids 35 (10-12), 529–535. 10.1080/15257770.2016.1168839 PubMed DOI
Stiburkova B., Ichida K., Sebesta I. (2011). Novel homozygous insertion in SLC2A9 gene caused renal hypouricemia. Mol. Genet. Metab. 102 (4), 430–435. 10.1016/j.ymgme.2010.12.016 PubMed DOI
Stiburkova B., Sebesta I., Ichida K., Nakamura M., Hulkova H., Krylov V., et al. (2013). Novel allelic variants and evidence for a prevalent mutation in URAT1 causing renal hypouricemia: Biochemical, genetics and functional analysis. Eur. J. Hum. Genet. 21 (10), 1067–1073. 10.1038/ejhg.2013.3 PubMed DOI PMC
Stiburkova B., Taylor J., Marinaki A. M., Sebesta I. (2012). Acute kidney injury in two children caused by renal hypouricaemia type 2. Pediatr. Nephrol. 27 (8), 1411–1415. 10.1007/s00467-012-2174-0 PubMed DOI
Toyoda Y., Kawamura Y., Nakayama A., Morimoto K., Shimizu S., Tanahashi Y., et al. (2022). OAT10/SLC22A13 acts as a renal urate Re-absorber: Clinico-genetic and functional analyses with pharmacological impacts. Front. Pharmacol. 13, 842717. 10.3389/fphar.2022.842717 PubMed DOI PMC
Toyoda Y., Mancikova A., Krylov V., Morimoto K., Pavelcova K., Bohata J., et al. (2019). Functional characterization of clinically-relevant rare variants in ABCG2 identified in a gout and hyperuricemia cohort. Cells 8 (4), 363. 10.3390/cells8040363 PubMed DOI PMC
Toyoda Y., Sakurai A., Mitani Y., Nakashima M., Yoshiura K., Nakagawa H., et al. (2009). Earwax, osmidrosis, and breast cancer: Why does one SNP (538G>A) in the human ABC transporter ABCC11 gene determine earwax type? FASEB J. 23 (6), 2001–2013. 10.1096/fj.09-129098 PubMed DOI
Toyoda Y., Takada T., Miyata H., Ishikawa T., Suzuki H. (2016). Regulation of the axillary osmidrosis-associated ABCC11 protein stability by N-linked glycosylation: Effect of glucose condition. PLoS One 11 (6). 10.1371/journal.pone.0157172 PubMed DOI PMC
Toyoda Y., Takada T., Miyata H., Matsuo H., Kassai H., Nakao K., et al. (2020). Identification of GLUT12/SLC2A12 as a urate transporter that regulates the blood urate level in hyperuricemia model mice. Proc. Natl. Acad. Sci. U. S. A. 117 (31), 18175–18177. 10.1073/pnas.2006958117 PubMed DOI PMC
Vitart V., Rudan I., Hayward C., Gray N. K., Floyd J., Palmer C. N., et al. (2008). SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 40 (4), 437–442. 10.1038/ng.106 PubMed DOI
Wakida N., Tuyen D. G., Adachi M., Miyoshi T., Nonoguchi H., Oka T., et al. (2005). Mutations in human urate transporter 1 gene in presecretory reabsorption defect type of familial renal hypouricemia. J. Clin. Endocrinol. Metab. 90 (4), 2169–2174. 10.1210/jc.2004-1111 PubMed DOI
Yeun J. Y., Hasbargen J. A. (1995). Renal hypouricemia: Prevention of exercise-induced acute renal failure and a review of the literature. Am. J. Kidney Dis. 25 (6), 937–946. 10.1016/0272-6386(95)90579-0 PubMed DOI