A double primary colorectal cancer (CRC) in a familial setting signals a high risk of CRC. In order to identify novel CRC susceptibility genes, we whole-exome sequenced germline DNA from nine persons with a double primary CRC and a family history of CRC. The detected variants were processed by bioinformatics filtering and prioritization, including STRING protein-protein interaction and pathway analysis. A total of 150 missense, 19 stop-gain, 22 frameshift and 13 canonical splice site variants fulfilled our filtering criteria. The STRING analysis identified 20 DNA repair/cell cycle proteins as the main cluster, related to genes CHEK2, EXO1, FAAP24, FANCI, MCPH1, POLL, PRC1, RECQL, RECQL5, RRM2, SHCBP1, SMC2, XRCC1, in addition to CDK18, ENDOV, ZW10 and the known mismatch repair genes. Another STRING network included extracellular matrix genes and TGFβ signaling genes. In the nine whole-exome sequenced patients, eight harbored at least two candidate DNA repair/cell cycle/TGFβ signaling gene variants. The number of families is too small to provide evidence for individual variants but, considering the known role of DNA repair/cell cycle genes in CRC, the clustering of multiple deleterious variants in the present families suggests that these, perhaps jointly, contributed to CRC development in these families.
- MeSH
- Adult MeSH
- Genetic Predisposition to Disease * MeSH
- Colorectal Neoplasms * genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Repair genetics MeSH
- Pedigree MeSH
- Exome Sequencing * methods MeSH
- Aged MeSH
- Germ-Line Mutation * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
In advanced prostate cancer (PC), in particular after acquisition of resistance to androgen receptor (AR) signaling inhibitors (ARSI), upregulation of AR splice variants compromises endocrine therapy efficiency. Androgen receptor splice variant-7 (ARV7) is clinically the most relevant and has a distinct 3' untranslated region (3'UTR) compared to the AR full-length variant, suggesting a unique post-transcriptional regulation. Here, we set out to evaluate the applicability of the ARV7 3'UTR as a therapy target. A common single nucleotide polymorphism, rs5918762, was found to affect the splicing rate and thus the expression of ARV7 in cellular models and patient specimens. Serine/arginine-rich splicing factor 9 (SRSF9) was found to bind to and increase the inclusion of the cryptic exon 3 of ARV7 during the splicing process in the alternative C allele of rs5918762. The dual specificity protein kinase CLK2 interferes with the activity of SRSF9 by regulating its expression. Inhibition of the Cdc2-like kinase (CLK) family by the small molecules cirtuvivint or lorecivivint results in the decreased expression of ARV7. Both inhibitors show potent anti-proliferative effects in enzalutamide-treated or -naive PC models. Thus, targeting aberrant alternative splicing at the 3'UTR of ARV7 by disturbing the CLK2/SRSF9 axis might be a valuable therapeutic approach in late stage, ARSI-resistant PC.
- MeSH
- 3' Untranslated Regions genetics MeSH
- Alternative Splicing genetics drug effects MeSH
- Receptors, Androgen * metabolism genetics MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Prostatic Neoplasms * genetics metabolism pathology drug therapy MeSH
- Protein Isoforms genetics metabolism MeSH
- Protein Serine-Threonine Kinases genetics metabolism antagonists & inhibitors MeSH
- Gene Expression Regulation, Neoplastic * drug effects MeSH
- Serine-Arginine Splicing Factors * metabolism genetics MeSH
- RNA Splicing genetics MeSH
- Protein-Tyrosine Kinases * genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
Chronic bronchitis is increasingly reported as a healthcare challenge in clinical settings partially due to the disease's bad prognosis and unresponsiveness to therapy, including the ineffectiveness of glucocorticoids. The ineffectiveness could have a link with genetic polymorphism of receptor genes resulting in inappropriate glucocorticoid pharmacodynamics. We sought to identify the role of gene polymorphism in the response of patients with chronic bronchitis to prednisolone therapy. To do so, a total of 60 newly diagnosed chronic bronchitis patients enrolled in the present study. Prednisolone at a dose of 30mg/day for two weeks was given and respiratory parameters [forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC were measured before and after therapy. Blood samples were withdrawn for genetic profiling of genes involved in glucocorticoids pharmacodynamics, including BCII (rs41423247), N363S (rs56149945), and ER22/23EK (rs6189/rs6190) measured for their homozygous versus heterozygous gene splice variants.Results: Gene splice variants for BCII (rs41423247), N363S (rs56149945), and ER22/23EK (rs6189/rs6190) homozygous (73.3%, 98.7%, and 95%) represented a higher percentage than heterozygous (26.7%, 1.7%, and 5%). The respiratory parameters FEV1, FVC, and FEV1/FVC have shown significantly (p<0.05) better values at baseline in homozygous versus heterozygous, correspondingly, the responsiveness to therapy has shown significantly (p<0.05) better values in homozygous versus heterozygous.Conclusion: The study has provided a good template for genetic behaviour toward individualised medicine in our locality providing that these genes could be a cornerstone for discovering issues related to the pharmacodynamics profiling of drugs in clinical settings.
- MeSH
- Bronchitis, Chronic * diagnosis genetics MeSH
- Glucocorticoids pharmacology MeSH
- Humans MeSH
- Polymerase Chain Reaction methods MeSH
- Polymorphism, Genetic genetics MeSH
- Prednisolone pharmacology therapeutic use MeSH
- Protein Isoforms genetics MeSH
- Receptors, Glucocorticoid * genetics drug effects MeSH
- Respiratory Function Tests methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Clinical Study MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND/AIM: New generation androgen receptor-targeting agents (ARTA) have been in the spotlight for their efficacy in metastatic castration-resistant prostate cancer (mCRPC). Prostate-specific antigen (PSA) represents one of the most commonly used serum cancer biomarkers worldwide. The present retrospective study focused on the prognostic role of serum PSA isoforms and their early dynamics in mCRPC patients treated with abiraterone acetate (ABI) or enzalutamide (ENZ). PATIENTS AND METHODS: The association between outcomes of 334 mCRPC patients treated with ABI or ENZ and the levels of serum total PSA (tPSA), free PSA (fPSA), [-2]proPSA and the Prostate Health Index (PHI) at baseline and one month after treatment initiation was analyzed retrospectively. RESULTS: In the multivariable Cox proportional hazards models, baseline tPSA>50 μg/l (p<0.001), and [-2]proPSA>300 ng/l (p=0.017) remained independent significant factors associated with inferior OS, while baseline fPSA>1.75 μg/l (p=0.050) and Δ [-2]proPSA >-50% approached statistical significance (p=0.062). The results of ROC analyses assessing the ability of baseline tPSA, fPSA, and [-2]proPSA to predict mortality within two years showed area under the curve (AUC) values of 0.709, 0.685, and 0.740, respectively. Among the subgroup with baseline tPSA≤20.0 μg/l, the results of ROC analyses for baseline tPSA, fPSA and [-2]proPSA showed AUC values of 0.441, 0.682, and 0.688, respectively. CONCLUSION: Our results suggest a significant correlation between pretreatment serum levels of tPSA and [-2]proPSA with OS in mCRPC patients receiving ARTA.
- MeSH
- Abiraterone Acetate therapeutic use administration & dosage MeSH
- Receptors, Androgen * blood metabolism MeSH
- Androgen Receptor Antagonists therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Metastasis MeSH
- Biomarkers, Tumor blood MeSH
- Prostatic Neoplasms, Castration-Resistant * drug therapy blood pathology mortality MeSH
- Prognosis MeSH
- Prostate-Specific Antigen * blood MeSH
- Protein Isoforms * blood MeSH
- Retrospective Studies MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Through the agnostic screening of patients with uncharacterised disease phenotypes for an upregulation of type I interferon (IFN) signalling, we identified a cohort of individuals heterozygous for mutations in PTPN1, encoding the protein-tyrosine phosphatase 1B (PTP1B). We aimed to describe the clinical phenotype and molecular and cellular pathology of this new disease. METHODS: In this case series, we identified patients and collected clinical and neuroradiological data through collaboration with paediatric neurology and clinical genetics colleagues across Europe (Czechia, France, Germany, Italy, Slovenia, and the UK) and Israel. Variants in PTPN1 were identified by exome and directed Sanger sequencing. The expression of IFN-stimulated genes was determined by quantitative (q) PCR or NanoString technology. Experiments to assess RNA and protein expression and to investigate type 1 IFN signalling were undertaken in patient fibroblasts, hTERT-immortalised BJ-5ta fibroblasts, and RPE-1 cells using CRISPR-Cas9 editing and standard cell biology techniques. FINDINGS: Between Dec 20, 2013, and Jan 11, 2023, we identified 12 patients from 11 families who were heterozygous for mutations in PTPN1. We found ten novel or very rare variants in PTPN1 (frequency on gnomAD version 4.1.0 of <1·25 × 10:sup>-6). Six variants were predicted as STOP mutations, two involved canonical splice-site nucleotides, and two were missense substitutions. In three patients, the variant occurred de novo, whereas in nine affected individuals, the variant was inherited from an asymptomatic parent. The clinical phenotype was characterised by the subacute onset (age range 1-8 years) of loss of motor and language skills in the absence of seizures after initially normal development, leading to spastic dystonia and bulbar involvement. Neuroimaging variably demonstrated cerebral atrophy (sometimes unilateral initially) or high T2 white matter signal. Neopterin in CSF was elevated in all ten patients who were tested, and all probands demonstrated an upregulation of IFN-stimulated genes in whole blood. Although clinical stabilisation and neuroradiological improvement was seen in both treated and untreated patients, in six of eight treated patients, high-dose corticosteroids were judged clinically to result in an improvement in neurological status. Of the four asymptomatic parents tested, IFN signalling in blood was normal (three patients) or minimally elevated (one patient). Analysis of patient blood and fibroblasts showed that tested PTPN1 variants led to reduced levels of PTPN1 mRNA and PTP1B protein, and in-vitro assays demonstrated that loss of PTP1B function was associated with impaired negative regulation of type 1 IFN signalling. INTERPRETATION: PTPN1 haploinsufficiency causes a type 1 IFN-driven autoinflammatory encephalopathy. Notably, some patients demonstrated stabilisation, and even recovery, of neurological function in the absence of treatment, whereas in others, the disease appeared to be responsive to immune suppression. Prospective studies are needed to investigate the safety and efficacy of specific immune suppression approaches in this disease population. FUNDING: The UK Medical Research Council, the European Research Council, and the Agence Nationale de la Recherche.
- MeSH
- Child MeSH
- Haploinsufficiency * genetics MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Mutation genetics MeSH
- Brain Diseases genetics MeSH
- Neuroinflammatory Diseases genetics MeSH
- Child, Preschool MeSH
- Protein Tyrosine Phosphatase, Non-Receptor Type 1 * genetics MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Retinitis pigmentosa (RP) is a hereditary disorder caused by mutations in more than 70 different genes including those that encode proteins important for pre-mRNA splicing. Most RP-associated mutations in splicing factors reduce either their expression, stability or incorporation into functional splicing complexes. However, we have previously shown that two RP mutations in PRPF8 (F2314L and Y2334N) and two in SNRNP200 (S1087L and R1090L) behaved differently, and it was still unclear how these mutations affect the functions of both proteins. To investigate this in the context of functional spliceosomes, we used iCLIP in HeLa and retinal pigment epithelial (RPE) cells. We found that both mutations in the RNA helicase SNRNP200 change its interaction with U4 and U6 snRNAs. The significantly broader binding profile of mutated SNRNP200 within the U4 region upstream of the U4/U6 stem I strongly suggests that its activity to unwind snRNAs is impaired. This was confirmed by FRAP measurements and helicase activity assays comparing mutant and WT protein. The RP variants of PRPF8 did not affect snRNAs, but showed a reduced binding to pre-mRNAs, which resulted in the slower splicing of introns and altered expression of hundreds of genes in RPE cells. This suggests that changes in the expression and splicing of specific genes are the main driver of retinal degeneration in PRPF8-linked RP.
- MeSH
- HeLa Cells MeSH
- Humans MeSH
- Ribonucleoprotein, U4-U6 Small Nuclear metabolism genetics MeSH
- Mutation * MeSH
- Eye Proteins genetics metabolism MeSH
- RNA Precursors * metabolism genetics MeSH
- RNA-Binding Proteins metabolism genetics MeSH
- Retinal Pigment Epithelium metabolism pathology MeSH
- Retinitis Pigmentosa * genetics metabolism pathology MeSH
- Ribonucleoproteins, Small Nuclear metabolism genetics MeSH
- RNA, Small Nuclear genetics metabolism MeSH
- RNA Splicing * genetics MeSH
- Spliceosomes metabolism genetics MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Despite improving diagnostic possibilities, the incidence of prostate cancer is increasing, but we are not able to reduce the mortality rate. While PSA, 4K score, PCA3 and other urinary markers, ExoDX, SelectMDX, Confirm MDx or MiPS tests are used to identify potential prostate cancer carriers, Decipher, Prolaris or Oncotype DX tests are used to assess the aggressiveness of proven cancer in order to stratify patients for early or delayed treatment. More modern forms of treatment for advanced disease include second-generation antiandrogens and PARP inhibitors. By assessing genetic mutations (e.g. BRCA1, BRCA2 genes, single nucleotide polymorphism) or the presence of splice variants of the androgen receptor (ARV7), we are able to identify patients in whom the planned treatment may be expected to be ineffective and thus choose other treatment modalities. In the present review article, we offer a comprehensive overview of current diagnostic tests that find application in the diagnosis of early and advanced prostate cancer.
- Publication type
- Journal Article MeSH
- Review MeSH
The molecular basis of increased hemoglobin in Andean Aymara highlanders is unknown. We conducted an integrative analysis of whole-genome-sequencing and granulocytes transcriptomics from Aymara and Europeans in Bolivia to explore genetic basis of the Aymara high hemoglobin. Differentially expressed and spliced genes in Aymaras were associated with inflammatory and hypoxia-related pathways. We identified transcripts with 4th or 5th exon skipping of NFKB1 (AS-NFKB1), key part of NF-kB complex, and their splicing quantitative trait loci; these were increased in Aymaras. AS-NFKB1 transcripts correlated with both transcripts and protein levels of inflammatory and HIF-regulated genes, including hemoglobin. While overexpression of the AS-NFKB1 variant led to increased expression of inflammatory and HIF-targeted genes; under inflammatory stress, NF-kB protein translocation to the nucleus was attenuated, resulting in reduced expression of these genes. Our study reveals AS-NFKB1 splicing events correlating with increased hemoglobin in Aymara and their possible protective mechanisms against excessive inflammation.
- MeSH
- Alternative Splicing * genetics MeSH
- Adult MeSH
- Exons genetics MeSH
- Hypoxia-Inducible Factor 1, alpha Subunit genetics metabolism MeSH
- Granulocytes metabolism MeSH
- Hemoglobins * metabolism genetics MeSH
- Humans MeSH
- Quantitative Trait Loci MeSH
- NF-kappa B p50 Subunit * metabolism genetics MeSH
- Gene Expression Regulation MeSH
- Transcriptome MeSH
- Inflammation * genetics metabolism MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Bolivia MeSH
LIM and Src homology 3 (SH3) protein 2 (LASP2) is a small focal adhesion protein first identified as a splice variant of the nebulette gene (Nebl). As the newest member of the nebulin protein family, the regulation and function of LASP2 remain largely unknown. Our previous RNA-sequencing results identified Nebl as one of the most highly induced genes in the mouse liver in response to the activation of pregnane X receptor (PXR). In this study, we investigated this phenomenon further and show that PXR induces Lasp2 instead of Nebl, which partially use the same exons. Lasp2 was found to be induced in response to PXR ligand pregnenolone 16α-carbonitrile (PCN) treatment in mouse liver in vivo both after 4-day treatment and after long-term, 28-day treatment and in both male and female mice. Interestingly, the Lasp2 induction was more efficient in high-fat diet-fed mice (103-fold after 4-day PCN treatment) than in the normal chow-fed mice (32-fold after 4-day PCN treatment). Lasp2 induction was abolished in PXR knockout mice but could be rescued by re-expression of PXR, indicating that Lasp2 induction is PXR mediated. In mouse primary hepatocytes cycloheximide did not inhibit Lasp2 induction by PCN and a PXR binding site could be recognized upstream of the mouse Lasp2 gene suggesting direct regulation of Lasp2 by PXR. In human 3D hepatocytes, rifampicin induced only a modest increase in LASP2 expression. This study shows for the first time that PXR activation strongly induces Lasp2 expression in mouse liver and establishes Lasp2 as a novel PXR target gene. SIGNIFICANCE STATEMENT: RNA-sequencing results have previously identified nebulette (Nebl) to be efficiently induced by pregnane X receptor activating compounds. This study shows that instead of Nebl, LIM and Src homology 3 (SH3) protein 2 (Lasp2) coding for a small focal adhesion protein and partly sharing exons with the Nebl gene is a novel target of pregnane X receptor in mouse liver.
- MeSH
- Adaptor Proteins, Signal Transducing genetics metabolism MeSH
- Cytoskeletal Proteins * genetics metabolism MeSH
- Hepatocytes metabolism drug effects MeSH
- Liver * metabolism drug effects MeSH
- Humans MeSH
- Mice, Inbred C57BL * MeSH
- Mice, Knockout * MeSH
- Mice MeSH
- Pregnane X Receptor * genetics metabolism MeSH
- Pregnenolone Carbonitrile pharmacology MeSH
- LIM Domain Proteins * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
AIMS/BACKGROUND: Johanson-Blizzard syndrome (JBS) is a rare autosomal recessive disease caused by pathogenic variants in the UBR1 gene. JBS is usually suspected based on characteristic anomalies, but only genetic testing provides a definitive diagnosis. Since most variants are inherited from the parents, we aimed to identify the causal variants in a Czech proband with clinically suspected JBS and perform segregation analysis. METHODS: A proband with clinically suspected JBS underwent clinical exome sequencing (CES). Sanger sequencing was used for the validation, characterization, and segregation of variants in the family. The variants were also characterized using quantitative real-time PCR (qPCR) and in silico analysis. RESULTS: Using CES in the proband, we identified two novel causal variants in the UBR1 gene, c.3482A>C and c.3509+6T>C. Although the variants were found in trans, neither was detected in the parents. Sanger sequencing of the cDNA revealed that the novel variant c.3509+6T>C caused activation of the non-canonical GC donor splice site. The inclusion of 70 bp of the intronic sequence generated a frameshift and a premature termination codon leading to nonsense-mediated decay, as detected by qPCR. In silico protein structural analysis showed that the novel missense variant c.3482A>C in the zinc-stabilized domain RING-H2 altered a highly conserved zinc-coordinating histidine by proline. CONCLUSION: To the best of our knowledge, we report the first molecular confirmation of JBS in the Czech Republic and the first identification of two de novo causal variants in two alleles. Our findings also expand the spectrum of pathogenic variants in the UBR1 gene.
- MeSH
- Anus, Imperforate * genetics MeSH
- Ectodermal Dysplasia * genetics MeSH
- Hypothyroidism * genetics MeSH
- Humans MeSH
- Malabsorption Syndromes * genetics MeSH
- Intellectual Disability * genetics MeSH
- Pancreatic Diseases * genetics MeSH
- Nose * abnormalities abnormalities MeSH
- Hearing Loss, Sensorineural * genetics MeSH
- Growth Disorders * genetics MeSH
- Pedigree MeSH
- Exome Sequencing MeSH
- Ubiquitin-Protein Ligases * genetics MeSH
- Gallstones * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH