The molecular basis of increased hemoglobin in Andean Aymara highlanders is unknown. We conducted an integrative analysis of whole-genome-sequencing and granulocytes transcriptomics from Aymara and Europeans in Bolivia to explore genetic basis of the Aymara high hemoglobin. Differentially expressed and spliced genes in Aymaras were associated with inflammatory and hypoxia-related pathways. We identified transcripts with 4th or 5th exon skipping of NFKB1 (AS-NFKB1), key part of NF-kB complex, and their splicing quantitative trait loci; these were increased in Aymaras. AS-NFKB1 transcripts correlated with both transcripts and protein levels of inflammatory and HIF-regulated genes, including hemoglobin. While overexpression of the AS-NFKB1 variant led to increased expression of inflammatory and HIF-targeted genes; under inflammatory stress, NF-kB protein translocation to the nucleus was attenuated, resulting in reduced expression of these genes. Our study reveals AS-NFKB1 splicing events correlating with increased hemoglobin in Aymara and their possible protective mechanisms against excessive inflammation.
- MeSH
- alternativní sestřih * genetika MeSH
- dospělí MeSH
- exony genetika MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa genetika metabolismus MeSH
- granulocyty metabolismus MeSH
- hemoglobiny * metabolismus genetika MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- NF-kappa B - podjednotka p50 * metabolismus genetika MeSH
- regulace genové exprese MeSH
- transkriptom MeSH
- zánět * genetika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Bolívie MeSH
BACKGROUND: Lower gastrointestinal (GI) graft versus host disease (GVHD) represents a severe complication in allogeneic hematopoietic stem cell transplant (HSCT) recipients with high rates of transplant-related mortality. Deregulated innate immunity reactions are the features of its pathogenesis. Cellular senescence has been considered a program of the innate immunity. We focused on lower GI GVHD from the perspective of cellular senescence. OBJECTIVE: We analyzed the impact of p16INK4a expression, a hallmark of cellular senescence, in intestinal biopsies of patients with lower GI GVHD symptoms and NFKB1 gene polymorphisms (rs3774937 C/T and rs3774959 A/G) on HSCT outcome. STUDY DESIGN: Fifty-two single-center patients who presented with symptoms of lower GI GVHD were analyzed in a retrospective manner. Two SNPs located in the NFKB1 gene regions (rs3774937 C/T and rs3774959 A/G) were genotyped from the peripheral blood samples collected before the start of the conditioning. All patients underwent proctosigmoidoscopy with biopsy of the mucosa. The expression of p16INK4a was analyzed in normal intestinal crypts and stroma. RESULTS: Fifty-two patients (50% male) received HSCT for hematological diseases (acute leukemias in 67%) and developed lower GI symptoms. Patients with p16INK4a expression in the intestinal stroma were in lower risk of developing histological grade 3-4 aGVHD (RR 0.18 [95% CI 0.05-0.65]; p = 0.009). The multivariate linear regression confirmed the independent effect of p16INK4a expression on time of the lower GI aGVHD symptoms onset (Coef. 38.9 [95% CI 12.7-65.1]; p = 0.005). The NFKB1 rs3774937 CC and TT/TC genotype were present in 40 and 80% of patients with p16INK4a expression, respectively (p = 0.04). The rs3774959 AA and GG/AG genotype were present among 43 and 82% of patients with p16INK4a expression, respectively (p = 0.02). Expression of p16INK4a was associated with no clinical variable but NFKB1 genotype. CONCLUSIONS: Our results address possible new mechanisms that may lead to better understanding of HSCT-related immune complications. Cellular senescence may bring novel approaches in GVHD diagnostics and therapy.
- MeSH
- gastrointestinální nemoci * etiologie MeSH
- inhibitor p16 cyklin-dependentní kinasy * genetika MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- nemoc štěpu proti hostiteli * genetika metabolismus MeSH
- NF-kappa B - podjednotka p50 * genetika MeSH
- retrospektivní studie MeSH
- stárnutí buněk genetika MeSH
- transplantace hematopoetických kmenových buněk * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Long-term environmental exposure to metals leads to epigenetic changes and may increase risks to human health. The relationship between the type and level of metal exposure and epigenetic changes in subjects exposed to high concentrations of metals in the environment is not yet clear. The aim of our study is to find the possible association of environmental long-term exposure to metals with DNA methylation changes of genes related to immune response and carcinogenesis. We investigated the association of plasma levels of 21 essential and non-essential metals detected by ICP-MS and the methylation level of 654 CpG sites located on NFKB1, CDKN2A, ESR1, APOA5, IGF2 and H19 genes assessed by targeted bisulfite sequencing in a cohort of 40 subjects living near metal mining area and 40 unexposed subjects. Linear regression was conducted to find differentially methylated positions with adjustment for gender, age, BMI class, smoking and metal concentration. RESULTS: In the metal-exposed group, five CpGs in the NFKB1 promoter region were hypomethylated compared to unexposed group. Four differentially methylated positions (DMPs) were associated with multiple metals, two of them are located on NFKB1 gene, and one each on CDKN2A gene and ESR1 gene. Two DMPs located on NFKB1 (chr4:102500951, associated with Be) and IGF2 (chr11:2134198, associated with U) are associated with specific metal levels. The methylation status of the seven CpGs located on NFKB1 (3), ESR1 (2) and CDKN2A (2) positively correlated with plasma levels of seven metals (As, Sb, Zn, Ni, U, I and Mn). CONCLUSIONS: Our study revealed methylation changes in NFKB1, CDKN2A, IGF2 and ESR1 genes in individuals with long-term human exposure to metals. Further studies are needed to clarify the effect of environmental metal exposure on epigenetic mechanisms and pathways involved.
- MeSH
- epigeneze genetická * MeSH
- karcinogeneze genetika MeSH
- kovy * škodlivé účinky MeSH
- lidé MeSH
- metylace DNA * MeSH
- NF-kappa B - podjednotka p50 genetika MeSH
- tumor supresorové geny MeSH
- vystavení vlivu životního prostředí * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Transient receptor potential cation channel subfamily V member 1 (TRPV1) has been found over-expressed in low back pain (LBP) patients with neuropathic pain (NP), but the underlying mechanism is still unclear. In the present study, the up-regulation of the TRPV1 protein level in sinuvertebral nerve biopsies from patients with NP was verified by immunoblotting, but the TRPV1 mRNA level was not significantly changed. MiRNAs targeting TRPV1 mRNA were predicted by a bioinformatic tool, and the interactions between the miRNAs and TRPV1 were confirmed by dual luciferase assay. The correlation between NFKB1 signalling and TRPV1 expression was analysed and confirmed by using sNF96.2 cells after lipopolysaccharide stimulation. We found that five out of 18 miRNAs repressed TRPV1 expression, and the levels of miR-375 and miR-455 were negatively correlated with the protein level of TRPV1 in patients with NP. MiR-375 and miR-455 were identified to repress TRPV1 expression via targeting the 3'UTR of TRPV1 mRNA. NFKB1 signalling activation down-regulated the expression of miR-375 and miR-455, and thus up-regulated the TRPV1 protein level. In conclusion, we partially unveiled the mechanism of how TRPV1 is over-expressed in chronic LBP patients with NP and provided two potential candidate miRNAs for NP treatment.
Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk.
- MeSH
- alely MeSH
- Asijci genetika MeSH
- běloši genetika MeSH
- celogenomová asociační studie * MeSH
- interferonové regulační faktory genetika MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- membranózní glomerulonefritida diagnóza genetika imunologie MeSH
- molekulární modely MeSH
- NF-kappa B - podjednotka p50 genetika MeSH
- receptory pro fosfolipasy A2 genetika MeSH
- sekvence aminokyselin MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Graft-versus-host disease (GVHD) represents a significant cause of mortality after allogeneic hematopoietic stem cell transplantation (HSCT). NF-kB system is a master regulator of innate immunity responses. It controls the expression of various cytokines and chemokines many of which are involved in GVHD pathogenesis. Chemo(radio) therapy administered during conditioning induces DNA damage and activates DNA damage response (DDR) signaling resulting in irreversible cell cycle arrest - cellular senescence which has been described to be associated with robust pro-inflammatory secretion mostly controlled by NF-kB. The NFKB1 gene encodes the DNA-binding subunit of the NF-kB complex. Using the candidate gene approach, we analyzed possible association of two single-nucleotide polymorphisms (SNPs) rs3774937 C/T and rs3774959 A/G of the NFKB1 gene with GVHD and transplant-related mortality (TRM) occurrence in 109 recipients allografted from HLA-identical donor. Both SNPs in recipients were found to be strongly associated with acute GVHD. Nevertheless, no significant association with chronic GVHD and TRM was found. Presented pilot results contribute to pre-clinical observations and suggest that NF-kB may be an important regulator of HSCT-related inflammatory reactions such as acute GVHD. Novel pathogenic mechanisms of GVHD may arise from perspectives of DDR and cellular senescence where NF-kB plays an essential role.
- MeSH
- alografty MeSH
- dospělí MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé středního věku MeSH
- lidé MeSH
- míra přežití MeSH
- nemoc štěpu proti hostiteli genetika mortalita terapie MeSH
- NF-kappa B - podjednotka p50 genetika MeSH
- pilotní projekty MeSH
- přežití bez známek nemoci MeSH
- transplantace hematopoetických kmenových buněk * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
Type 1 diabetes mellitus (T1DM) is one of the long-time studied autoimmune disorders. The triggering of the autoimmune process has been ascribed to various genes active in the regulation of the cytokine gene transcription including the Rel/NF-kappaB gene family. In our study the gene polymorphism of HLA class II, NFKB1 (nuclear factor of kappa light polypeptide gene enhancer in B-cells 1) and NFKBIA (inhibitor of nuclear factor kappa B) was tested. Patients were divided into the subgroups in relation to the disease type: T1DM in children, T1DM in adults, and Latent Autoimmune Diabetes in Adults (LADA). HLA-DRB1 (*)04 and HLA-DQB1 (*)0302 have been detected as risk factors for T1DM in adults and particularly in children (P<0.0001, OR=22.9 and 46.5 respectively). HLA-DRB1 (*)03 has been found as a single risk factor for LADA (P<0.0001, OR=4.9). We detected 15 alleles for the NFKB1 gene polymorphism (CA-repeats) in the Czech population. The alleles were ranging in size from 114-142 bp corresponding to 10-25 CA repeats. Frequency of the A7 allele of NFKB1 gene has been significantly increased in T1DM adults (P<0.01). There was no difference in A and a G allele frequency of NFKBIA gene between the control group and patients, but the association of the AA genotype of NFKBIA gene has been found for LADA (P<0.05). Summarizing our results we concluded that there is a high probability of association of gene polymorphism from Rel/NF-kappaB family with an autoimmune diabetes course. Due to the results obtained in the epidemiological study we have been looking also for the function significance of the genetic predisposition. No significant changes have been observed by real time PCR testing of HLA-DRB1 (*)04 gene and NFKB1 gene expression between T1DM diabetic group with different HLA, NFKB1, NFKBIA genetic background.
- MeSH
- diabetes mellitus 1. typu genetika MeSH
- dítě MeSH
- dospělí MeSH
- financování organizované MeSH
- genetická predispozice k nemoci MeSH
- genetika MeSH
- HLA-DQ antigeny genetika MeSH
- HLA-DR antigeny genetika MeSH
- kojenec MeSH
- lidé středního věku MeSH
- mladiství MeSH
- NF-kappa B - podjednotka p50 genetika MeSH
- polymorfismus genetický MeSH
- předškolní dítě MeSH
- proteiny I-kappa B genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Geografické názvy
- Česká republika MeSH