Wars2 is a determinant of angiogenesis

. 2016 Jul 08 ; 7 () : 12061. [epub] 20160708

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27389904

Grantová podpora
G1002319 Medical Research Council - United Kingdom
MC_U120097112 Medical Research Council - United Kingdom
R01 HL109264 NHLBI NIH HHS - United States
R24 OD017870 NIH HHS - United States

Coronary flow (CF) measured ex vivo is largely determined by capillary density that reflects angiogenic vessel formation in the heart in vivo. Here we exploit this relationship and show that CF in the rat is influenced by a locus on rat chromosome 2 that is also associated with cardiac capillary density. Mitochondrial tryptophanyl-tRNA synthetase (Wars2), encoding an L53F protein variant within the ATP-binding motif, is prioritized as the candidate at the locus by integrating genomic data sets. WARS2(L53F) has low enzyme activity and inhibition of WARS2 in endothelial cells reduces angiogenesis. In the zebrafish, inhibition of wars2 results in trunk vessel deficiencies, disordered endocardial-myocardial contact and impaired heart function. Inhibition of Wars2 in the rat causes cardiac angiogenesis defects and diminished cardiac capillary density. Our data demonstrate a pro-angiogenic function for Wars2 both within and outside the heart that may have translational relevance given the association of WARS2 with common human diseases.

Zobrazit více v PubMed

Simons M. Angiogenesis: where do we stand now? Circulation 111, 1556–1566 (2005). PubMed

Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007). PubMed

Carmeliet P. & Jain R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011). PubMed PMC

Sano M. et al.. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446, 444–448 (2007). PubMed

Oka T., Akazawa H., Naito A. T. & Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ. Res. 114, 565–571 (2014). PubMed

Taqueti V. R. et al.. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation 131, 19–27 (2015). PubMed PMC

Su S. et al.. Measurement of heritability of myocardial blood flow by positron emission tomography: The Twins Heart Study. Heart 98, 495–499 (2012). PubMed PMC

Camici P. G. & Crea F. Coronary microvascular dysfunction. N. Engl. J. Med. 356, 830–840 (2007). PubMed

Henry T. D., Satran D. & Jolicoeur E. M. Treatment of refractory angina in patients not suitable for revascularization. Nat. Rev. Cardiol. 11, 78–95 (2014). PubMed

Blanco R. & Gerhardt H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect Med. 3, a006569 (2013). PubMed PMC

Wu B. et al.. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signalling. Cell 151, 1083–1096 (2012). PubMed PMC

Tian X., Pu W. T. & Zhou B. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116, 515–530 (2015). PubMed PMC

Zhang H. et al.. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118, 1880–1893 (2016). PubMed

McDermott-Roe C. et al.. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 478, 114–118 (2011). PubMed PMC

Petretto E. et al.. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat. Genet. 40, 546–552 (2008). PubMed PMC

Malek R. L. et al.. Physiogenomic resources for rat models of heart, lung and blood disorders. Nat. Genet. 38, 234–239 (2006). PubMed

Bottolo L. et al.. ESS++: a C++ objected-oriented algorithm for Bayesian stochastic search model exploration. Bioinformatics 27, 587–588 (2011). PubMed PMC

Atanur S. S. et al.. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154, 691–703 (2013). PubMed PMC

Antonellis A. & Green E. D. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu. Rev. Genomics Hum. Genet. 9, 87–107 (2008). PubMed

Lo W. S. et al.. Human tRNA synthetase catalytic nulls with diverse functions. Science 345, 328–332 (2014). PubMed PMC

Guo M. & Schimmel P. Essential nontranslational functions of tRNA synthetases. Nat. Chem. Biol. 9, 145–153 (2013). PubMed PMC

Diodato D., Ghezzi D. & Tiranti V. The mitochondrial aminoacyl tRNA synthetases: genes and syndromes. Int. J. Cell Biol. 2014, 787956 (2014). PubMed PMC

Wakasugi K. & Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284, 147–151 (1999). PubMed

Wakasugi K. et al.. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc. Natl Acad. Sci. USA 99, 173–177 (2002). PubMed PMC

Hayashi M. et al.. VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat. Commun. 4, 1672 (2013). PubMed PMC

Gore A. V., Monzo K., Cha Y. R., Pan W. & Weinstein B. M. Vascular development in the zebrafish. Cold Spring Harb. Perspect. Med. 2, a006684 (2012). PubMed PMC

Rottbauer W. et al.. VEGF-PLCgamma1 pathway controls cardiac contractility in the embryonic heart. Genes Dev. 19, 1624–1634 (2005). PubMed PMC

Mitchell I. C., Brown T. S., Terada L. S., Amatruda J. F. & Nwariaku F. E. Effect of vascular cadherin knockdown on zebrafish vasculature during development. PLoS ONE 5, e8807 (2010). PubMed PMC

Covassin L. D., Villefranc J. A., Kacergis M. C., Weinstein B. M. & Lawson N. D. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc. Natl Acad. Sci. USA 103, 6554–6559 (2006). PubMed PMC

Harrison M. R. et al.. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev. Cell 33, 442–454 (2015). PubMed PMC

Chen H. I. et al.. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141, 4500–4512 (2014). PubMed PMC

Carmena M., Wheelock M., Funabiki H. & Earnshaw W. C. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat. Rev. Mol. Cell Biol. 13, 789–803 (2012). PubMed PMC

Coutelle O. et al.. Embelin inhibits endothelial mitochondrial respiration and impairs neoangiogenesis during tumor growth and wound healing. EMBO Mol. Med. 6, 624–639 (2014). PubMed PMC

Curtis C. et al.. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012). PubMed PMC

Heid I. M. et al.. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010). PubMed PMC

Liu F., Smith J., Zhang Z., Cole R. & Herron B. J. Genetic heterogeneity of skin microvasculature. Dev. Biol. 340, 480–489 (2010). PubMed PMC

Castranova D. et al.. Aminoacyl-transfer RNA synthetase deficiency promotes angiogenesis via the unfolded protein response pathway. Arterioscler. Thromb. Vasc. Biol. 36, 655–662 (2016). PubMed PMC

Xu X. et al.. Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nat. Commun. 3, 681 (2012). PubMed PMC

Herzog W., Muller K., Huisken J. & Stainier D. Y. Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. Circ. Res. 104, 1260–1266 (2009). PubMed PMC

Mirando A. C. et al.. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor. Sci. Rep. 5, 13160 (2015). PubMed PMC

Song Y. et al.. Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD). PLoS ONE 4, e8329 (2009). PubMed PMC

Maurer C. M., Schonthaler H. B., Mueller K. P. & Neuhauss S. C. Distinct retinal deficits in a zebrafish pyruvate dehydrogenase-deficient mutant. J. Neurosci. 30, 11962–11972 (2010). PubMed PMC

Rahn J. J., Bestman J. E., Stackley K. D. & Chan S. S. Zebrafish lacking functional DNA polymerase gamma survive to juvenile stage, despite rapid and sustained mitochondrial DNA depletion, altered energetics and growth. Nucleic Acids Res. 43, 10338–10352 (2015). PubMed PMC

Ellertsdottir E. et al.. Vascular morphogenesis in the zebrafish embryo. Dev. Biol. 341, 56–65 (2010). PubMed

Taimeh Z., Loughran J., Birks E. J. & Bolli R. Vascular endothelial growth factor in heart failure. Nat. Rev. Cardiol. 10, 519–530 (2013). PubMed

Carmeliet P. et al.. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999). PubMed

Samsa L. A., Givens C., Tzima E., Stainier D. Y., Qian L. & Liu J. Cardiac contraction activates endocardial Notch signalling to modulate chamber maturation in zebrafish. Development 142, 4080–4091 (2015). PubMed PMC

Sutherland F. J. & Hearse D. J. The isolated blood and perfusion fluid perfused heart. Pharmacol. Res. 41, 613–627 (2000). PubMed

Consortium S. et al.. SNP and haplotype mapping for genetic analysis in the rat. Nat. Genet. 40, 560–566 (2008). PubMed PMC

Atanur S. S. et al.. The genome sequence of the spontaneously hypertensive rat: analysis and functional significance. Genome Res. 20, 791–803 (2010). PubMed PMC

Fan J. B. et al.. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 68, 69–78 (2003). PubMed

Adzhubei I. A. et al.. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010). PubMed PMC

Pravenec M. et al.. Genetic isolation of a blood pressure quantitative trait locus on chromosome 2 in the spontaneously hypertensive rat. J. Hypertens. 19, 1061–1064 (2001). PubMed

Roberts A. M. et al.. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med. 7, 270ra276 (2015). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...