Wars2 is a determinant of angiogenesis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
G1002319
Medical Research Council - United Kingdom
MC_U120097112
Medical Research Council - United Kingdom
R01 HL109264
NHLBI NIH HHS - United States
R24 OD017870
NIH HHS - United States
PubMed
27389904
PubMed Central
PMC4941120
DOI
10.1038/ncomms12061
PII: ncomms12061
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované MeSH
- embryo nesavčí MeSH
- endoteliální buňky pupečníkové žíly (lidské) cytologie enzymologie MeSH
- fyziologická neovaskularizace genetika MeSH
- genetické lokusy MeSH
- genom * MeSH
- HEK293 buňky MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- malá interferující RNA genetika metabolismus MeSH
- mapování chromozomů MeSH
- mitochondrie genetika metabolismus MeSH
- myokard cytologie enzymologie MeSH
- savčí chromozomy chemie MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční seřazení MeSH
- signální transdukce MeSH
- tryptofan-tRNA-ligasa antagonisté a inhibitory genetika metabolismus MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá interferující RNA MeSH
- tryptofan-tRNA-ligasa MeSH
Coronary flow (CF) measured ex vivo is largely determined by capillary density that reflects angiogenic vessel formation in the heart in vivo. Here we exploit this relationship and show that CF in the rat is influenced by a locus on rat chromosome 2 that is also associated with cardiac capillary density. Mitochondrial tryptophanyl-tRNA synthetase (Wars2), encoding an L53F protein variant within the ATP-binding motif, is prioritized as the candidate at the locus by integrating genomic data sets. WARS2(L53F) has low enzyme activity and inhibition of WARS2 in endothelial cells reduces angiogenesis. In the zebrafish, inhibition of wars2 results in trunk vessel deficiencies, disordered endocardial-myocardial contact and impaired heart function. Inhibition of Wars2 in the rat causes cardiac angiogenesis defects and diminished cardiac capillary density. Our data demonstrate a pro-angiogenic function for Wars2 both within and outside the heart that may have translational relevance given the association of WARS2 with common human diseases.
Charité Universitätsmedizin 10117 Berlin Germany
Department of mathematics South Kensington Campus Imperial College London London SW7 2AZ UK
DZHK Partner Site Berlin 13125 Berlin Germany
Institute of Physiology Czech Academy of Sciences 142 20 Prague 4 Czech Republic
National Heart and Lung Institute Royal Brompton Campus Imperial College London London SW3 6NP UK
National Heart Centre Singapore 5 Hospital Drive Singapore 169609 Singapore
Zobrazit více v PubMed
Simons M. Angiogenesis: where do we stand now? Circulation 111, 1556–1566 (2005). PubMed
Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007). PubMed
Carmeliet P. & Jain R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011). PubMed PMC
Sano M. et al.. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446, 444–448 (2007). PubMed
Oka T., Akazawa H., Naito A. T. & Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ. Res. 114, 565–571 (2014). PubMed
Taqueti V. R. et al.. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation 131, 19–27 (2015). PubMed PMC
Su S. et al.. Measurement of heritability of myocardial blood flow by positron emission tomography: The Twins Heart Study. Heart 98, 495–499 (2012). PubMed PMC
Camici P. G. & Crea F. Coronary microvascular dysfunction. N. Engl. J. Med. 356, 830–840 (2007). PubMed
Henry T. D., Satran D. & Jolicoeur E. M. Treatment of refractory angina in patients not suitable for revascularization. Nat. Rev. Cardiol. 11, 78–95 (2014). PubMed
Blanco R. & Gerhardt H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect Med. 3, a006569 (2013). PubMed PMC
Wu B. et al.. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signalling. Cell 151, 1083–1096 (2012). PubMed PMC
Tian X., Pu W. T. & Zhou B. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116, 515–530 (2015). PubMed PMC
Zhang H. et al.. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118, 1880–1893 (2016). PubMed
McDermott-Roe C. et al.. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 478, 114–118 (2011). PubMed PMC
Petretto E. et al.. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat. Genet. 40, 546–552 (2008). PubMed PMC
Malek R. L. et al.. Physiogenomic resources for rat models of heart, lung and blood disorders. Nat. Genet. 38, 234–239 (2006). PubMed
Bottolo L. et al.. ESS++: a C++ objected-oriented algorithm for Bayesian stochastic search model exploration. Bioinformatics 27, 587–588 (2011). PubMed PMC
Atanur S. S. et al.. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154, 691–703 (2013). PubMed PMC
Antonellis A. & Green E. D. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu. Rev. Genomics Hum. Genet. 9, 87–107 (2008). PubMed
Lo W. S. et al.. Human tRNA synthetase catalytic nulls with diverse functions. Science 345, 328–332 (2014). PubMed PMC
Guo M. & Schimmel P. Essential nontranslational functions of tRNA synthetases. Nat. Chem. Biol. 9, 145–153 (2013). PubMed PMC
Diodato D., Ghezzi D. & Tiranti V. The mitochondrial aminoacyl tRNA synthetases: genes and syndromes. Int. J. Cell Biol. 2014, 787956 (2014). PubMed PMC
Wakasugi K. & Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284, 147–151 (1999). PubMed
Wakasugi K. et al.. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc. Natl Acad. Sci. USA 99, 173–177 (2002). PubMed PMC
Hayashi M. et al.. VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat. Commun. 4, 1672 (2013). PubMed PMC
Gore A. V., Monzo K., Cha Y. R., Pan W. & Weinstein B. M. Vascular development in the zebrafish. Cold Spring Harb. Perspect. Med. 2, a006684 (2012). PubMed PMC
Rottbauer W. et al.. VEGF-PLCgamma1 pathway controls cardiac contractility in the embryonic heart. Genes Dev. 19, 1624–1634 (2005). PubMed PMC
Mitchell I. C., Brown T. S., Terada L. S., Amatruda J. F. & Nwariaku F. E. Effect of vascular cadherin knockdown on zebrafish vasculature during development. PLoS ONE 5, e8807 (2010). PubMed PMC
Covassin L. D., Villefranc J. A., Kacergis M. C., Weinstein B. M. & Lawson N. D. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc. Natl Acad. Sci. USA 103, 6554–6559 (2006). PubMed PMC
Harrison M. R. et al.. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev. Cell 33, 442–454 (2015). PubMed PMC
Chen H. I. et al.. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141, 4500–4512 (2014). PubMed PMC
Carmena M., Wheelock M., Funabiki H. & Earnshaw W. C. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat. Rev. Mol. Cell Biol. 13, 789–803 (2012). PubMed PMC
Coutelle O. et al.. Embelin inhibits endothelial mitochondrial respiration and impairs neoangiogenesis during tumor growth and wound healing. EMBO Mol. Med. 6, 624–639 (2014). PubMed PMC
Curtis C. et al.. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012). PubMed PMC
Heid I. M. et al.. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010). PubMed PMC
Liu F., Smith J., Zhang Z., Cole R. & Herron B. J. Genetic heterogeneity of skin microvasculature. Dev. Biol. 340, 480–489 (2010). PubMed PMC
Castranova D. et al.. Aminoacyl-transfer RNA synthetase deficiency promotes angiogenesis via the unfolded protein response pathway. Arterioscler. Thromb. Vasc. Biol. 36, 655–662 (2016). PubMed PMC
Xu X. et al.. Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nat. Commun. 3, 681 (2012). PubMed PMC
Herzog W., Muller K., Huisken J. & Stainier D. Y. Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. Circ. Res. 104, 1260–1266 (2009). PubMed PMC
Mirando A. C. et al.. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor. Sci. Rep. 5, 13160 (2015). PubMed PMC
Song Y. et al.. Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD). PLoS ONE 4, e8329 (2009). PubMed PMC
Maurer C. M., Schonthaler H. B., Mueller K. P. & Neuhauss S. C. Distinct retinal deficits in a zebrafish pyruvate dehydrogenase-deficient mutant. J. Neurosci. 30, 11962–11972 (2010). PubMed PMC
Rahn J. J., Bestman J. E., Stackley K. D. & Chan S. S. Zebrafish lacking functional DNA polymerase gamma survive to juvenile stage, despite rapid and sustained mitochondrial DNA depletion, altered energetics and growth. Nucleic Acids Res. 43, 10338–10352 (2015). PubMed PMC
Ellertsdottir E. et al.. Vascular morphogenesis in the zebrafish embryo. Dev. Biol. 341, 56–65 (2010). PubMed
Taimeh Z., Loughran J., Birks E. J. & Bolli R. Vascular endothelial growth factor in heart failure. Nat. Rev. Cardiol. 10, 519–530 (2013). PubMed
Carmeliet P. et al.. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999). PubMed
Samsa L. A., Givens C., Tzima E., Stainier D. Y., Qian L. & Liu J. Cardiac contraction activates endocardial Notch signalling to modulate chamber maturation in zebrafish. Development 142, 4080–4091 (2015). PubMed PMC
Sutherland F. J. & Hearse D. J. The isolated blood and perfusion fluid perfused heart. Pharmacol. Res. 41, 613–627 (2000). PubMed
Consortium S. et al.. SNP and haplotype mapping for genetic analysis in the rat. Nat. Genet. 40, 560–566 (2008). PubMed PMC
Atanur S. S. et al.. The genome sequence of the spontaneously hypertensive rat: analysis and functional significance. Genome Res. 20, 791–803 (2010). PubMed PMC
Fan J. B. et al.. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 68, 69–78 (2003). PubMed
Adzhubei I. A. et al.. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010). PubMed PMC
Pravenec M. et al.. Genetic isolation of a blood pressure quantitative trait locus on chromosome 2 in the spontaneously hypertensive rat. J. Hypertens. 19, 1061–1064 (2001). PubMed
Roberts A. M. et al.. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med. 7, 270ra276 (2015). PubMed PMC