Age-Dependent Changes in the Function of Mitochondrial Membrane Permeability Transition Pore in Rat Liver Mitochondria

. 2021 Dec 30 ; 70 (6) : 905-911. [epub] 20211030

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34717067

Mitochondria play an important role in the cell aging process. Changes in calcium homeostasis and/or increased reactive oxygen species (ROS) production lead to the opening of mitochondrial permeability transition pore (MPTP), depolarization of the inner mitochondrial membrane, and decrease of ATP production. Our work aimed to monitor age-related changes in the Ca2+ ion effect on MPTP and the ability of isolated rat liver mitochondria to accumulate calcium. The mitochondrial calcium retention capacity (CRC) was found to be significantly affected by the age of rats. Measurement of CRC values of the rat liver mitochondria showed two periods when 3 to 17-week old rats were tested. 3-week and 17-week old rats showed lower CRC values than 7-week old animals. Similar changes were observed while testing calcium-induced swelling of rat liver mitochondria. These findings indicate that the mitochondrial energy production system is more resistant to calcium-induced MPTP opening accompanied by the damaging effect of ROS in adult rats than in young and aged animals.

Zobrazit více v PubMed

BARJA G. Free radicals and aging. Trends Neurosci. 2004;27:595–600. doi: 10.1016/j.tins.2004.07.005. PubMed DOI

BARJA G. Longevity and Evolution. New York: Nova Science Publishers, Inc; 2011. pp. 1–194.

BARJA G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. doi: 10.1016/b978-0-12-394625-6.00001-5. PubMed DOI

BARJA G, CADENAS S, ROJAS C, LOPEZ-TORRES M, PEREZ-CAMPO R. A decrease of free radical production near critical targets as a cause of maximum longevity in animals. Comp Biochem Physiol Biochem Mol Biol. 1994;108:501–512. doi: 10.1016/0305-0491(94)90103-1. PubMed DOI

BENZI G, PASTORIS O, MARZATICO F, VILLA RF, DAGANI F, CURTI D. The mitochondrial electron transfer alteration as a factor involved in the brain aging. Neurobiol Aging. 1992;13:361–368. doi: 10.1016/0197-4580(92)90109-b. PubMed DOI

BONORA M, PINTON P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol. 2014;4:302. doi: 10.3389/fonc.2014.00302. PubMed DOI PMC

BONORA M, WIECKOWSKI MR, CHINOPOULOS C, KEPP O, KROEMER G, GALLUZZI L, PINTON P. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene. 2015;34:1475–1486. doi: 10.1038/onc.2014.462. PubMed DOI

BRADFORD MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1006/abio.1976.9999. PubMed DOI

BRAND MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol. 2000;35:811–820. doi: 10.1016/s0531-5565(00)00135-2. PubMed DOI

BUSTAMANTE E, SOPER JW, PEDERSEN PL. A high-yield preparative method for isolation of rat liver mitochondria. Anal Biochem. 1977;80:401–408. doi: 10.1016/0003-2697(77)90661-3. PubMed DOI

CEDIKOVA M, PITULE P, KRIPNEROVA M, MARKOVA M, KUNCOVA J. Multiple roles of mitochondria in aging processes. Physiol Res. 2016;65:S519–S531. doi: 10.33549/physiolres.933538. PubMed DOI

CICCARONE F, TAGLIATESTA S, CAIAFA P, ZAMPIERI M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev. 2018;174:3–17. doi: 10.1016/j.mad.2017.12.002. PubMed DOI

DAVIES SM, POLJAK A, DUNCAN MW, SMYTHE GA, MURPHY MP. Measurements of protein carbonyls, ortho- and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radic Biol Med. 2001;31:181–190. doi: 10.1016/s0891-5849(01)00576-7. PubMed DOI

Di LISA F, BERNARDI P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res. 2005;66:222–232. doi: 10.1016/j.cardiores.2005.02.009. PubMed DOI

DRAHOTA Z, ENDLICHER R, STANKOVA P, RYCHTRMOC D, MILEROVA M, CERVINKOVA Z. Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves. J Bioenerg Biomembr. 2012a;44:309–315. doi: 10.1007/s10863-012-9443-2. PubMed DOI

DRAHOTA Z, MILEROVÁ M, ENDLICHER R, RYCHTRMOC D, ČERVINKOVÁ Z, OŠŤÁDAL B. Developmental changes of the sensitivity of cardiac and liver mitochondrial permeability transition pore to calcium load and oxidative stress. Physiol Res. 2012b;61(Suppl 1):S165–172. doi: 10.33549/physiolres.932377. PubMed DOI

ENDLICHER R, DRAHOTA Z, CERVINKOVA Z. Modification of calcium retention capacity of rat liver mitochondria by phosphate and tert-butyl hydroperoxide. Physiol Res. 2019;68:59–65. doi: 10.33549/physiolres.933912. PubMed DOI

FONTAINE E, ERIKSSON O, ICHAS F, BERNARDI P. Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex i. J Biol Chem. 1998;273:12662–12668. doi: 10.1074/jbc.273.20.12662. PubMed DOI

GUERRIERI F, KALOUS M, CAPOZZA G, MUOLO L, DRAHOTA Z, PAPA S. Age dependent changes in mitochondrial FoF1 ATP synthase in regenerating rat-liver. Biochem Mol Biol Int. 1994;33:117–129. PubMed

GUERRIERI F, VENDEMIALE G, TURTURRO N, FRATELLO A, FURIO A, MUOLO L, GRATTAGLIANO I, PAPA S. Alteration of mitochondrial F0F1 ATP synthase during aging. Possible involvement of oxygen free radicals. Ann N Y Acad Sci. 1996;786:62–71. doi: 10.1111/j.1749-6632.1996.tb39052.x. PubMed DOI

ICHAS F, JOUAVILLE LS, MAZAT JP. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997;89:1145–1153. doi: 10.1016/s0092-8674(00)80301-3. PubMed DOI

KALOUS M, DRAHOTA Z. The role of mitochondria in aging. Physiol Res. 1996;45:351–359. PubMed

LENAZ G, BOVINA C, CASTELLUCCIO C, FATO R, FORMIGGINI G, GENOVA ML, MARCHETTI M, PICH MM, PALLOTTI F, PARENTI CASTELLI G, BIAGINI G. Mitochondrial complex I defects in aging. Mol Cell Biochem. 1997;174:329–333. PubMed

MATHER M, ROTTENBERG H. Aging enhaces the activation of the permeability transition pore in mitochondria. Biochem Biophys Res Commun. 2000;273:603–608. doi: 10.1006/bbrc.2000.2994. PubMed DOI

OST’ADALOVA I, BABICKY A. Periodization of the early postnatal development in the rat with particular attention to the weaning period. Physiol Res. 2012;61:S1–7. doi: 10.33549/physiolres.932385. PubMed DOI

PAMPLONA R, PRAT J, CADENAS S, ROJAS C, PEREZ-CAMPO R, LOPEZ TORRES M, BARJA G. Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from long-lived species: the pigeon and human case. Mech Ageing Dev. 1996;86:53–66. doi: 10.1016/0047-6374(95)01673-2. PubMed DOI

PAPA S, SKULACHEV VP. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem. 1997;174:305–319. PubMed

SON JM, LEE C. Mitochondria: multifaceted regulators of aging. BMB Rep. 2019;52:13–23. doi: 10.5483/bmbrep.2019.52.1.300. PubMed DOI PMC

YEN K, PATEL HB, LUBLIN AL, MOBBS CV. SOD isoforms play no role in lifespan in ad lib or dietary restricted conditions, but mutational inactivation of SOD-1 reduces life extension by cold. Mech Ageing Dev. 2009;130:173–178. doi: 10.1016/j.mad.2008.11.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...