Age-Dependent Changes in the Function of Mitochondrial Membrane Permeability Transition Pore in Rat Liver Mitochondria
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34717067
PubMed Central
PMC8815472
DOI
10.33549/physiolres.934734
PII: 934734
Knihovny.cz E-zdroje
- MeSH
- jaterní mitochondrie metabolismus MeSH
- krysa rodu Rattus MeSH
- potkani Wistar MeSH
- přechodový pór mitochondriální permeability metabolismus MeSH
- stárnutí metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- přechodový pór mitochondriální permeability MeSH
Mitochondria play an important role in the cell aging process. Changes in calcium homeostasis and/or increased reactive oxygen species (ROS) production lead to the opening of mitochondrial permeability transition pore (MPTP), depolarization of the inner mitochondrial membrane, and decrease of ATP production. Our work aimed to monitor age-related changes in the Ca2+ ion effect on MPTP and the ability of isolated rat liver mitochondria to accumulate calcium. The mitochondrial calcium retention capacity (CRC) was found to be significantly affected by the age of rats. Measurement of CRC values of the rat liver mitochondria showed two periods when 3 to 17-week old rats were tested. 3-week and 17-week old rats showed lower CRC values than 7-week old animals. Similar changes were observed while testing calcium-induced swelling of rat liver mitochondria. These findings indicate that the mitochondrial energy production system is more resistant to calcium-induced MPTP opening accompanied by the damaging effect of ROS in adult rats than in young and aged animals.
Zobrazit více v PubMed
BARJA G. Free radicals and aging. Trends Neurosci. 2004;27:595–600. doi: 10.1016/j.tins.2004.07.005. PubMed DOI
BARJA G. Longevity and Evolution. New York: Nova Science Publishers, Inc; 2011. pp. 1–194.
BARJA G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. doi: 10.1016/b978-0-12-394625-6.00001-5. PubMed DOI
BARJA G, CADENAS S, ROJAS C, LOPEZ-TORRES M, PEREZ-CAMPO R. A decrease of free radical production near critical targets as a cause of maximum longevity in animals. Comp Biochem Physiol Biochem Mol Biol. 1994;108:501–512. doi: 10.1016/0305-0491(94)90103-1. PubMed DOI
BENZI G, PASTORIS O, MARZATICO F, VILLA RF, DAGANI F, CURTI D. The mitochondrial electron transfer alteration as a factor involved in the brain aging. Neurobiol Aging. 1992;13:361–368. doi: 10.1016/0197-4580(92)90109-b. PubMed DOI
BONORA M, PINTON P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol. 2014;4:302. doi: 10.3389/fonc.2014.00302. PubMed DOI PMC
BONORA M, WIECKOWSKI MR, CHINOPOULOS C, KEPP O, KROEMER G, GALLUZZI L, PINTON P. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene. 2015;34:1475–1486. doi: 10.1038/onc.2014.462. PubMed DOI
BRADFORD MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1006/abio.1976.9999. PubMed DOI
BRAND MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol. 2000;35:811–820. doi: 10.1016/s0531-5565(00)00135-2. PubMed DOI
BUSTAMANTE E, SOPER JW, PEDERSEN PL. A high-yield preparative method for isolation of rat liver mitochondria. Anal Biochem. 1977;80:401–408. doi: 10.1016/0003-2697(77)90661-3. PubMed DOI
CEDIKOVA M, PITULE P, KRIPNEROVA M, MARKOVA M, KUNCOVA J. Multiple roles of mitochondria in aging processes. Physiol Res. 2016;65:S519–S531. doi: 10.33549/physiolres.933538. PubMed DOI
CICCARONE F, TAGLIATESTA S, CAIAFA P, ZAMPIERI M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev. 2018;174:3–17. doi: 10.1016/j.mad.2017.12.002. PubMed DOI
DAVIES SM, POLJAK A, DUNCAN MW, SMYTHE GA, MURPHY MP. Measurements of protein carbonyls, ortho- and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radic Biol Med. 2001;31:181–190. doi: 10.1016/s0891-5849(01)00576-7. PubMed DOI
Di LISA F, BERNARDI P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res. 2005;66:222–232. doi: 10.1016/j.cardiores.2005.02.009. PubMed DOI
DRAHOTA Z, ENDLICHER R, STANKOVA P, RYCHTRMOC D, MILEROVA M, CERVINKOVA Z. Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves. J Bioenerg Biomembr. 2012a;44:309–315. doi: 10.1007/s10863-012-9443-2. PubMed DOI
DRAHOTA Z, MILEROVÁ M, ENDLICHER R, RYCHTRMOC D, ČERVINKOVÁ Z, OŠŤÁDAL B. Developmental changes of the sensitivity of cardiac and liver mitochondrial permeability transition pore to calcium load and oxidative stress. Physiol Res. 2012b;61(Suppl 1):S165–172. doi: 10.33549/physiolres.932377. PubMed DOI
ENDLICHER R, DRAHOTA Z, CERVINKOVA Z. Modification of calcium retention capacity of rat liver mitochondria by phosphate and tert-butyl hydroperoxide. Physiol Res. 2019;68:59–65. doi: 10.33549/physiolres.933912. PubMed DOI
FONTAINE E, ERIKSSON O, ICHAS F, BERNARDI P. Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex i. J Biol Chem. 1998;273:12662–12668. doi: 10.1074/jbc.273.20.12662. PubMed DOI
GUERRIERI F, KALOUS M, CAPOZZA G, MUOLO L, DRAHOTA Z, PAPA S. Age dependent changes in mitochondrial FoF1 ATP synthase in regenerating rat-liver. Biochem Mol Biol Int. 1994;33:117–129. PubMed
GUERRIERI F, VENDEMIALE G, TURTURRO N, FRATELLO A, FURIO A, MUOLO L, GRATTAGLIANO I, PAPA S. Alteration of mitochondrial F0F1 ATP synthase during aging. Possible involvement of oxygen free radicals. Ann N Y Acad Sci. 1996;786:62–71. doi: 10.1111/j.1749-6632.1996.tb39052.x. PubMed DOI
ICHAS F, JOUAVILLE LS, MAZAT JP. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997;89:1145–1153. doi: 10.1016/s0092-8674(00)80301-3. PubMed DOI
KALOUS M, DRAHOTA Z. The role of mitochondria in aging. Physiol Res. 1996;45:351–359. PubMed
LENAZ G, BOVINA C, CASTELLUCCIO C, FATO R, FORMIGGINI G, GENOVA ML, MARCHETTI M, PICH MM, PALLOTTI F, PARENTI CASTELLI G, BIAGINI G. Mitochondrial complex I defects in aging. Mol Cell Biochem. 1997;174:329–333. PubMed
MATHER M, ROTTENBERG H. Aging enhaces the activation of the permeability transition pore in mitochondria. Biochem Biophys Res Commun. 2000;273:603–608. doi: 10.1006/bbrc.2000.2994. PubMed DOI
OST’ADALOVA I, BABICKY A. Periodization of the early postnatal development in the rat with particular attention to the weaning period. Physiol Res. 2012;61:S1–7. doi: 10.33549/physiolres.932385. PubMed DOI
PAMPLONA R, PRAT J, CADENAS S, ROJAS C, PEREZ-CAMPO R, LOPEZ TORRES M, BARJA G. Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from long-lived species: the pigeon and human case. Mech Ageing Dev. 1996;86:53–66. doi: 10.1016/0047-6374(95)01673-2. PubMed DOI
PAPA S, SKULACHEV VP. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem. 1997;174:305–319. PubMed
SON JM, LEE C. Mitochondria: multifaceted regulators of aging. BMB Rep. 2019;52:13–23. doi: 10.5483/bmbrep.2019.52.1.300. PubMed DOI PMC
YEN K, PATEL HB, LUBLIN AL, MOBBS CV. SOD isoforms play no role in lifespan in ad lib or dietary restricted conditions, but mutational inactivation of SOD-1 reduces life extension by cold. Mech Ageing Dev. 2009;130:173–178. doi: 10.1016/j.mad.2008.11.003. PubMed DOI
Czech Footprints in the Bioenergetics Research