Loss of Mitochondrial AAA Proteases AFG3L2 and YME1L Impairs Mitochondrial Structure and Respiratory Chain Biogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GB14- 36804G
Grantová Agentura České Republiky
UNCE 204011
UNCE - Univerzitní výzkumná centra, Charles University
P24/LF1/3
PRVOUK - Programy rozvoje vědních oblastí na Univerzitě Karlově, Charles University
PubMed
30544562
PubMed Central
PMC6321463
DOI
10.3390/ijms19123930
PII: ijms19123930
Knihovny.cz E-zdroje
- Klíčová slova
- AAA complex, AFG3L2, YME1L, mitochondria, protease,
- MeSH
- ATPázy spojené s různými buněčnými aktivitami genetika metabolismus MeSH
- HEK293 buňky MeSH
- lidé MeSH
- metaloendopeptidasy genetika metabolismus MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie metabolismus ultrastruktura MeSH
- proliferace buněk genetika fyziologie MeSH
- proteasy závislé na ATP genetika metabolismus MeSH
- transmisní elektronová mikroskopie MeSH
- western blotting MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AFG3L2 protein, human MeSH Prohlížeč
- ATPázy spojené s různými buněčnými aktivitami MeSH
- metaloendopeptidasy MeSH
- mitochondriální proteiny MeSH
- proteasy závislé na ATP MeSH
- YME1L1 protein, human MeSH Prohlížeč
Mitochondrial protein quality control is crucial for the maintenance of correct mitochondrial homeostasis. It is ensured by several specific mitochondrial proteases located across the various mitochondrial subcompartments. Here, we focused on characterization of functional overlap and cooperativity of proteolytic subunits AFG3L2 (AFG3 Like Matrix AAA Peptidase Subunit 2) and YME1L (YME1 like ATPase) of mitochondrial inner membrane AAA (ATPases Associated with diverse cellular Activities) complexes in the maintenance of mitochondrial structure and respiratory chain integrity. We demonstrate that loss of AFG3L2 and YME1L, both alone and in combination, results in diminished cell proliferation, fragmentation of mitochondrial reticulum, altered cristae morphogenesis, and defective respiratory chain biogenesis. The double AFG3L2/YME1L knockdown cells showed marked upregulation of OPA1 protein forms, with the most prominent increase in short OPA1 (optic atrophy 1). Loss of either protease led to marked elevation in OMA1 (OMA1 zinc metallopeptidase) (60 kDa) and severe reduction in the SPG7 (paraplegin) subunit of the m-AAA complex. Loss of the YME1L subunit led to an increased Drp1 level in mitochondrial fractions. While loss of YME1L impaired biogenesis and function of complex I, knockdown of AFG3L2 mainly affected the assembly and function of complex IV. Our results suggest cooperative and partly redundant functions of AFG3L2 and YME1L in the maintenance of mitochondrial structure and respiratory chain biogenesis and stress the importance of correct proteostasis for mitochondrial integrity.
Zobrazit více v PubMed
Glynn S.E. Multifunctional Mitochondrial AAA Proteases. Front. Mol. Biosci. 2017;4:34. doi: 10.3389/fmolb.2017.00034. PubMed DOI PMC
Pickles S., Vigie P., Youle R.J. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr. Biol. 2018;28:R170–R185. doi: 10.1016/j.cub.2018.01.004. PubMed DOI PMC
Morciano G., Pedriali G., Sbano L., Iannitti T., Giorgi C., Pinton P. Intersection of mitochondrial fission and fusion machinery with apoptotic pathways: Role of Mcl-1. Biol. Cell. 2016;108:279–293. doi: 10.1111/boc.201600019. PubMed DOI
Levytskyy R.M., Bohovych I., Khalimonchuk O. Metalloproteases of the Inner Mitochondrial Membrane. Biochemistry. 2017;56:4737–4746. doi: 10.1021/acs.biochem.7b00663. PubMed DOI PMC
Koppen M., Langer T. Protein degradation within mitochondria: Versatile activities of AAA proteases and other peptidases. Crit. Rev. Biochem. Mol. Biol. 2007;42:221–242. doi: 10.1080/10409230701380452. PubMed DOI
Voos W., Jaworek W., Wilkening A., Bruderek M. Protein quality control at the mitochondrion. Essays Biochem. 2016;60:213–225. doi: 10.1042/EBC20160009. PubMed DOI
Stiburek L., Cesnekova J., Kostkova O., Fornuskova D., Vinsova K., Wenchich L., Houstek J., Zeman J. YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol. Biol. Cell. 2012;23:1010–1023. doi: 10.1091/mbc.e11-08-0674. PubMed DOI PMC
Ruan Y., Li H., Zhang K., Jian F., Tang J., Song Z. Loss of Yme1L perturbates mitochondrial dynamics. Cell Death Dis. 2013;4:e896. doi: 10.1038/cddis.2013.414. PubMed DOI PMC
Rainbolt T.K., Atanassova N., Genereux J.C., Wiseman R.L. Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab. 2013;18:908–919. doi: 10.1016/j.cmet.2013.11.006. PubMed DOI PMC
Rainbolt T.K., Lebeau J., Puchades C., Wiseman R.L. Reciprocal Degradation of YME1L and OMA1 Adapts Mitochondrial Proteolytic Activity during Stress. Cell Rep. 2016;14:2041–2049. doi: 10.1016/j.celrep.2016.02.011. PubMed DOI PMC
Cesnekova J., Rodinova M., Hansikova H., Houstek J., Zeman J., Stiburek L. The mammalian homologue of yeast Afg1 ATPase (lactation elevated 1) mediates degradation of nuclear-encoded complex IV subunits. Biochem. J. 2016;473:797–804. doi: 10.1042/BJ20151029. PubMed DOI
Hornig-Do H.T., Tatsuta T., Buckermann A., Bust M., Kollberg G., Rötig A., Hellmich M., Nijtmans L., Wiesner R.J. Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly. EMBO J. 2012;31:1293–1307. doi: 10.1038/emboj.2011.477. PubMed DOI PMC
Richter U., Lahtinen T., Marttinen P., Suomi F., Battersby B.J. Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness. J. Cell Biol. 2015;211:373–389. doi: 10.1083/jcb.201504062. PubMed DOI PMC
Tsai C.W., Wu Y., Pao P.-C., Phillips C.B., Williams C., Miller C., Ranaghan M., Tsai M.-F. Proteolytic control of the mitochondrial calcium uniporter complex. Proc. Natl. Acad. Sci. USA. 2017;114:4388–4393. doi: 10.1073/pnas.1702938114. PubMed DOI PMC
Consolato F., Maltecca F., Tulli S., Sambri I., Casari G. m-AAA and i-AAA complexes coordinate to regulate OMA1, the stress-activated supervisor of mitochondrial dynamics. J. Cell Sci. 2018;131 doi: 10.1242/jcs.213546. PubMed DOI
Shanmughapriya S., Rajan S., Hoffman N.E., Tomar D., Nemani N., Madesh M. SPG7 Is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore. Mol. Cell. 2015;60:47–62. doi: 10.1016/j.molcel.2015.08.009. PubMed DOI PMC
Magri S., Fracasso V., Plumari M., Alfei E., Ghezzi D., Gellera C., Rusmini P., Poletti A., Bella D.D., Elia A.E., et al. Concurrent AFG3L2 and SPG7 mutations associated with syndromic parkinsonism and optic atrophy with aberrant OPA1 processing and mitochondrial network fragmentation. Hum. Mutat. 2018;39 doi: 10.1002/humu.23658. PubMed DOI
Hartmann B., Wai T., Hu H., MacVicar T., Musante L., Fischer-Zirnsak B., Stenzel W., Gräf R., van den Heuvel L., Ropers H.H., et al. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. Elife. 2016;5 doi: 10.7554/eLife.16078. PubMed DOI PMC
Sprenger H.G., Wani G., Hesseling A., König T., Patron M., MacVicar T., Ahola S., Wai T., Barth E., Rugarli E.I., et al. Loss of the mitochondrial i-AAA protease YME1L leads to ocular dysfunction and spinal axonopathy. EMBO Mol. Med. 2018 doi: 10.15252/emmm.201809288. PubMed DOI PMC
Cesnekova J., Spacilova J., Hansikova H., Houstek J., Zeman J., Stiburek L. LACE1 interacts with p53 and mediates its mitochondrial translocation and apoptosis. Oncotarget. 2016;7:47687–47698. doi: 10.18632/oncotarget.9959. PubMed DOI PMC
Stiburek L., Hansikova H., Tesarova M., Cerna L., Zeman J. Biogenesis of eukaryotic cytochrome c oxidase. Physiol. Res. 2006;55(Suppl. 2):S27–S41. PubMed
Baker M.J., Lampe P.A., Stojanovski D., Korwitz A., Anand R., Tatsuta T., Langer T. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J. 2014;33:578–593. doi: 10.1002/embj.201386474. PubMed DOI PMC
Ehses S., Raschke I., Mancuso G., Bernacchia A., Geimer S., Tondera D., Martinou J.-C., Westermann B., Rugarli E.I., Langer T. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 2009;187:1023–1036. doi: 10.1083/jcb.200906084. PubMed DOI PMC
Twig G., Elorza A., Molina A.J.A., Mohamed H., Wikstrom J.D., Walzer G., Stiles L., Haigh S.E., Katz S., Las G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27:433–446. doi: 10.1038/sj.emboj.7601963. PubMed DOI PMC
Patten D.A., Wong J., Khacho M., Soubannier V., Mailloux R.J., Pilon-Larose K., MacLaurin J.G., Park D.S., McBride H.M., Trinkle-Mulcahy L., et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014;33:2676–2691. doi: 10.15252/embj.201488349. PubMed DOI PMC
Del Dotto V., Mishra P., Vidoni S., Fogazza M., Maresca A., Caporali L., McCaffery J.M., Cappelletti M., Baruffini E., Lenaers G., et al. OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions. Cell Rep. 2017;19:2557–2571. doi: 10.1016/j.celrep.2017.05.073. PubMed DOI
Frezza C., Cipolat S., de Brito O.M., Micaroni M., Beznoussenko G.V., Rudka T., Bartoli D., Polishuck R.S., Danial N.N., De Strooper B., et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126:177–189. doi: 10.1016/j.cell.2006.06.025. PubMed DOI
Meeusen S., DeVay R., Block J., Cassidy-Stone A., Wayson S., McCaffery J.M., Nunnari J. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell. 2006;127:383–395. doi: 10.1016/j.cell.2006.09.021. PubMed DOI
Anand R., Wai T., Baker M.J., Kladt N., Schauss A.C., Rugarli E., Langer T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014;204:919–929. doi: 10.1083/jcb.201308006. PubMed DOI PMC
MacVicar T., Langer T. OPA1 processing in cell death and disease—The long and short of it. J. Cell Sci. 2016;129:2297–2306. doi: 10.1242/jcs.159186. PubMed DOI
Head B., Griparic L., Amiri M., Gandre-Babbe S., van der Bliek A.M. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J. Cell Biol. 2009;187:959–966. doi: 10.1083/jcb.200906083. PubMed DOI PMC
Maltecca F., De Stefani D., Cassina L., Consolato F., Wasilewski M., Scorrano L., Rizzuto R., Casari G. Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation. Hum. Mol. Genet. 2012;21:3858–3870. doi: 10.1093/hmg/dds214. PubMed DOI PMC
Nan J., Hu H., Sun Y., Zhu L., Wang Y., Zhong Z., Zhao J., Zhang N., Wang Y., Wang Y., et al. TNFR2 Stimulation Promotes Mitochondrial Fusion via Stat3- and NF-kB-Dependent Activation of OPA1 Expression. Circ. Res. 2017;121:392–410. doi: 10.1161/CIRCRESAHA.117.311143. PubMed DOI PMC
Zhang K., Li H., Song Z. Membrane depolarization activates the mitochondrial protease OMA1 by stimulating self-cleavage. EMBO Rep. 2014;15:576–585. doi: 10.1002/embr.201338240. PubMed DOI PMC
Chang C.R., Blackstone C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. N. Y. Acad. Sci. 2010;1201:34–39. doi: 10.1111/j.1749-6632.2010.05629.x. PubMed DOI PMC
Koppen M., Bonn F., Ehses S., Langer T. Autocatalytic processing of m-AAA protease subunits in mitochondria. Mol. Biol. Cell. 2009;20:4216–4224. doi: 10.1091/mbc.e09-03-0218. PubMed DOI PMC
Atorino L., Silvestri L., Koppen M., Cassina L., Ballabio A., Marconi R., Langer T., Casari G. Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J. Cell Biol. 2003;163:777–787. doi: 10.1083/jcb.200304112. PubMed DOI PMC
Maltecca F., Aghaie A., Schroeder D.G., Cassina L., Taylor B.A., Phillips S.J., Malaguti M., Previtali S., Guénet J.-L., Quattrini A., et al. The mitochondrial protease AFG3L2 is essential for axonal development. J. Neurosci. 2008;28:2827–2836. doi: 10.1523/JNEUROSCI.4677-07.2008. PubMed DOI PMC
Luft J.H. Permanganate: A new fixative for electron microscopy. J. Biophys. Biochem. Cytol. 1956;2:799–802. doi: 10.1083/jcb.2.6.799. PubMed DOI PMC
Stiburek L., Fornuskova D., Wenchich L., Pejznochova M., Hansikova H., Zeman J. Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase. J. Mol. Biol. 2007;374:506–516. doi: 10.1016/j.jmb.2007.09.044. PubMed DOI
Vaseva A.V., Moll U.M. Identification of p53 in mitochondria. Methods Mol. Biol. 2013;962:75–84. PubMed
Stiburek L., Vesela K., Hansikova H., Pecina P., Tesarova M., Cerna L., Houstek J., Zeman J. Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Pt 3Biochem. J. 2005;392:625–632. doi: 10.1042/BJ20050807. PubMed DOI PMC