Large copy number variations in combination with point mutations in the TYMP and SCO2 genes found in two patients with mitochondrial disorders
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
23838601
PubMed Central
PMC3925276
DOI
10.1038/ejhg.2013.148
PII: ejhg2013148
Knihovny.cz E-zdroje
- MeSH
- bodová mutace * MeSH
- dítě MeSH
- familiární hypertrofická kardiomyopatie diagnóza genetika MeSH
- kojenec MeSH
- lidé MeSH
- lidské chromozomy, pár 22 genetika MeSH
- mitochondriální encefalomyopatie diagnóza genetika MeSH
- mitochondriální proteiny genetika MeSH
- molekulární chaperony MeSH
- oftalmoplegie vrozené MeSH
- střevní pseudoobstrukce diagnóza genetika MeSH
- svalová dystrofie okulofaryngeální MeSH
- thymidinfosforylasa genetika MeSH
- transportní proteiny genetika MeSH
- variabilita počtu kopií segmentů DNA * MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- molekulární chaperony MeSH
- SCO2 protein, human MeSH Prohlížeč
- thymidinfosforylasa MeSH
- transportní proteiny MeSH
- TYMP protein, human MeSH Prohlížeč
Mitochondrial disorders are caused by defects in mitochondrial or nuclear DNA. Although the existence of large deletions in mitochondrial DNA (mtDNA) is well known, deletions affecting whole genes are not commonly described in patients with mitochondrial disorders. Based on the results of whole-genome analyses, copy number variations (CNVs) occur frequently in the human genome and may overlap with many genes associated with clinical phenotypes. We report the discovery of two large heterozygous CNVs on 22q13.33 in two patients with mitochondrial disorders. The first patient harboured a novel point mutation c.667G>A (p.D223N) in the SCO2 gene in combination with a paternally inherited 87-kb deletion. As hypertrophic cardiomyopathy (HCMP) was not documented in the patient, this observation prompted us to compare his clinical features with all 44 reported SCO2 patients in the literature. Surprisingly, the review shows that HCMP was present in only about 50% of the SCO2 patients with non-neonatal onset. In the second patient, who had mitochondrial neurogastrointestinal encephalopathy (MNGIE), a maternally inherited 175-kb deletion and the paternally inherited point mutation c.261G>T (p.E87D) in the TYMP gene were identified.
Zobrazit více v PubMed
Schafer AM, Taylor RW, Turnbull DM, Chinnery PF. The epidemiology of mitochondrial disorders - past, present, future. Biochim Biophys Acta. 2004;1659:115–120. PubMed
Koopman WJ, Willems PH, Smeitink JA. Monogenic mitochondrial disorders. N Engl J Med. 2012;366:1132–1141. PubMed
Janssen RJ, Distelmaier F, Smeets R, et al. Contiguous gene deletion of ELOVL7, ERCC8 and NDUFAF2 in a patient with a fatal multisystem disorder. Hum Mol Genet. 2009;18:3365–3374. PubMed
Leary SC, Mattman A, Wai T, et al. A hemizygous SCO2 mutation in an early onset rapidly progressive, fatal cardiomyopathy. Mol Genet Metab. 2006;89:129–133. PubMed
Compton AG, Troedson C, Wilson M, et al. Application of oligonucleotide array CGH in the detection of a large intragenic deletion in POLG associated with Alpers Syndrome. Mitochondrion. 2011;11:104–107. PubMed
Wang J, Zhan H, Li FY, Pursley AN, Schmitt ES, Wong LJ. Targeted array CGH as a valuable molecular diagnostic approach: experience in the diagnosis of mitochondrial and metabolic disorders. Mol Genet Metab. 2012;106:221–230. PubMed
Scherer SW, Lee C, Birney E, et al. Challenges and standards in integrating surveys of structural variation. Nat Genet. 2007;39:S7–S15. PubMed PMC
De S. Somatic mosaicism in healthy human tissues. Trends Genet. 2011;27:217–223. PubMed
Chinnery PF, Elliott HR, Hudson G, Samuels DC, Relton CL. Epigenetics, epidemiology and mitochondrial DNA diseases. Int J Epidemiol. 2012;41:177–187. PubMed PMC
De S, Babu MM. Genomic neighbourhood and the regulation of gene expression. Curr Opin Cell Biol. 2010;22:326–333. PubMed
Pello R, Martin MA, Carelli V, et al. Mitochondrial DNA background modulates the assembly kinetics of OXPHOS complexes in a cellular model of mitochondrial disease. Hum Mol Genet. 2008;17:4001–4011. PubMed
Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36:949–951. PubMed
Stiburek L, Vesela K, Hansikova H, Hulkova H, Zeman J. Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am J Physiol Cell Physiol. 2009;296:C1218–C1226. PubMed
Slama A, Lacroix C, Plante-Bordeneuve V, et al. Thymidine phosphorylase gene mutations in patients with mitochondrial neurogastrointestinal encephalomyopathy syndrome. Mol Genet Metab. 2005;84:326–331. PubMed
Nishino I, Kobayashi O, Goto Y, et al. A new congenital muscular dystrophy with mitochondrial structural abnormalities. Muscle Nerve. 1998;21:40–47. PubMed
Banci L, Bertini I, Ciofi-Baffoni S, et al. A structural characterization of human SCO2. Structure. 2007;15:1132–1140. PubMed
Stiburek L, Vesela K, Hansikova H, et al. Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem J. 2005;392:625–632. PubMed PMC
Vesela K, Hansikova H, Magner M, Zeman J. Cytochrome c oxidase deficiency in childhood. Paediatr Croat. 2009;53:122–126.
Garone C, Tadesse S, Hirano M. Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2011;134:3326–3332. PubMed PMC
Nishigaki Y, Marti R, Copeland WC, Hirano M. Site-specific somatic mitochondrial DNA point mutations in patients with thymidine phosphorylase deficiency. J Clin Invest. 2003;111:1913–1921. PubMed PMC
Riggs ER, Church DM, Hanson K, et al. Towards an evidence-based process for the clinical interpretation of copy number variation. Clin Genet. 2012;81:403–412. PubMed PMC
Altshuler DM, Gibbs RA, Peltonen L, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467:52–58. PubMed PMC