Schizophrenia, the gut microbiota, and new opportunities from optogenetic manipulations of the gut-brain axis

. 2021 Jun 22 ; 17 (1) : 7. [epub] 20210622

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34158061

Grantová podpora
CZ.02.2.69/0.0/0.0/19_074/0016409 European Science Foundation
20-00939S Grantová Agentura České Republiky
21-16667K Grantová Agentura České Republiky

Odkazy

PubMed 34158061
PubMed Central PMC8218443
DOI 10.1186/s12993-021-00180-2
PII: 10.1186/s12993-021-00180-2
Knihovny.cz E-zdroje

Schizophrenia research arose in the twentieth century and is currently rapidly developing, focusing on many parallel research pathways and evaluating various concepts of disease etiology. Today, we have relatively good knowledge about the generation of positive and negative symptoms in patients with schizophrenia. However, the neural basis and pathophysiology of schizophrenia, especially cognitive symptoms, are still poorly understood. Finding new methods to uncover the physiological basis of the mental inabilities related to schizophrenia is an urgent task for modern neuroscience because of the lack of specific therapies for cognitive deficits in the disease. Researchers have begun investigating functional crosstalk between NMDARs and GABAergic neurons associated with schizophrenia at different resolutions. In another direction, the gut microbiota is getting increasing interest from neuroscientists. Recent findings have highlighted the role of a gut-brain axis, with the gut microbiota playing a crucial role in several psychopathologies, including schizophrenia and autism.There have also been investigations into potential therapies aimed at normalizing altered microbiota signaling to the enteric nervous system (ENS) and the central nervous system (CNS). Probiotics diets and fecal microbiota transplantation (FMT) are currently the most common therapies. Interestingly, in rodent models of binge feeding, optogenetic applications have been shown to affect gut colony sensitivity, thus increasing colonic transit. Here, we review recent findings on the gut microbiota-schizophrenia relationship using in vivo optogenetics. Moreover, we evaluate if manipulating actors in either the brain or the gut might improve potential treatment research. Such research and techniques will increase our knowledge of how the gut microbiota can manipulate GABA production, and therefore accompany changes in CNS GABAergic activity.

Zobrazit více v PubMed

Bleuler E. Dementia Praecox, Oder Gruppe Der Schizophrenien. Leipzig: Deuticke, 1911; Print.

Heckers S. Bleuler and the neurobiology of schizophrenia. Schizophr Bull. 2011;37(6):1131–5. doi: 10.1093/schbul/sbr108. PubMed DOI PMC

Ihara H, Berrios GE, McKenna PJ. The association between negative and dysexecutive syndromes in schizophrenia: a cross-cultural study. Behav Neurol. 2003;14(3–4):63–74. doi: 10.1155/2003/304095. PubMed DOI PMC

Matsuda Y, Makinodan M, Morimoto T, Kishimoto T. Neural changes following cognitive remediation therapy for schizophrenia. Psychiatry Clin Neurosci. 2019;73(11):676–84. doi: 10.1111/pcn.12912. PubMed DOI

Chung DW, Fish KN, Lewis DA. Pathological basis for deficient excitatory drive to cortical parvalbumin interneurons in schizophrenia. Am J Psychiatry. 2016;173(11):1131–9. doi: 10.1176/appi.ajp.2016.16010025. PubMed DOI PMC

Ward RD, Winiger V, Higa KK, et al. The impact of motivation on cognitive performance in an animal model of the negative and cognitive symptoms of schizophrenia. Behav Neurosci. 2015;129(3):292–9. doi: 10.1037/bne0000051. PubMed DOI PMC

Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51(3):199–214. doi: 10.1001/archpsyc.1994.03950030035004. PubMed DOI

Jodo E. The role of the hippocampo-prefrontal cortex system in phencyclidine-induced psychosis: a model for schizophrenia. J Physiol Paris. 2013;107(6):434–40. doi: 10.1016/j.jphysparis.2013.06.002. PubMed DOI

Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology. 2018;142:41–62. doi: 10.1016/j.neuropharm.2017.11.045. PubMed DOI

Georgiev D, Arion D, Enwright JF, et al. Lower gene expression for KCNS3 potassium channel subunit in parvalbumin-containing neurons in the prefrontal cortex in schizophrenia. Am J Psychiatry. 2014;171(1):62–71. doi: 10.1176/appi.ajp.2013.13040468. PubMed DOI PMC

Glausier JR, Lewis DA. GABA and schizophrenia: where we stand and where we need to go. Schizophr Res. 2017;181:2–3. doi: 10.1016/j.schres.2017.01.050. PubMed DOI PMC

Enwright JF, Sanapala S, Foglio A, Berry R, Fish KN, Lewis DA. Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology. 2016;41(9):2206–14. doi: 10.1038/npp.2016.24. PubMed DOI PMC

Lazarus MS, Krishnan K, Huang ZJ. GAD67 deficiency in parvalbumin interneurons produces deficits in inhibitory transmission and network disinhibition in mouse prefrontal cortex. Cereb Cortex. 2015;25(5):1290–6. doi: 10.1093/cercor/bht322. PubMed DOI PMC

Fujihara K, Miwa H, Kakizaki T, et al. Glutamate decarboxylase 67 deficiency in a subset of GABAergic neurons induces schizophrenia-related phenotypes. Neuropsychopharmacology. 2015;40(10):2475–86. doi: 10.1038/npp.2015.117. PubMed DOI PMC

Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res. 2015;167(1–3):98–107. doi: 10.1016/j.schres.2014.12.026. PubMed DOI PMC

Wu JQ, Chen DC, Tan YL, et al. Altered interleukin-18 levels are associated with cognitive impairment in chronic schizophrenia. J Psychiatr Res. 2016;76:9–15. doi: 10.1016/j.jpsychires.2016.01.013. PubMed DOI

Sasayama D, Hattori K, Wakabayashi C, et al. Increased cerebrospinal fluid interleukin-6 levels in patients with schizophrenia and those with major depressive disorder. J Psychiatr Res. 2013;47(3):401–6. doi: 10.1016/j.jpsychires.2012.12.001. PubMed DOI

Wei J, Hemmings GP. Gene, gut and schizophrenia: the meeting point for the gene-environment interaction in developing schizophrenia. Med Hypotheses. 2005;64(3):547–52. doi: 10.1016/j.mehy.2004.08.011. PubMed DOI

Dinan TG, Borre YE, Cryan JF. Genomics of schizophrenia: time to consider the gut microbiome? Mol Psychiatry. 2014;19(12):1252–7. doi: 10.1038/mp.2014.93. PubMed DOI

Pedrini M, Massuda R, Fries GR, et al. Similarities in serum oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. J Psychiatr Res. 2012;46(6):819–24. doi: 10.1016/j.jpsychires.2012.03.019. PubMed DOI

Song X, Fan X, Song X, et al. Elevated levels of adiponectin and other cytokines in drug naïve, first episode schizophrenia patients with normal weight. Schizophr Res. 2013;150(1):269–73. doi: 10.1016/j.schres.2013.07.044. PubMed DOI

Pyndt Jørgensen B, Krych L, Pedersen TB, et al. Investigating the long-term effect of subchronic phencyclidine-treatment on novel object recognition and the association between the gut microbiota and behavior in the animal model of schizophrenia. Physiol Behav. 2015;141:32–9. doi: 10.1016/j.physbeh.2014.12.042. PubMed DOI

Feng HJ, Botzolakis EJ, Macdonald RL. Context-dependent modulation of alpha beta gamma and alpha beta delta GABA A receptors by penicillin: implications for phasic and tonic inhibition. Neuropharmacology. 2009;56(1):161–73. doi: 10.1016/j.neuropharm.2008.08.010. PubMed DOI PMC

Lindquist CE, Dalziel JE, Cromer BA, Birnir B. Penicillin blocks human alpha 1 beta 1 and alpha 1 beta 1 gamma 2S GABAA channels that open spontaneously. Eur J Pharmacol. 2004;496(1–3):23–32. doi: 10.1016/j.ejphar.2004.06.004. PubMed DOI

Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5. doi: 10.1073/pnas.1102999108. PubMed DOI PMC

Meckel KR, Kiraly DD. A potential role for the gut microbiome in substance use disorders. Psychopharmacology. 2019;236(5):1513–30. doi: 10.1007/s00213-019-05232-0. PubMed DOI PMC

Patrono E, Matsumoto J, Nishimaru H, et al. Rewarding effects of operant dry-licking behavior on neuronal firing in the nucleus accumbens core. Front Pharmacol. 2017;8:536. doi: 10.3389/fphar.2017.00536. PubMed DOI PMC

Lin L, Zheng LJ, Zhang LJ. Neuroinflammation, gut microbiome, and alzheimer’s disease. Mol Neurobiol. 2018;55(11):8243–50. doi: 10.1007/s12035-018-0983-2. PubMed DOI

Nguyen TT, Kosciolek T, Eyler LT, Knight R, Jeste DV. Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J Psychiatr Res. 2018;99:50–61. doi: 10.1016/j.jpsychires.2018.01.013. PubMed DOI PMC

Nguyen TT, Kosciolek T, Maldonado Y, et al. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr Res. 2019;204:23–9. doi: 10.1016/j.schres.2018.09.014. PubMed DOI PMC

Mangiola F, Ianiro G, Franceschi F, Fagiuoli S, Gasbarrini G, Gasbarrini A. Gut microbiota in autism and mood disorders. World J Gastroenterol. 2016;22(1):361–8. doi: 10.3748/wjg.v22.i1.361. PubMed DOI PMC

Quigley EM. Gut bacteria in health and disease. Gastroenterol Hepatol. 2013;9(9):560–9. PubMed PMC

Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4554–61. doi: 10.1073/pnas.1000087107. PubMed DOI PMC

Yu ZT, Chen C, Kling DE, et al. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology. 2013;23(2):169–77. doi: 10.1093/glycob/cws138. PubMed DOI PMC

Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89. doi: 10.1038/nm.4185. PubMed DOI

American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (5th ed.). 10.1176/appi.books.9780890425596.

Severance EG, Yolken RH, Eaton WW. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res. 2016;176(1):23–35. doi: 10.1016/j.schres.2014.06.027. PubMed DOI PMC

McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76. doi: 10.1093/epirev/mxn001. PubMed DOI

Cardno AG, Jones LA, Murphy KC, et al. Dimensions of psychosis in affected sibling pairs. Schizophr Bull. 1999;25(4):841–50. doi: 10.1093/oxfordjournals.schbul.a033423. PubMed DOI

Cannon TD, van Erp TG, Bearden CE, et al. Early and late neurodevelopmental influences in the prodrome to schizophrenia: contributions of genes, environment, and their interactions. Schizophr Bull. 2003;29(4):653–69. doi: 10.1093/oxfordjournals.schbul.a007037. PubMed DOI

Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A. Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends Neurosci. 2009;32(9):485–95. doi: 10.1016/j.tins.2009.05.007. PubMed DOI PMC

Singh SM, Castellani CA, O'Reilly RL. Copy number variation showers in schizophrenia: an emerging hypothesis. Mol Psychiatry. 2009;14(4):356–8. doi: 10.1038/mp.2008.149. PubMed DOI

Kelly JR, Minuto C, Cryan JF, et al. The role of the gut microbiome in the development of schizophrenia. Schizophr Res. 2020;S0920–9964(20):30086–94. doi: 10.1016/j.schres.2020.02.010. PubMed DOI

Howes OD, Fusar-Poli P, Bloomfield M, Selvaraj S, McGuire P. From the prodrome to chronic schizophrenia: the neurobiology underlying psychotic symptoms and cognitive impairments. Curr Pharm Des. 2012;18(4):459–65. doi: 10.2174/138161212799316217. PubMed DOI PMC

Citrome L. Unmet needs in the treatment of schizophrenia: new targets to help different symptom domains. J Clin Psychiatry. 2014;75(Suppl 1):21–26. doi: 10.4088/JCP.13049su1c.04. PubMed DOI

Aguilar-Valles A, Rodrigue B, Matta-Camacho E. Maternal immune activation and the development of dopaminergic neurotransmission of the offspring: relevance for schizophrenia and other psychoses. Front Psychiatry. 2020;11:852. doi: 10.3389/fpsyt.2020.00852. PubMed DOI PMC

Choudhury Z, Lennox B. Maternal immune activation and schizophrenia-evidence for an immune priming disorder. Front Psychiatry. 2021;12:585742. doi: 10.3389/fpsyt.2021.585742. PubMed DOI PMC

Conway F, Brown AS. Maternal immune activation and related factors in the risk of offspring psychiatric disorders. Front Psychiatry. 2019;10:430. doi: 10.3389/fpsyt.2019.00430. PubMed DOI PMC

Minakova E, Warner BB. Maternal immune activation, central nervous system development and behavioral phenotypes. Birth Defects Res. 2018;110(20):1539–50. doi: 10.1002/bdr2.1416. PubMed DOI

Reisinger S, Khan D, Kong E, et al. The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol Ther. 2015;149:213–26. doi: 10.1016/j.pharmthera.2015.01.001. PubMed DOI

Janetsian-Fritz SS, Timme NM, Timm MM, et al. Maternal deprivation induces alterations in cognitive and cortical function in adulthood. Transl Psychiatry. 2018;8(1):71. doi: 10.1038/s41398-018-0119-5. PubMed DOI PMC

Schmidt MV, Enthoven L, van der Mark M, et al. The postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse. Int J Dev Neurosci. 2003;21(3):125–32. doi: 10.1016/s0736-5748(03)00030-3. PubMed DOI

Llorente R, O'Shea E, Gutierrez-Lopez MD, et al. Sex-dependent maternal deprivation effects on brain monoamine content in adolescent rats. Neurosci Lett. 2010;479(2):112–17. doi: 10.1016/j.neulet.2010.05.039. PubMed DOI

Roceri M, Hendriks W, Racagni G, et al. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry. 2002;7(6):609–16. doi: 10.1038/sj.mp.4001036. PubMed DOI

Uribe E, Sánchez-Mendoza E, Nieves N, et al. Neonatal administration of memantine enhances social cognition in adult rats subjected to early maternal deprivation. Exp Neurobiol. 2016;25(6):328–32. doi: 10.5607/en.2016.25.6.328. PubMed DOI PMC

Uttl L, Petrasek T, Sengul H. Chronic MK-801 application in adolescence and early adulthood: a spatial working memory deficit in adult long-evans rats but no changes in the hippocampal nmda receptor subunits. Front Pharmacol. 2018;9:42. doi: 10.3389/fphar.2018.00042. PubMed DOI PMC

Liu W, Wang X, Hong W, et al. Establishment of a schizophrenic animal model through chronic administration of MK-801 in infancy and social isolation in childhood. Infant Behav Dev. 2017;46:135–43. doi: 10.1016/j.infbeh.2017.01.003. PubMed DOI

Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007;27(43):11496–500. doi: 10.1523/JNEUROSCI.2213-07.2007. PubMed DOI PMC

Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38(5):950–957. doi: 10.1093/schbul/sbs010. PubMed DOI PMC

Rebollo B, Perez-Zabalza M, Ruiz-Mejias M, Perez-Mendez L, Sanchez-Vives MV. Beta and gamma oscillations in prefrontal cortex during nmda hypofunction: an in vitro model of schizophrenia features. Neuroscience. 2018;383:138–49. doi: 10.1016/j.neuroscience.2018.04.035. PubMed DOI

Strube W, Marshall L, Quattrocchi G, et al. Glutamatergic contribution to probabilistic reasoning and jumping to conclusions in schizophrenia: a double-blind. Randomized Exp Trial Biol Psychiatry. 2020;88(9):687–97. doi: 10.1016/j.biopsych.2020.03.018. PubMed DOI

Rivolta D, Heidegger T, Scheller B, et al. Ketamine dysregulates the amplitude and connectivity of high-frequency oscillations in cortical-subcortical networks in humans: evidence from resting-state magnetoencephalography-recordings. Schizophr Bull. 2015;41(5):1105–14. doi: 10.1093/schbul/sbv051. PubMed DOI PMC

Szczurowska E, Ahuja N, Jiruška P, Kelemen E, Stuchlík A. Impairment of neural coordination in hippocampal neuronal ensembles after a psychotomimetic dose of dizocilpine. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:275–83. doi: 10.1016/j.pnpbp.2017.09.013. PubMed DOI

Vojtechova I, Petrasek T, Hatalova H, Pistikova A, Vales K, Stuchlik A. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation. Behav Brain Res. 2016;305:247–57. doi: 10.1016/j.bbr.2016.03.020. PubMed DOI

Svoboda J, Stankova A, Entlerova M, Stuchlik A. Acute administration of MK-801 in an animal model of psychosis in rats interferes with cognitively demanding forms of behavioral flexibility on a rotating arena. Front Behav Neurosci. 2015;9:75. doi: 10.3389/fnbeh.2015.00075. PubMed DOI PMC

Kubík S, Buchtová H, Valeš K, Stuchlík A. MK-801 impairs cognitive coordination on a rotating arena (carousel) and contextual specificity of hippocampal immediate-early gene expression in a rat model of psychosis. Front Behav Neurosci. 2014;8:75. doi: 10.3389/fnbeh.2014.00075. PubMed DOI PMC

Berretta S, Pantazopoulos H, Markota M, Brown C, Batzianouli ET. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res. 2015;167(1–3):18–27. doi: 10.1016/j.schres.2014.12.040. PubMed DOI PMC

Dong E, Ruzicka WB, Grayson DR, Guidotti A. DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients. Schizophr Res. 2015;167(1–3):35–41. doi: 10.1016/j.schres.2014.10.030. PubMed DOI PMC

Bitanihirwe BK, Woo TU. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev. 2014;45:85–99. doi: 10.1016/j.neubiorev.2014.03.018. PubMed DOI PMC

DeFelipe J, Hendry SH, Jones EG. Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc Natl Acad Sci USA. 1989;86(6):2093–97. doi: 10.1073/pnas.86.6.2093. PubMed DOI PMC

Hu H, Gan J, Jonas P. Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons from cellular design to microcircuit function. Science. 2014;345(6196):1255263. doi: 10.1126/science.1255263. PubMed DOI

Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9. doi: 10.1126/science.1099745. PubMed DOI

Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK. Gamma and beta bursts underlie working memory. Neuron. 2016;90(1):152–64. doi: 10.1016/j.neuron.2016.02.028. PubMed DOI PMC

Cardin JA, Carlén M, Meletis K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459(7247):663–7. doi: 10.1038/nature08002. PubMed DOI PMC

McNally JM, McCarley RW. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities. Curr Opin Psychiatry. 2016;29(3):202–10. doi: 10.1097/YCO.0000000000000244. PubMed DOI PMC

Ferguson BR, Gao WJ. Thalamic control of cognition and social behavior via regulation of gamma-aminobutyric acidergic signaling and excitation/inhibition balance in the medial prefrontal cortex. Biol Psychiatry. 2018;83(8):657–69. doi: 10.1016/j.biopsych.2017.11.033. PubMed DOI PMC

Bast T, Pezze M, McGarrity S. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition. Br J Pharmacol. 2017;174(19):3211–25. doi: 10.1111/bph.13850. PubMed DOI PMC

Kim D, Jeong H, Lee J, et al. Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory. Neuron. 2016;92(4):902–15. doi: 10.1016/j.neuron.2016.09.023. PubMed DOI

Carlén M, Meletis K, Siegle JH, et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry. 2012;17(5):537–48. doi: 10.1038/mp.2011.31. PubMed DOI PMC

Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125(3):926–38. doi: 10.1172/JCI76304. PubMed DOI PMC

Golofast B, Vales K. The connection between microbiome and schizophrenia. Neurosci Biobehav Rev. 2020;108:712–31. doi: 10.1016/j.neubiorev.2019.12.011. PubMed DOI

Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018;12:49. doi: 10.3389/fnins.2018.00049. PubMed DOI PMC

Misiak B, Łoniewski I, Marlicz W, et al. The HPA axis dysregulation in severe mental illness: can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry. 2020;102:109951. doi: 10.1016/j.pnpbp.2020.109951. PubMed DOI

Beilharz JE, Kaakoush NO, Maniam J, Morris MJ. The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain Behav Immun. 2016;57:304–13. doi: 10.1016/j.bbi.2016.07.151. PubMed DOI

Zheng P, Zeng B, Liu M, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv. 2019;5(2):eaau8317. doi: 10.1126/sciadv.aau8317. PubMed DOI PMC

Lv F, Chen S, Wang L, et al. The role of microbiota in the pathogenesis of schizophrenia and major depressive disorder and the possibility of targeting microbiota as a treatment option. Oncotarget. 2017;8(59):100899–907. doi: 10.18632/oncotarget.21284. PubMed DOI PMC

Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108(7):3047–52. doi: 10.1073/pnas.1010529108. PubMed DOI PMC

Codagnone MG, Spichak S, O'Mahony SM, et al. Programming bugs: microbiota and the developmental origins of brain health and disease. Biol Psychiatry. 2019;85(2):150–63. doi: 10.1016/j.biopsych.2018.06.014. PubMed DOI

Desbonnet L, Clarke G, Traplin A, et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun. 2015;48:165–73. doi: 10.1016/j.bbi.2015.04.004. PubMed DOI

Severance EG, Dickerson F, Yolken RH, et al. Complex gastrointestinal and endocrine sources of inflammation in schizophrenia. Front Psychiatry. 2020;11:549. doi: 10.3389/fpsyt.2020.00549. PubMed DOI PMC

Babulas V, Factor-Litvak P, Goetz R, et al. Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry. 2006;163(5):927–9. doi: 10.1176/ajp.2006.163.5.927. PubMed DOI

Dunphy-Doherty F, O'Mahony SM, Peterson VL, et al. Post-weaning social isolation of rats leads to long-term disruption of the gut microbiota-immune-brain axis. Brain Behav Immun. 2018;68:261–73. doi: 10.1016/j.bbi.2017.10.024. PubMed DOI

Kannan G, Gressitt KL, Yang S, et al. Pathogen-mediated NMDA receptor autoimmunity and cellular barrier dysfunction in schizophrenia. Transl Psychiatry. 2017;7(8):e1186. doi: 10.1038/tp.2017.162. PubMed DOI PMC

Maes M, Kanchanatawan B, Sirivichayakul S, et al. In schizophrenia, increased plasma IgM/IgA responses to gut commensal bacteria are associated with negative symptoms, neurocognitive impairments, and the deficit phenotype. Neurotox Res. 2019;35(3):684–98. doi: 10.1007/s12640-018-9987-y. PubMed DOI

Xu R, Wu B, Liang J, et al. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav Immun. 2020;85:120–7. doi: 10.1016/j.bbi.2019.06.039. PubMed DOI

Shen Y, Xu J, Li Z, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr Res. 2018;197:470–7. doi: 10.1016/j.schres.2018.01.002. PubMed DOI

Olde Loohuis LM, Mangul S, Ori APS, et al. Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia. Transl Psychiatry. 2018;8(1):96. doi: 10.1038/s41398-018-0107-9. PubMed DOI PMC

Kanayama M, Hayashida M, Hashioka S, Miyaoka T, Inagaki M. Decreased clostridium abundance after electroconvulsive therapy in the gut microbiota of a patient with schizophrenia. Case Rep Psychiatry. 2019;2019:4576842. doi: 10.1155/2019/4576842. PubMed DOI PMC

He Y, Kosciolek T, Tang J, et al. Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis. Eur Psychiatry. 2018;53:37–45. doi: 10.1016/j.eurpsy.2018.05.011. PubMed DOI

Yuan X, Zhang P, Wang Y, et al. Changes in metabolism and microbiota after 24-week risperidone treatment in drug naïve, normal weight patients with first episode schizophrenia. Schizophr Res. 2018;201:299–306. doi: 10.1016/j.schres.2018.05.017. PubMed DOI

Schwarz E, Maukonen J, Hyytiäinen T, et al. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res. 2018;192:398–403. doi: 10.1016/j.schres.2017.04.017. PubMed DOI

Okubo R, Koga M, Katsumata N, et al. Effect of Bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: a proof-of-concept study. J Affect Disord. 2019;245:377–85. doi: 10.1016/j.jad.2018.11.011. PubMed DOI

Flowers SA, Baxter NT, Ward KM, et al. Effects of atypical antipsychotic treatment and resistant starch supplementation on gut microbiome composition in a cohort of patients with bipolar disorder or schizophrenia. Pharmacotherapy. 2019;39(2):161–70. doi: 10.1002/phar.2214. PubMed DOI PMC

Ghaderi A, Banafshe HR, Mirhosseini N, et al. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry. 2019;19(1):77. doi: 10.1186/s12888-019-2059-x. PubMed DOI PMC

Zhu F, Guo R, Wang W, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry. 2020;25(11):2905–18. doi: 10.1038/s41380-019-0475-4. PubMed DOI

Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br J Pharmacol. 2011;164(4):1162–94. doi: 10.1111/j.1476-5381.2011.01386.x. PubMed DOI PMC

Nieto R, Kukuljan M, Silva H. BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry. 2013;4:45. doi: 10.3389/fpsyt.2013.00045. PubMed DOI PMC

Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75. doi: 10.1113/jphysiol.2004.063388. PubMed DOI PMC

Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem Res. 2016;41(11):2819–35. doi: 10.1007/s11064-016-2039-1. PubMed DOI

Nemani K, Hosseini Ghomi R, McCormick B, Fan X. Schizophrenia and the gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry. 2015;56:155–60. doi: 10.1016/j.pnpbp.2014.08.018. PubMed DOI

Gronier B, Savignac HM, Di Miceli M, et al. Increased cortical neuronal responses to NMDA and improved attentional set-shifting performance in rats following prebiotic (B-GOS®) ingestion. Eur Neuropsychopharmacol. 2018;28(1):211–24. doi: 10.1016/j.euroneuro.2017.11.001. PubMed DOI PMC

Pokusaeva K, Johnson C, Luk B, et al. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil. 2017;29(1):e12904. doi: 10.1111/nmo.12904. PubMed DOI PMC

Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113(2):411–417. doi: 10.1111/j.1365-2672.2012.05344.x. PubMed DOI

Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128–33. doi: 10.1016/j.brainres.2018.03.015. PubMed DOI PMC

Dahlin M, Elfving A, Ungerstedt U, Amark P. The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res. 2005;64(3):115–25. doi: 10.1016/j.eplepsyres.2005.03.008. PubMed DOI

Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26(4):611–619.e6. doi: 10.1016/j.cmet.2017.09.008. PubMed DOI

Davari S, Talaei SA, Alaei H, Salami M. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience. 2013;240:287–96. doi: 10.1016/j.neuroscience.2013.02.055. PubMed DOI

Dinan TG, Quigley EM. Probiotics in the treatment of depression: science or science fiction? Aust N Z J Psychiatry. 2011;45(12):1023–5. doi: 10.3109/00048674.2011.613766. PubMed DOI

Schousboe A, Waagepetersen HS. GABA: homeostatic and pharmacological aspects. Prog Brain Res. 2007;160:9–19. doi: 10.1016/S0079-6123(06)60002-2. PubMed DOI

Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays. 2011;33(8):574–81. doi: 10.1002/bies.201100024. PubMed DOI

Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013;74(10):720–6. doi: 10.1016/j.biopsych.2013.05.001. PubMed DOI

Halkjær SI, Boolsen AW, Günther S, Christensen AH, Petersen AM. Can fecal microbiota transplantation cure irritable bowel syndrome? World J Gastroenterol. 2017;23(22):4112–20. doi: 10.3748/wjg.v23.i22.4112. PubMed DOI PMC

Hinton R. A case report looking at the effects of faecal microbiota transplantation in a patient with bipolar disorder. Aust N Z J Psychiatry. 2020;54(6):649–50. doi: 10.1177/0004867420912834. PubMed DOI

Cai T, Shi X, Yuan LZ, et al. Fecal microbiota transplantation in an elderly patient with mental depression. Int Psychogeriatr. 2019;31(10):1525–6. doi: 10.1017/S1041610219000115. PubMed DOI

Kang DW, Ilhan ZE, Isern NG, et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018;49:121–31. doi: 10.1016/j.anaerobe.2017.12.007. PubMed DOI

Van den Buuse M, Garner B, Koch M. Neurodevelopmental animal models of schizophrenia: effects on prepulse inhibition. Curr Mol Med. 2003;3(5):459–71. doi: 10.2174/1566524033479627. PubMed DOI

O'Mahony SM, Marchesi JR, Scully P, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry. 2009;65(3):263–7. doi: 10.1016/j.biopsych.2008.06.026. PubMed DOI

Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8(9):1263–8. doi: 10.1038/nn1525. PubMed DOI

Govorunova EG, Sineshchekov OA, Li H, Spudich JL. Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu Rev Biochem. 2017;86:845–72. doi: 10.1146/annurev-biochem-101910-144233. PubMed DOI PMC

Sparta DR, Hovelsø N, Mason AO, et al. Activation of prefrontal cortical parvalbumin interneurons facilitates extinction of reward-seeking behavior. J Neurosci. 2014;34(10):3699–705. doi: 10.1523/JNEUROSCI.0235-13.2014. PubMed DOI PMC

Sohal VS, Zhang F, Yizhar O, et al. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459(7247):698–702. doi: 10.1038/nature07991. PubMed DOI PMC

Toader O, von Heimendahl M, Schuelert N, et al. Suppression of parvalbumin interneuron activity in the prefrontal cortex recapitulates features of impaired excitatory/inhibitory balance and sensory processing in schizophrenia. Schizophr Bull. 2020;46(4):981–9. doi: 10.1093/schbul/sbz123. PubMed DOI PMC

Wolff AR, Bygrave AM, Sanderson DJ, et al. Optogenetic induction of the schizophrenia-related endophenotype of ventral hippocampal hyperactivity causes rodent correlates of positive and cognitive symptoms. Sci Rep. 2018;8(1):12871. doi: 10.1038/s41598-018-31163-5. PubMed DOI PMC

Fan ZL, Wu B, Wu GY, et al. Optogenetic inhibition of ventral hippocampal neurons alleviates associative motor learning dysfunction in a rodent model of schizophrenia. PLoS ONE. 2019;14(12):e0227200. doi: 10.1371/journal.pone.0227200. PubMed DOI PMC

Johnson AC, Latorre R, Ligon CO, Greenwood-Van MB. Visceral hypersensitivity induced by optogenetic activation of the amygdala in conscious rats. Am J Physiol Gastrointest Liver Physiol. 2018;314(3):G448–57. doi: 10.1152/ajpgi.00370.2017. PubMed DOI

Zhang X, van den Pol AN. Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation. Science. 2017;356(6340):853–9. doi: 10.1126/science.aam7100. PubMed DOI PMC

Hibberd TJ, Feng J, Luo J, et al. Optogenetic induction of colonic motility in mice. Gastroenterology. 2018;155(2):514–528.e6. doi: 10.1053/j.gastro.2018.05.029. PubMed DOI PMC

Wang W. Optogenetic manipulation of ENS—the brain in the gut. Life Sci. 2018;192:18–25. doi: 10.1016/j.lfs.2017.11.010. PubMed DOI

Gombash SE, Cowley CJ, Fitzgerald JA, et al. Intravenous AAV9 efficiently transduces myenteric neurons in neonate and juvenile mice. Front Mol Neurosci. 2014;7:81. doi: 10.3389/fnmol.2014.00081. PubMed DOI PMC

Gombash SE. Adeno-associated viral vector delivery to the enteric nervous system: a review. Postdoc J. 2015;3(8):1–12. PubMed PMC

Schuster DJ, Dykstra JA, Riedl MS, et al. Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat. 2014;8:42. doi: 10.3389/fnana.2014.00042. PubMed DOI PMC

Love DR, Lan CC, Dodd A, Shelling AN, McNabb WC, Ferguson LR. Modeling inflammatory bowel disease: the zebrafish as a way forward. Expert Rev Mol Diagn. 2007;7(2):177–93. doi: 10.1586/14737159.7.2.177. PubMed DOI

Ganz J, Melancon E, Eisen JS. Zebrafish as a model for understanding enteric nervous system interactions in the developing intestinal tract. Methods Cell Biol. 2016;134:139–64. doi: 10.1016/bs.mcb.2016.02.003. PubMed DOI

Zhao X, Pack M. Modeling intestinal disorders using zebrafish. Methods Cell Biol. 2017;138:241–70. doi: 10.1016/bs.mcb.2016.11.006. PubMed DOI

Wolf RC, Vasic N, Sambataro F, et al. Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(8):1464–73. doi: 10.1016/j.pnpbp.2009.07.032. PubMed DOI

Dickerson DD, Restieaux AM, Bilkey DK. Clozapine administration ameliorates disrupted long-range synchrony in a neurodevelopmental animal model of schizophrenia. Schizophr Res. 2012;135(1–3):112–5. doi: 10.1016/j.schres.2011.12.016. PubMed DOI

Ghoshal A, Conn PJ. The hippocampo-prefrontal pathway: a possible therapeutic target for negative and cognitive symptoms of schizophrenia. Future Neurol. 2015;10(2):115–28. doi: 10.2217/FNL.14.63. PubMed DOI PMC

Sigurdsson T, Duvarci S. Hippocampal-prefrontal interactions in cognition, behavior and psychiatric disease. Front Syst Neurosci. 2016;9:190. doi: 10.3389/fnsys.2015.00190. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace