MK-801 Impairs Cognitive Coordination on a Rotating Arena (Carousel) and Contextual Specificity of Hippocampal Immediate-Early Gene Expression in a Rat Model of Psychosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24659959
PubMed Central
PMC3950493
DOI
10.3389/fnbeh.2014.00075
Knihovny.cz E-zdroje
- Klíčová slova
- arc, carousel, cognitive coordination, hippocampus, homer 1a, place avoidance, rotating arena, schizophrenia,
- Publikační typ
- časopisecké články MeSH
Flexible behavior in dynamic, real-world environments requires more than static spatial learning and memory. Discordant and unstable cues must be organized in coherent subsets to give rise to meaningful spatial representations. We model this form of cognitive coordination on a rotating arena - Carousel where arena- and room-bound spatial cues are dissociated. Hippocampal neuronal ensemble activity can repeatedly switch between multiple representations of such an environment. Injection of tetrodotoxin into one hippocampus prevents cognitive coordination during avoidance of a stationary room-defined place on the Carousel and increases coactivity of previously unrelated neurons in the uninjected hippocampus. Place avoidance on the Carousel is impaired after systemic administration of non-competitive NMDAr blockers (MK-801) used to model schizophrenia in animals and people. We tested if this effect is due to cognitive disorganization or other effect of NMDAr antagonism such as hyperlocomotion, spatial memory impairment, or general learning deficit. We also examined if the same dose of MK-801 alters patterns of immediate-early gene (IEG) expression in the hippocampus. IEG expression is triggered in neuronal nuclei in a context-specific manner after behavioral exploration and it is used to map activity in neuronal populations. IEG expression is critical for maintenance of synaptic plasticity and memory consolidation. We show that the same dose of MK-801 that impairs spatial coordination of rats on the Carousel also eliminates contextual specificity of IEG expression in hippocampal CA1 ensembles. This effect is due to increased similarity between ensembles activated in different environments, consistent with the idea that it is caused by increased coactivity between neurons, which did not previously fire together. Our data support the proposition of the Hypersynchrony theory that cognitive disorganization in psychosis is due to increased coactivity between unrelated neurons.
Zobrazit více v PubMed
Adell A., Jiménez-Sánchez L., López-Gil X., Romón T. (2012). Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr. Bull. 38, 9–1410.1093/schbul/sbr133 PubMed DOI PMC
Bakker A., Kirwan C. B., Miller M., Stark C. E. L. (2008). Pattern separation in the human hippocampal CA3and dentate gyrus. Science 319, 1640–164210.1126/science.1152882 PubMed DOI PMC
Barch D. M. (2005). The cognitive neuroscience of schizophrenia. Annu. Rev. Clin. Psychol. 1, 321–35310.1146/annurev.clinpsy.1.102803.143959 PubMed DOI
Behrendt R. P. (2010). Contribution of hippocampal region CA3 to consciousness and schizophrenic hallucinations. Neurosci. Biobehav. Rev. 34, 1121–113610.1016/j.neubiorev.2009.12.009 PubMed DOI
Belforte J. E., Zsiros V., Sklar E. R., Jiang Z., Yu G., Li Y., et al. (2010). Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 13, 76–8310.1038/nn.2447 PubMed DOI PMC
Benes F. M., Lim B., Matzilevich D., Walsh J. P., Subburaju S., Minns M. (2007). Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars hippocampal GABA alterations in schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 104, 10164–1016910.1073/pnas.0703806104 PubMed DOI PMC
Bowie C. R., Reichenberg A., Patterson T. L., Heaton R. K., Harvey P. D. (2006). Determinants of real-world functional performance in schizophrenia subjects: correlations with cognition, functional capacity, and symptoms. Am. J. Psychiatry 163, 418–42510.1176/appi.ajp.163.3.418 PubMed DOI
Boyer P., Phillips J. L., Rousseau F. L., Ilitvitsky S. (2007). Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia. Brain Res. Rev. 54, 92–11210.1016/j.brainresrev.2006.12.008 PubMed DOI
Braun I., Genius J., Grunze H., Bender A., Möller H. J., Rujescu D. (2007). Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA receptor antagonism. Schizophr. Res. 97, 254–26310.1016/j.schres.2007.05.005 PubMed DOI
Breier A., Malhotra A. K., Pinals D. A., Weisenfeld N. I., Pickar D. (1997). Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am. J. Psychiatry 154, 805–811 PubMed
Bubeníková-Valešová V., Horacek J., Vrajova M., Höschl C. (2008a). Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci. Biobehav. Rev. 32, 1014–102310.1016/j.neubiorev.2008.03.012 PubMed DOI
Bubeníková-Valešová V., Stuchlík A., Svoboda J., Bureš J., Valeš K. (2008b). Risperidone and ritanserin but not haloperidol block effect of dizocilpine on the active allothetic place avoidance task. Proc. Natl. Acad. Sci. U.S.A. 105, 1061–106610.1073/pnas.0711273105 PubMed DOI PMC
Bureš J., Fenton A. A., Kaminsky Y., Rossier J., Sacchetti B., Zinyuk L. (1997). Dissociation of exteroceptive and idiothetic orientation cues: effect on hippocampal place cells and place navigation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1515–152410.1098/rstb.1997.0138 PubMed DOI PMC
Buzsáki G., Eidelberg E. (1981). Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Res. 230, 346–35010.1016/0006-8993(81)90413-3 PubMed DOI
Christian G. D. (2003). Analytical Chemistry, 6th Edn New York: Wiley
Chrobak J. J., Hinman J. R., Sabolek H. R. (2008). Revealing past memories: proactive interference and ketamine-induced memory deficits. J. Neurosci. 28, 4512–452010.1523/JNEUROSCI.0742-07.2008 PubMed DOI PMC
Cimadevilla J. M., Wesierska M., Fenton A. A., Bureš J. (2001). Inactivating one hippocampus impairs avoidance of a stable room-defined place during dissociation of arena cues from room cues by rotation of the arena. Proc. Natl. Acad. Sci. U.S.A. 98, 3531–353610.1073/pnas.051628398 PubMed DOI PMC
Czerniawski J., Ree F., Chia C., Ramamoorthi K., Kumata Y., Otto T. A. (2011). The importance of having Arc: expression of the immediate-early gene Arc is required for hippocampus-dependent fear conditioning and blocked by NMDA receptor antagonism. J. Neurosci. 31, 11200–1120710.1523/JNEUROSCI.2211-11.2011 PubMed DOI PMC
Danion J. M., Rizzo L., Bruant A. (1999). Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia. Arch. Gen. Psychiatry 56, 639–64410.1001/archpsyc.56.7.639 PubMed DOI
Deutsch S. I., Rosse R. B., Billingslea E. N., Bellack A. S., Mastropaolo J. (2002). Topiramate antagonizes MK-801 in an animal model of schizophrenia. Eur. J. Pharmacol. 449, 121–12510.1016/S0014-2999(02)02041-1 PubMed DOI
Ellenbroek B. A., Cools A. R. (1990). Animal models with construct validity for schizophrenia. Behav. Pharmacol. 1, 469–49010.1097/00008877-199000160-00001 PubMed DOI
Elliott R., McKenna P. J., Robbins T. W., Sahakian B. J. (1998). Specific neuropsychological deficits in schizophrenic patients with preserved intellectual function. Cogn. Neuropsychiatry 3, 45–7010.1080/135468098396242 PubMed DOI
Fenton A. A. (2009). “Neural coordination and psychotic disorganization,” in Information Processing by Neuronal Populations, eds Holscher C., Munk M. H. (London: Cambridge University Press; ), 387–408
Fenton A. A., Bureš J. (1993). Place navigation in rats with unilateral TTX inactivation of the dorsal hippocampus: place but not procedural learning can be lateralised to one hippocampus. Behav. Neurosci. 107, 552–56410.1037/0735-7044.107.4.552 PubMed DOI
Fenton A. A., Kenney J., Kao H.-Y. (2006). Phencyclidine impairs cognition if and only if it co-activates initially independently active neurons. Soc. Biol. Psychiatry 59, 85S
Fenton A. A., Lytton W. W., Barry J. M., Lenck-Santini P. P., Zinyuk L. E., Kubík S., et al. (2010). Attention-like modulation of hippocampus place cell discharge. J. Neurosci. 30, 4613–462510.1523/JNEUROSCI.5576-09.2010 PubMed DOI PMC
Fenton A. A., Wesierska M., Kaminsky Y., Bureš J. (1998). Both here and there: simultaneous expression of autonomous spatial memories in rats. Proc. Natl. Acad. Sci. U.S.A. 95, 11493–1149810.1073/pnas.95.19.11493 PubMed DOI PMC
Gilbert P. E., Kesner R. P., Lee I. (2001). Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus 11, 626–63610.1002/hipo.1077 PubMed DOI
Gold J. M., Waltz J. A., Matveeva T. M., Kasanova Z., Strauss G. P., Herbener E. S., et al. (2012). Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. Arch. Gen. Psychiatry 69, 129–13810.1001/archgenpsychiatry.2011.1269 PubMed DOI PMC
Green M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? Am. J. Psychiatry 153, 321–330 PubMed
Green M. F., Kern R. S., Heaton R. K. (2004). Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr. Res. 72, 41–5110.1016/j.schres.2004.09.009 PubMed DOI
Green M. F., Nuechterlein K. H. (1999). Should schizophrenia be treated as a neurocognitive disorder? Schizhopr. Bull. 25, 309–31910.1093/oxfordjournals.schbul.a033380 PubMed DOI
Grunze H. C., Rainnie D. G., Hasselmo M. E., Barkai E., Hearn E. F., McCarley R. W., et al. (1996). NMDA-dependent modulation of CA1 local circuit inhibition. J. Neurosci. 16, 2034–2043 PubMed PMC
Guzowski J. F., Knierim J. J., Moser E. I. (2004). Ensemble dynamics of hippocampal regions CA1 and CA3. Neuron 44, 581–58410.1016/j.neuron.2004.11.003 PubMed DOI
Guzowski J. F., Lyford G. L., Stevenson G. D., Houston F. P., McGaugh J. L., Worley P. F., et al. (2000). Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001 PubMed PMC
Guzowski J. F., McNaughton B. L., Barnes C. A., Worley P. F. (1999). Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–112410.1038/16046 PubMed DOI
Harrison P. J. (2004). The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl.) 174, 151–16210.1007/s00213-003-1761-y PubMed DOI
Harvey P. D., Keefe R. S. (2001). Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am. J. Psychiatry 158, 176–18410.1176/appi.ajp.158.2.176 PubMed DOI
Hemsley D. R. (2005). The schizophrenic experience: taken out of context? Schizhopr. Bull. 31, 43–5310.1093/schbul/sbi003 PubMed DOI
Hill S. K., Bishop J. R., Palumbo D., Sweeney J. A. (2010). Effect of second-generation antipsychotics on cognition: current issues and future challenges. Expert Rev. Neurother. 10, 43–5710.1586/ern.09.143 PubMed DOI PMC
Jackson M. E., Homayoun H., Moghaddam B. (2004). NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 101, 8467–847210.1073/pnas.0308455101 PubMed DOI PMC
Ježek K., Henriksen E. J., Treves A., Moser E. I., Moser M.-B. (2011). Theta-paced flickering between place-cell maps in the hippocampus. Nature 478, 246–24910.1038/nature10439 PubMed DOI
Keefe R. S. E., Poe M., Walker T. M., Kang J. W., Harvey P. D. (2006). The Schizophrenia Cognition Rating Scale: an interview-based assessment and its relationship to cognition, real-world functioning, and functional capacity. Am. J. Psychiatry 163, 426–43210.1176/appi.ajp.163.3.426 PubMed DOI
Kelemen E., Fenton A. A. (2010). Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol. 8:e1000403.10.1371/journal.pbio.1000403 PubMed DOI PMC
Kelemen E., Fenton A. A. (2013). Key features of human episodic recollection in the cross-episode retrieval of rat hippocampus representations of space. PLoS Biol. 11:e1001607.10.1371/journal.pbio.1001607 PubMed DOI PMC
Kerwin R., Patel S., Meldrum B. (1990). Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39, 25–3210.1016/0306-4522(90)90219-T PubMed DOI
Kobayashi K. (2009). Targeting the hippocampal mossy fiber synapse for the treatment of psychiatric disorders. Mol. Neurobiol. 39, 24–3610.1007/s12035-008-8049-5 PubMed DOI
Kolomeets N. S., Orlovskaya D. D., Rachmanova V. I., Uranova N. A. (2005). Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: a postmortem morphometric study. Synapse 57, 47–5510.1002/syn.20153 PubMed DOI
Kolomeets N. S., Orlovskaya D. D., Uranova N. A. (2007). Decreased numerical density of CA3 hippocampal mossy fiber synapses in schizophrenia. Synapse 61, 615–62110.1002/syn.20405 PubMed DOI
Kubik Š, Fenton A. A. (2005). Behavioral evidence that segregation and representation are dissociable hippocampal functions. J. Neurosci. 25, 9205–921210.1523/JNEUROSCI.1707-05.2005 PubMed DOI PMC
Kubik Š, Miyashita T., Guzowski J. F. (2007). Using immediate-early genes to map hippocampal subregional functions. Learn. Mem. 14, 758–77010.1101/lm.698107 PubMed DOI
Kubik Š, Miyashita T., Kubik-Zahorodna A., Guzowski J. F. (2012). Loss of activity-dependent Arc gene expression in the retrosplenial cortex after hippocampal inactivation: interaction in a higher-order memory circuit. Neurobiol. Learn. Mem. 97, 124–13110.1016/j.nlm.2011.10.004 PubMed DOI
Ledoux A. A., Phillips J. L., Labelle A., Smith A., Bohbot V. D., Boyer P. (2013). Decreased fMRI activity in the hippocampus of patients with schizophrenia compared to healthy control participants, tested on a wayfinding task in a virtual town. Psychiatry Res. 211, 47–5610.1016/j.pscychresns.2012.10.005 PubMed DOI
Lee H., Dvorak D., Kao H.-Y., Duffy A. M., Scharfman H. E., Fenton A. A. (2012). Early cognitive experience prevents adult deficits in a neurodevelopmental schizophrenia model. Neuron 75, 714–72410.1016/j.neuron.2012.06.016 PubMed DOI PMC
Lee I., Yoganarasimha D., Rao G., Knierim J. J. (2004). Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430, 456–45910.1038/nature02739 PubMed DOI
Leutgeb J. K., Leutgeb S., Moser M. B., Moser E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–96610.1126/science.1135801 PubMed DOI
Leutgeb S., Leutgeb J. K., Treves A., Moser M.-B., Moser E. I. (2004). Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305, 1295–129810.1126/science.1100265 PubMed DOI
Lewis D. A., Hashimoto T., Volk D. W. (2005). Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci. 6, 312–32410.1038/nrn1648 PubMed DOI
Li Q., Clark S., Lewis D. V., Wilson W. A. (2002). NMDA receptor antagonists disinhibit rat posterior cingulate and retrosplenial cortices: a potential mechanism of neurotoxicity. J. Neurosci. 22, 3070–3080 PubMed PMC
Link W., Konietzko U., Kauselmann G., Krug M., Schwanke B., Frey U., et al. (1995). Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl. Acad. Sci. U.S.A. 92, 5734–573810.1073/pnas.92.12.5734 PubMed DOI PMC
Lisman J. E., Coyle J. T., Green R. W., Javitt D. C., Benes F. M., Heckers S., et al. (2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 31, 234–24210.1016/j.tins.2008.02.005 PubMed DOI PMC
Lobellova V., Entlerova M., Svojanovska B., Hatalova H., Prokopova I., Petrasek T., et al. (2013). Two learning tasks provide evidence for disrupted behavioural flexibility in an animal model of schizophrenia-like behaviour induced by acute MK-801: a dose-response study. Behav. Brain Res. 246, 55–6210.1016/j.bbr.2013.03.006 PubMed DOI
Lyford G. L., Yamagata K., Kaufmann W. E., Barnes C. A., Sanders L. K., Copeland N. G., et al. (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–44510.1016/0896-6273(95)90299-6 PubMed DOI
Manschreck T. C., Merrill A. M., Jabbar G., Chun J., Delisi L. E. (2012). Frequency of normative word associations in the speech of individuals at familial high-risk for schizophrenia. Schizophr. Res. 140, 99–10310.1016/j.schres.2012.06.034 PubMed DOI PMC
Martin P., Waters N., Waters S., Carlsson A., Carlsson M. L. (1997). MK-801-induced hyperlocomotion: differential effects of M100907, SDZ PSD 958 and raclopride. Eur. J. Pharmacol. 335, 107–11610.1016/S0014-2999(97)01188-6 PubMed DOI
McHugh T. J., Jones M. W., Quinn J. J., Balthasar N., Coppari R., Elmquist J. K., et al. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317, 94–9910.1126/science.1140263 PubMed DOI
Miller R. (1989). Hyperactivity of associations in psychosis. Aust. N. Z. J. Psychiatry 23, 241–24810.3109/00048678909062141 PubMed DOI
Mishara A. L., Goldberg T. E. (2004). A meta-analysis and critical review of the effects of conventional neuroleptic treatment on cognition in schizophrenia: opening a closed book. Biol. Psychiatry 55, 1013–102210.1016/j.biopsych.2004.01.027 PubMed DOI
Miyashita T., Kubík Š, Haghighi N., Steward O., Guzowski J. F. (2009). Rapid activation of plasticity-associated gene transcription in hippocampal neurons provides a mechanism for encoding of one-trial experience. J. Neurosci. 29, 898–90610.1523/JNEUROSCI.4588-08.2009 PubMed DOI PMC
Moscovitch M., Nadel L., Winocur G., Gilboa A., Rosenbaum R. S. (2006). The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. Neurobiol. 16, 179–19010.1016/j.conb.2006.03.013 PubMed DOI
Moser E. I., Moser M. B. (1998). Distributed encoding and retrieval of spatial memory in the hippocampus. J. Neurosci. 18, 7535–7542 PubMed PMC
Newcomer J. W., Krystal J. H. (2001). NMDA receptor regulation of memory and behavior in humans. Hippocampus 11, 529–54210.1002/hipo.1069 PubMed DOI
Nikiforuk A., Popik P. (2012). Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology (Berl.) 220, 65–7410.1007/s00213-011-2487-x PubMed DOI PMC
Nowakowski C., Kaufmann W. A., Adlassnig C., Maier H., Salimi K., Jellinger K. A., et al. (2002). Reduction of chromogranin B-like immunoreactivity in distinct subregions of the hippocampus from individuals with schizophrenia. Schizophr. Res. 58, 43–5310.1016/S0920-9964(01)00389-9 PubMed DOI
Olypher A. V., Klement D., Fenton A. A. (2006). Cognitive disorganization in hippocampus: physiological model of the disorganization in psychosis. J. Neurosci. 26, 158–16810.1523/JNEUROSCI.2064-05.2006 PubMed DOI PMC
Phillips W. A., Silverstein S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–8210.1017/S0140525X03000025 PubMed DOI
Plath N., Ohana O., Dammermann B., Errington M. L., Schmitz D., Gross C., et al. (2006). Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–44410.1016/j.neuron.2006.08.024 PubMed DOI
Powel S. B., Geyer M. A. (2007). Overview of animal models of schizophrenia. Curr. Protoc. Neurosci. 39, 9.24.1–9.24.20.10.1002/0471142301.ns0924s39 PubMed DOI
Ragland J. D., Yoon J., Minzenberg M. J., Carter C. S. (2007). Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. Int. Rev. Psychiatry 19, 417–42710.1080/09540260701486365 PubMed DOI PMC
Ranganath C., Minzenberg M. J., Ragland J. D. (2008). The cognitive neuroscience of memory function and dysfunction in schizophrenia. Biol. Psychiatry 64, 18–2510.1016/j.biopsych.2008.04.011 PubMed DOI PMC
Reichenberg A., Caspi A., Harrington H., Houts R., Keefe R. S. E., Murray R. M., et al. (2010). Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. Am. J. Psychiatry 167, 160–16910.1176/appi.ajp.2009.09040574 PubMed DOI PMC
Romón T., Mengod G., Adell A. (2011). Expression of parvalbumin and glutamic acid decarboxylase-67 after acute administration of MK-801. Implications for the NMDA hypofunction model of schizophrenia. Psychopharmacology (Berl.) 217, 231–23810.1007/s00213-011-2268-6 PubMed DOI
Rorabacher D. B. (1991). Statistical treatment for rejection of deviant values: critical values of Dixon’s “Q” parameter and related subrange ratios at the 95% confidence level. Anal. Chem. 63, 139–14610.1021/ac00002a010 DOI
Rosenheck R., CATIE Study Investigators Group. Leslie D., Keefe R., McEvoy J., Swartz M., et al. (2006). Barriers to employment for people with schizophrenia. Am. J. Psychiatry 163, 411–41710.1176/appi.ajp.163.3.411 PubMed DOI
Rung J. P., Carlsson A., Rydén Markinhuhta K., Carlsson M. L. (2005). (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 827–83210.1016/j.pnpbp.2005.03.004 PubMed DOI
Schneider F., Gur R. C., Koch K., Backes V., Amunts K., Shah N. J., et al. (2006). Impairment in the specificity of emotion processing in schizophrenia. Am. J. Psychiatry 163, 442–44710.1176/appi.ajp.163.3.442 PubMed DOI
Silverstein S. M., Kovacs I., Corry R., Valone C. (2000). Perceptual organization, the disorganization syndrome, and context processing in chronic schizophrenia. Schizophr. Res. 43, 11–2010.1016/S0920-9964(99)00180-2 PubMed DOI
Sørensen H. J., Mortensen E. L., Schiffman J., Reinisch J. M., Maeda J., Mednick S. A. (2010). Early developmental milestones and risk of schizophrenia: a 45-year follow-up of the Copenhagen Perinatal Cohort. Schizophr. Res. 118, 41–4710.1016/j.schres.2010.01.029 PubMed DOI PMC
Steward O., Worley P. F. (2001). Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30, 227–24010.1016/S0896-6273(01)00275-6 PubMed DOI
Stuchlík A., Fenton A. A., Bureš J. (2001). Substratal idiothetic navigation of rats is impaired by removal or devaluation of extramaze and intramaze cues. Proc. Natl. Acad. Sci. U.S.A. 98, 3537–354210.1073/pnas.051630498 PubMed DOI PMC
Stuchlík A., Rezácová L., Valeš K., Bubeníková V., Kubík S. (2004). Application of a novel active allothetic place avoidance task (AAPA) in testing a pharmacological model of psychosis in rats: comparison with the Morris Water Maze. Neurosci. Lett. 366, 162–16610.1016/j.neulet.2004.05.037 PubMed DOI
Stuchlík A., Valeš K. (2005). Systemic administration of MK-801, a non-competitive NMDA-receptor antagonist, elicits a behavioural deficit of rats in the active allothetic place avoidance (AAPA) task irrespectively of their intact spatial pretraining. Behav. Brain Res. 159, 163–17110.1016/j.bbr.2004.10.013 PubMed DOI
Tamminga C. A., Southcott S., Sacco C., Wagner A. D., Ghose S. (2012). Glutamate dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling. Schizophr. Bull. 38, 927–93510.1093/schbul/sbs062 PubMed DOI PMC
Tamminga C. A., Stan A. D., Wagner A. D. (2010). The hippocampal formation in schizophrenia. Am. J. Psychiatry 167, 1178–119310.1176/appi.ajp.2010.09081187 PubMed DOI
Tüscher O., Silbersweig D., Pan H., Smith T., Beutel M., Zonana J., et al. (2005). Processing of environmental sounds in schizophrenic patients: disordered recognition and lack of semantic specificity. Schizophr. Res. 73, 291–29510.1016/j.schres.2004.06.010 PubMed DOI
Uhlhaas P. J., Silverstein S. M., Phillips W. A., Lovell P. G. (2004). Evidence for impaired visual context processing in schizotypy with thought disorder. Schizophr. Res. 68, 249–26010.1016/S0920-9964(03)00184-1 PubMed DOI
Valeš K., Bubeníková-Valešová V., Klement D., Stuchlík A. (2006). Analysis of sensitivity to MK-801 treatment in a novel active allothetic place avoidance task and in the working memory version of the Morris water maze reveals differences between Long-Evans and Wistar rats. Neurosci. Res. 55, 383–38810.1016/j.neures.2006.04.007 PubMed DOI
van der Staay F. J., Rutten K., Erb C., Bloklande A. (2011). Effects of the cognition impairer MK-801 on learning and memory in mice and rats. Behav. Brain Res. 220, 215–22910.1016/j.bbr.2011.01.052 PubMed DOI
Vazdarjanova A., Guzowski J. F. (2004). Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J. Neurosci. 24, 6489–649610.1523/JNEUROSCI.0350-04.2004 PubMed DOI PMC
Vazdarjanova A., McNaughton B. L., Barnes C. A., Worley P. F., Guzowski J. F. (2002). Experience-dependent coincident expression of the effector immediate-early genes Arc and Homer 1a in hippocampal and neocortical neuronal networks. J. Neurosci. 22, 10067–10071 PubMed PMC
Vollenweider F. X., Leenders K. L., Scharfetter C., Antonini A., Maguire P., Missimer J., et al. (1997). Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur. Neuropsychopharmacol. 7, 9–2410.1016/S0924-977X(96)00039-9 PubMed DOI
Weinberger D. R. (1999). Cell biology of the hippocampal formation in schizophrenia. Biol. Psychiatry 45, 395–40210.1016/S0006-3223(98)00331-X PubMed DOI
Weiss A. P., Schacter D. L., Goff D. C., Rauch S. L., Alpert N. M., Fischman A. J., et al. (2003). Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol. Psychiatry 53, 48–5510.1016/S0006-3223(02)01541-X PubMed DOI
Wentura D., Moritz S., Frings C. (2008). Further evidence for “hyper-priming” in thought-disordered schizophrenic patients using repeated masked category priming. Schizophr. Res. 102, 69–7510.1016/j.schres.2008.04.016 PubMed DOI
Wesierska M., Dockery C., Fenton A. A. (2005). Beyond memory, navigation and inhibition: behavioural evidence for hippocampus-dependent cognitive coordination in the rat. J. Neurosci. 25, 2413–241910.1523/JNEUROSCI.3962-04.2005 PubMed DOI PMC
Westerhausen R., Kompus K., Hugdahl K. (2011). Impaired cognitive inhibition in schizophrenia: a meta-analysis of the Stroop interference effect. Schizophr. Res. 133, 172–18110.1016/j.schres.2011.08.025 PubMed DOI
Yamasaki N., Maekawa M., Kobayashi K., Kajii Y., Maeda J., Soma M., et al. (2008). Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol. Brain 1, 6.10.1186/1756-6606-1-6 PubMed DOI PMC
Zemanova A., Stankova A., Lobellova V., Svoboda J., Vales K., Vlcek K., et al. (2013). Visuospatial working memory is impaired in an animal model of schizophrenia induced by acute MK-801: an effect of pretraining. Pharmacol. Biochem. Behav. 106, 117–12310.1016/j.pbb.2013.03.014 PubMed DOI
Zinyuk L., Kubík S., Kaminsky Y., Fenton A. A., Bureš J. (2000). Understanding hippocampal activity by using purposeful behavior: place navigation induces place cell discharge in both task-relevant and task irrelevant spatial reference frames. Proc. Natl. Acad. Sci. U.S.A. 97, 3771–377610.1073/pnas.97.7.3771 PubMed DOI PMC