Chronic MK-801 Application in Adolescence and Early Adulthood: A Spatial Working Memory Deficit in Adult Long-Evans Rats But No Changes in the Hippocampal NMDA Receptor Subunits
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29487522
PubMed Central
PMC5816576
DOI
10.3389/fphar.2018.00042
Knihovny.cz E-zdroje
- Klíčová slova
- animal model, behavior, chronic treatment, dizocilpine, rats, schizophrenia, western blot,
- Publikační typ
- časopisecké články MeSH
The role of NMDA receptors in learning, memory and hippocampal function has long been recognized. Post-mortem studies have indicated that the expression or subunit composition of the NMDA glutamate receptor subtype might be related to the impaired cognitive functions found in schizophrenia patients. NMDA receptor antagonists have been used to develop animal models of this disorder. There is accumulating evidence showing that not only the acute but also the chronic application of NMDA receptor antagonists may induce schizophrenia-like alterations in behavior and brain functions. However, limited evidence is available regarding the consequences of NMDA receptor blockage during periods of adolescence and early adulthood. This study tested the hypothesis that a 2-week treatment of male Long-Evans and Wistar rats with dizocilpine (MK-801; 0.5 mg/kg daily) starting at postnatal days (PD) 30 and 60 would cause a long-term cognitive deficit and changes in the levels of NMDA receptor subunits. The working memory version of the Morris water maze (MWM) and active place avoidance with reversal on a rotating arena (Carousel) requiring cognitive coordination and flexibility probed cognitive functions and an elevated-plus maze (EPM) was used to measure anxiety-like behavior. The western blot method was used to determine changes in NMDA receptor subunit levels in the hippocampus. Our results showed no significant changes in behaviors in Wistar rats. Slightly elevated anxiety-like behavior was observed in the EPM in Long-Evans rats with the onset of treatment on PD 30. Furthermore, Long-Evans rats treated from PD 60 displayed impaired working memory in the MWM. There were; however, no significant changes in the levels of NMDA receptor subunits because of MK-801 administration. These findings suggest that a 2-week treatment starting on PD 60 in Long-Evans rats leads to long-term changes in working memory, but this deficit is not paralleled by changes in NMDA receptor subunits. These results support the face validity, but not construct validity of this model. We suggest that chronic treatment of adolescent and adult rats does not constitute a plausible animal model of schizophrenia.
2nd Faculty of Medicine Charles University Prague Czechia
Department of Experimental Neurobiology National Institute of Mental Health Klecany Czechia
Radboud Institute for Molecular Life Sciences Radboud University Nijmegen Netherlands
Zobrazit více v PubMed
Abdul-Monim Z., Reynolds G. P., Neill J. C. (2006). The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behav. Brain Res. 169 263–273. 10.1016/j.bbr.2006.01.019 PubMed DOI
Anastasio N. C., Johnson K. M. (2008). Differential regulation of the NMDA receptor by acute and sub-chronic phencyclidine administration in the developing rat. J. Neurochem. 104 1210–1218. 10.1111/j.1471-4159.2007.05047.x PubMed DOI
Bahník Š. (2014). Carousel Maze Manager (Version 0.4.0) Software. Available at: https://github.com/bahniks/CM_Manager_0_4_0
Baier P. C., Blume A., Koch J., Marx A., Fritzer G., Aldenhoff J. B., et al. (2009). Early postnatal depletion of NMDA receptor development affects behaviour and NMDA receptor expression until later adulthood in rats—a possible model for schizophrenia. Behav. Brain Res. 205 96–101. 10.1016/j.bbr.2009.06.018 PubMed DOI
Bures J., Fenton A. A., Kaminsky Y., Zinyuk L. (1997). Place cells and place navigation. Proc. Natl. Acad. Sci. U.S.A. 94 343–350. 10.1073/pnas.94.1.343 PubMed DOI PMC
Burghardt N. S., Park E. H., Hen R., Fenton A. A. (2012). Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus 22 1795–1808. 10.1002/hipo.22013 PubMed DOI PMC
Czéh B., Stuchlik A., Wesierska M., Cimadevilla J. M., Pokorný J., Seress L., et al. (2001). Effect of neonatal dentate gyrus lesion on allothetic and idiothetic navigation in rats. Neurobiol. Learn. Mem. 75 190–213. 10.1006/nlme.2000.3975 PubMed DOI
Davis J., Eyre H., Jacka F. N., Dodd S., Dean O., McEwen S., et al. (2016). A review of vulnerability and risks for schizophrenia: beyond the two hit hypothesis. Neurosci. Biobehav. Rev. 65 185–194. 10.1016/j.neubiorev.2016.03.017 PubMed DOI PMC
Elhardt M., Martinez L., Tejada-Simon M. V. (2010). Neurochemical, behavioral and architectural changes after chronic inactivation of NMDA receptors in mice. Neurosci. Lett. 468 166–171. 10.1016/j.neulet.2009.10.091 PubMed DOI PMC
Elvevag B., Goldberg T. E. (2000). Cognitive impairment in schizophrenia is the core of the disorder. Crit. Rev. Neurobiol. 14 1–21. 10.1615/CritRevNeurobiol.v14.i1.10 PubMed DOI
Facchinetti F., Ciani E., Dall’Olio R., Virgili M., Contestabile A., Fonnum F. (1993). Structural, neurochemical and behavioural consequences of neonatal blockade of NMDA receptor through chronic treatment with CGP 39551 or MK-801. Brain Res. Dev. Brain Res. 74 219–224. 10.1016/0165-3806(93)90007-W PubMed DOI
Fajnerová I., Rodriguez M., Levčík D., Konrádová L., Mikoláš P., Brom C., et al. (2014). A virtual reality task based on animal research - spatial learning and memory in patients after the first episode of schizophrenia. Front. Behav. Neurosci. 8:157. 10.3389/fnbeh.2014.00157 PubMed DOI PMC
Fenton A. A., Wesierska M., Kaminsky Y., Bures J. (1998). Both here and there: simultaneous expression of autonomous spatial memories in rats. Proc. Natl. Acad. Sci. U.S.A. 95 11493–11498. 10.1073/pnas.95.19.11493 PubMed DOI PMC
Forbes N. F., Carrick L. A., McIntosh A. M., Lawrie S. M. (2009). Working memory in schizophrenia: a meta-analysis. Psychol. Med. 39 889–905. 10.1017/S0033291708004558 PubMed DOI
Fukazawa Y., Saitoh Y., Ozawa F., Ohta Y., Mizuno K., Inokuchi K. (2003). Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38 447–460. 10.1016/S0896-6273(03)00206-X PubMed DOI
Gilda J. E., Gomes A. V. (2013). Stain free total protein staining is a superior loading control to β-actin for western blots. Anal. Biochem. 440 186–188. 10.1016/j.ab.2013.05.027 PubMed DOI PMC
Gorter J. A., de Bruin J. P. (1992). Chronic neonatal MK-801 treatment results in an impairment of spatial learning in the adult rat. Brain Res. 580 12–17. 10.1016/0006-8993(92)90921-U PubMed DOI
Haller J., Aliczki M., Gyimesine Pelczer K. (2013). Classical and novel approaches to the preclinical testing of anxiolytics: a critical evaluation. Neurosci. Biobehav. Rev. 37(10Pt 1), 2318–2330. 10.1016/j.neubiorev.2012.09.001 PubMed DOI
Hargreaves E. L., Cain D. P. (1995). MK801-induced hyperactivity: duration of effects in rats. Pharmacol. Biochem. Behav. 51 13–19. 10.1016/0091-3057(94)00321-9 PubMed DOI
Jones C. A., Watson D. J., Fone K. C. (2011). Animal models of schizophrenia. Br. J. Pharmacol. 164 1162–1194. 10.1111/j.1476-5381.2011.01386.x PubMed DOI PMC
Kantrowitz J., Javitt D. C. (2012). Glutamatergic transmission in schizophrenia: from basic research to clinical practice. Curr. Opin. Psychiatry 25 96–102. 10.1097/YCO.0b013e32835035b2 PubMed DOI PMC
Kawabe K., Iwasaki T., Ichitani Y. (2007). Repeated treatment with N-methyl-d-aspartate antagonists in neonatal, but not adult, rats causes long-term deficits of radial-arm maze learning. Brain Res. 1169 77–86. 10.1016/j.brainres.2007.06.062 PubMed DOI
Kawabe K., Miyamoto E. (2008). Effects of neonatal repeated MK-801 treatment on delayed nonmatching-to-position responses in rats. Neuroreport 19 969–973. 10.1097/WNR.0b013e328302ee31 PubMed DOI
Kocahan S., Akillioglu K., Binokay S., Leman S., Polat S. (2013). The effects of N-methyl-d-aspartate receptor blockade during the early neurodevelopmental period on emotional behaviors and cognitive functions of adolescent wistar rats. Neurochem. Res. 38 989–996. 10.1007/s11064-013-1008-1 PubMed DOI
Kubík S., Buchtová H., Valeš K., Stuchlík A. (2014). MK-801 impairs cognitive coordination on a rotating arena (carousel) and contextual specificity of hippocampal immediate-early gene expression in a rat model of psychosis. Front. Behav. Neurosci. 8:75. 10.3389/fnbeh.2014.00075 PubMed DOI PMC
Kubík S., Stuchlík A., Fenton A. A. (2006). Evidence for hippocampal role in place avoidance other than merely memory storage. Physiol. Res. 55 445–452. PubMed
Latysheva N. V., Rayevsky K. S. (2003). Chronic neonatal N-methyl-D-aspartate receptor blockade induces learning deficits and transient hypoactivity in young rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 27 787–794. PubMed
Li J. T., Su Y. A., Guo C. M., Feng Y., Yang Y., Huang R. H., et al. (2011). Persisting cognitive deficits induced by low-dose, subchronic treatment with MK-801 in adolescent rats. Eur. J. Pharmacol. 652 65–72. 10.1016/j.ejphar.2010.10.074 PubMed DOI
Li S., Carmichael S. T. (2006). Growth-associated gene and protein expression in the region of axonal sprouting in the aged brain after stroke. Neurobiol. Dis. 23 362–373. 10.1016/j.nbd.2006.03.011 PubMed DOI
Lim A. L., Taylor D. A., Malone D. T. (2012). Consequences of early life MK-801 administration: long-term behavioural effects and relevance to schizophrenia research. Behav. Brain Res. 227 276–286. 10.1016/j.bbr.2011.10.052 PubMed DOI
Lobellová V., Brichtová E., Petrásek T., Valeš K., Stuchlík A. (2015). Higher doses of (+)MK-801 (dizocilpine) induced mortality and procedural but not cognitive deficits in delayed testing in the active place avoidance with reversal on the Carousel. Physiol. Res. 64 269–275. PubMed
Lobellova V., Entlerova M., Svojanovska B., Hatalova H., Prokopova I., Petrasek T., et al. (2013). Two learning tasks provide evidence for disrupted behavioural flexibility in an animal model of schizophrenia-like behaviour induced by acute MK-801: a dose-response study. Behav. Brain Res. 246 55–62. 10.1016/j.bbr.2013.03.006 PubMed DOI
Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 265–275. PubMed
Matta J. A., Pelkey K. A., Craig M. T., Chittajallu R., Jeffries B. W., McBain C. J. (2013). Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity. Nat. Neurosci. 16 1032–1041. 10.1038/nn.3459 PubMed DOI PMC
McLamb R. L., Williams L. R., Nanry K. P., Wilson W. A., Tilson H. A. (1990). MK-801 impedes the acquisition of a spatial memory task in rats. Pharmacol. Biochem. Behav. 37 41–45. 10.1016/0091-3057(90)90038-J PubMed DOI
Nakazawa K., Jeevakumar V., Nakao K. (2017). Spatial and temporal boundaries of NMDA receptor hypofunction leading to schizophrenia. NPJ Schizophr. 3:7. 10.1038/s41537-016-0003-3 PubMed DOI PMC
Newell K. A., Zavitsanou K., Huang X. F. (2007). Short and long term changes in NMDA receptor binding in mouse brain following chronic phencyclidine treatment. J. Neural Transm. 114 995–1001. 10.1007/s00702-007-0668-x PubMed DOI
Oh S., Kim Y. H., Hann H. J., Lee H. L., Choi H. S., Kim H. S., et al. (2001). Modulation of the levels of NMDA receptor subunit mRNA and the bindings of [3H]MK-801 in rat brain by chronic infusion of subtoxic dose of MK-801. Neurochem. Res. 26 559–565. 10.1023/A:1010977315838 PubMed DOI
Owen M. J., Sawa A., Mortensen P. B. (2016). Schizophrenia. Lancet 388 86–97. 10.1016/S0140-6736(15)01121-6 PubMed DOI PMC
Pellow S., Chopin P., File S. E., Briley M. (1985). Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14 149–167. 10.1016/0165-0270(85)90031-7 PubMed DOI
Peterson E. R. (1977). A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analyt. Biochem. 83 346–356. 10.1016/0003-2697(77)90043-4 PubMed DOI
Petrasek T., Prokopova I., Bahnik S., Schonig K., Berger S., Vales K., et al. (2014a). Nogo-A downregulation impairs place avoidance in the Carousel maze but not spatial memory in the Morris water maze. Neurobiol. Learn. Mem. 107 42–49. 10.1016/j.nlm.2013.10.015 PubMed DOI
Petrasek T., Prokopova I., Sladek M., Weissova K., Vojtechova I., Bahnik S., et al. (2014b). Nogo-A-deficient transgenic rats show deficits in higher cognitive functions, decreased anxiety, and altered circadian activity patterns. Front. Behav. Neurosci. 8:90. 10.3389/fnbeh.2014.00090 PubMed DOI PMC
Phillips W. A., Silverstein S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26 65–82. 10.1017/S0140525X03000025 PubMed DOI
Rocha A., Hart N., Trujillo K. A. (2017). Differences between adolescents and adults in the acute effects of PCP and ketamine and in sensitization following intermittent administration. Pharmacol. Biochem. Behav. 157 24–34. 10.1016/j.pbb.2017.04.007 PubMed DOI PMC
Rotaru D. C., Yoshino H., Lewis D. A., Ermentrout G. B., Gonzalez-Burgos G. (2011). Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: relevance for schizophrenia. J. Neurosci. 31 142–156. 10.1523/JNEUROSCI.1970-10.2011 PubMed DOI PMC
Rung J. P., Carlsson A., Rydén Markinhuhta K., Carlsson M. L. (2005). (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 29 827–832. PubMed
Schiffelholz T., Hinze-Selch D., Aldenhoff J. B. (2004). Perinatal MK-801 treatment affects age-related changes in locomotor activity from childhood to later adulthood in rats. Neurosci. Lett. 360 157–160. 10.1016/j.neulet.2004.02.064 PubMed DOI
Seillier A., Guiffrida A. (2009). Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav. Brain Res. 204 410–415. 10.1016/j.bbr.2009.02.007 PubMed DOI
Stefani M. R., Moghaddam B. (2005). Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia. Biol. Psychiatry 57 433–436. 10.1016/j.biopsych.2004.11.031 PubMed DOI
Stuchlik A. (2014). Dynamic learning and memory, synaptic plasticity and neurogenesis: an update. Front. Behav. Neurosci. 8:106. 10.3389/fnbeh.2014.00106 PubMed DOI PMC
Stuchlik A., Bures J. (2002). Relative contribution of allothetic and idiothetic navigation to place avoidance on stable and rotating arenas in darkness. Behav. Brain Res. 128 179–188. 10.1016/S0166-4328(01)00314-X PubMed DOI
Stuchlík A., Petrásek T., Prokopová I., Holubová K., Hatalová H., Valeš K., et al. (2013). Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol. Res. 62(Suppl. 1), S1–S19. PubMed
Stuchlik A., Petrasek T., Vales K. (2008). Dopamine D2 receptors and alpha1-adrenoceptors synergistically modulate locomotion and behavior of rats in a place avoidance task. Behav. Brain Res. 189 139–144. 10.1016/j.bbr.2007.12.025 PubMed DOI
Stuchlik A., Vales K. (2006). Effect of dopamine D1 receptor antagonist SCH23390 and D1 agonist A77636 on active allothetic place avoidance, a spatial cognition task. Behav. Brain Res. 172 250–255. 10.1016/j.bbr.2006.05.008 PubMed DOI
Svoboda J., Stankova A., Entlerova M., Stuchlik A. (2015). Acute administration of MK-801 in an animal model of psychosis in rats interferes with cognitively demanding forms of behavioral flexibility on a rotating arena. Front. Behav. Neurosci. 9:75. 10.3389/fnbeh.2015.00075 PubMed DOI PMC
Telensky P., Svoboda J., Blahna K., Bureš J., Kubik S., Stuchlik A. (2011). Functional inactivation of the rat hippocampus disrupts avoidance of a moving object. Proc. Natl. Acad. Sci. U.S.A. 108 5414–5418. 10.1073/pnas.1102525108 PubMed DOI PMC
Temmingh H., Stein D. J. (2015). Anxiety in patients with schizophrenia: epidemiology and management. CNS Drugs 29 819–832. 10.1007/s40263-015-0282-7 PubMed DOI
Tramutola A., Pupo G., Di Domenico F., Barone E., Arena A., Lanzillotta C., et al. (2016). Activation of p53 in down syndrome and in the Ts65Dn mouse brain is associated with a pro-apoptotic phenotype. J. Alzheimers Dis. 52 359–371. 10.3233/JAD-151105 PubMed DOI PMC
Uehara T., Sumiyoshi T., Seo T., Itoh H., Matsuoka T., Suzuki M., et al. (2009). Long-term effects of neonatal MK-801 treatment on prepulse inhibition in young adult rats. Psychopharmacology 206 623–630. 10.1007/s00213-009-1527-2 PubMed DOI
Vales K., Bubenikova-Valesova V., Klement D., Stuchlik A. (2006). Analysis of sensitivity to MK-801 treatment in a novel active allothetic place avoidance task and in the working memory version of the Morris water maze reveals differences between Long-Evans and Wistar rats. Neurosci. Res. 55 383–388. 10.1016/j.neures.2006.04.007 PubMed DOI
Vales K., Stuchlik A. (2005). Central muscarinic blockade interferes with retrieval and reacquisition of active allothetic place avoidance despite spatial pretraining. Behav. Brain Res. 161 238–244. 10.1016/j.bbr.2005.02.012 PubMed DOI
van der Staay F. J., Rutten K., Erb C., Blokland A. (2011). Effects of the cognition impairer MK-801 on learning and memory in mice and rats. Behav. Brain Res. 220 215–229. 10.1016/j.bbr.2011.01.052 PubMed DOI
Wang C., Showalter V. M., Hillman G. R., Johnson K. M. (1999). Chronic phencyclidine increases NMDA receptor NR1 subunit mRNA in rat forebrain. J. Neurosci. Res. 55 762–769. 10.1002/(SICI)1097-4547(19990315)55:6<762::AID-JNR10>3.0.CO;2-E PubMed DOI
Wang H. X., Gao W. J. (2009). Cell type-specific development of NMDA receptors in the interneurons of rat prefrontal cortex. Neuropsychopharmacology 34 2028–2040. 10.1038/npp.2009.20 PubMed DOI PMC
Wenzel A., Fritschy J. M., Mohler H., Benke D. (1997). NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J. Neurochem. 68 469–478. 10.1046/j.1471-4159.1997.68020469.x PubMed DOI
Wesierska M., Dockery C., Fenton A. A. (2005). Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J. Neurosci. 25 2413–2419. 10.1523/JNEUROSCI.3962-04.2005 PubMed DOI PMC