Nogo-A-deficient Transgenic Rats Show Deficits in Higher Cognitive Functions, Decreased Anxiety, and Altered Circadian Activity Patterns
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24672453
PubMed Central
PMC3957197
DOI
10.3389/fnbeh.2014.00090
Knihovny.cz E-zdroje
- Klíčová slova
- AAPA, Carousel maze, Nogo-A, anhedonia, circadian rhythmicity, neophobia, passive avoidance,
- Publikační typ
- časopisecké články MeSH
Decreased levels of Nogo-A-dependent signaling have been shown to affect behavior and cognitive functions. In Nogo-A knockout and knockdown laboratory rodents, behavioral alterations were observed, possibly corresponding with human neuropsychiatric diseases of neurodevelopmental origin, particularly schizophrenia. This study offers further insight into behavioral manifestations of Nogo-A knockdown in laboratory rats, focusing on spatial and non-spatial cognition, anxiety levels, circadian rhythmicity, and activity patterns. Demonstrated is an impairment of cognitive functions and behavioral flexibility in a spatial active avoidance task, while non-spatial memory in a step-through avoidance task was spared. No signs of anhedonia, typical for schizophrenic patients, were observed in the animals. Some measures indicated lower anxiety levels in the Nogo-A-deficient group. Circadian rhythmicity in locomotor activity was preserved in the Nogo-A knockout rats and their circadian period (tau) did not differ from controls. However, daily activity patterns were slightly altered in the knockdown animals. We conclude that a reduction of Nogo-A levels induces changes in CNS development, manifested as subtle alterations in cognitive functions, emotionality, and activity patterns.
Zobrazit více v PubMed
Abdel Baki S. G., Kao H. Y., Kelemen E., Fenton A. A., Bergold P. J. (2009). A hierarchy of neurobehavioral tasks discriminates between mild and moderate brain injury in rats. Brain Res. 1280, 98–10610.1016/j.brainres.2009.05.034 PubMed DOI
Akbik F., Cafferty W. B., Strittmatter S. M. (2012). Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp. Neurol. 235, 43–5210.1016/j.expneurol.2011.06.006 PubMed DOI PMC
Bahnik S. (2013). Carousel Maze Manager (Version 0.3.5) [Software]. Available at: https://github.com/bahniks/CM_Manager_0_3_5
Bakeman R. (2005). Recommended effect size statistics for repeated measures designs. Behav. Res. Methods 37, 379–38410.3758/BF03192707 PubMed DOI
Bubenikova-Valesova V., Stuchlik A., Svoboda J., Bures J., Vales K. (2008a). Risperidone and ritanserin but not haloperidol block effect of dizocilpine on the active allothetic place avoidance task. Proc. Natl. Acad. Sci. U.S.A. 105, 1061–106610.1073/pnas.0711273105 PubMed DOI PMC
Bubenikova-Valesova V., Horacek J., Vrajova M., Höschl C. (2008b). Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci. Biobehav. Rev. 32, 1014–102310.1016/j.neubiorev.2008.03.012 PubMed DOI
Budel S., Padukkavidana T., Liu B. P., Feng Z., Hu F., Johnson S., et al. (2008). Genetic variants of Nogo-66 receptor with possible association to schizophrenia block myelin inhibition of axon growth. J. Neurosci. 28, 13161–1317210.1523/JNEUROSCI.3828-08.2008 PubMed DOI PMC
Burghardt N. S., Park E. H., Hen R., Fenton A. A. (2012). Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus 22, 1795–180810.1002/hipo.22013 PubMed DOI PMC
Canteras N. S., Swanson L. W. (1992). Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J. Comp. Neurol. 324, 180–19410.1002/cne.903240204 PubMed DOI
Carr Z. J., Torjman M. C., Manu K., Dy G., Goldberg M. E. (2011). Spatial memory using active allothetic place avoidance in adult rats after isoflurane anesthesia: a potential model for postoperative cognitive dysfunction. J. Neurosurg. Anesthesiol. 23, 138–14510.1097/ANA.0b013e3182049f19 PubMed DOI
Chen M. S., Huber A. B., van der Haar M. E., Frank M., Schnell L., Spillmann A. A., et al. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–43910.1038/35000219 PubMed DOI
Chong S. Y. C., Rosenberg S. S., Fancy S. P. J., Zhao C., Shen Y.-A. A., Hahn A. T., et al. (2012). Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proc. Natl. Acad. Sci. U.S.A. 109, 1299–130410.1073/pnas.1113540109 PubMed DOI PMC
Cimadevilla J. M., Wesierska M., Fenton A. A., Bures J. (2001). Inactivating one hippocampus impairs avoidance of a stable room-defined place during dissociation of arena cues from room cues by rotation of the arena. Proc. Natl. Acad. Sci. U.S.A. 98, 3531–353610.1073/pnas.051628398 PubMed DOI PMC
GrandPré T., Nakamura F., Vartanian T., Strittmatter S. M. (2000). Identification of the Nogo inhibitor of axon regeneration as a reticulon protein. Nature 403, 439–44410.1038/35000226 PubMed DOI
Harrison P. J. (2004). The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl.) 174, 151–16210.1007/s00213-003-1761-y PubMed DOI
Hsu R., Woodroffe A., Lai W. S., Cook M. N., Mukai J., Dunning J. P., et al. (2007). Nogo Receptor 1 (RTN4R) as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches. PLoS ONE 2:1234.10.1371/journal.pone.0001234 PubMed DOI PMC
Huber A. B., Weinmann O., Brösamle C., Oertle T., Schwab M. E. (2002). Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J. Neurosci. 22, 3553–3567 PubMed PMC
Hunt D., Coffin R. S., Prinjha R. K., Campbell G., Anderson P. N. (2003). Nogo-A expression in the intact and injured nervous system. Mol. Cell. Neurosci. 24, 1083–110210.1016/j.mcn.2003.09.002 PubMed DOI
Jitoku D., Hattori E., Iwayama Y., Yamada K., Toyota T., Kikuchi M., et al. (2011). Association study of Nogo-related genes with schizophrenia in a Japanese case-control sample. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 581–59210.1002/ajmg.b.31199 PubMed DOI
Jones C. A., Watson D. J., Fone K. C. (2011). Animal models of schizophrenia. Br. J. Pharmacol. 164, 1162–119410.1111/j.1476-5381.2011.01386.x PubMed DOI PMC
Karlén A., Karlsson T. E., Mattsson A., Lundströmer K., Codeluppi S., Pham T. M., et al. (2009). Nogo receptor 1 regulates formation of lasting memories. Proc. Natl. Acad. Sci. U.S.A. 106, 20476–2048110.1073/pnas.0905390106 PubMed DOI PMC
Krištofiková Z., Vrajová M., Šírová J., Valeš K., Petrásek T., Schönig K., et al. (2013). N-methyl-D-aspartate receptor – nitric oxide synthase pathway in the cortex of Nogo-A-deficient rats in relation to brain laterality and schizophrenia. Front. Behav. Neurosci. 7:90.10.3389/fnbeh.2013.00090 PubMed DOI PMC
Le Pen G., Gaudet L., Mortas P., Mory R., Moreau J. L. (2002). Deficits in reward sensitivity in a neurodevelopmental rat model of schizophrenia. Psychopharmacology (Berl.) 161, 434–44110.1007/s00213-002-1092-4 PubMed DOI
Lecourtier L., Antal M. C., Cosquer B., Schumacher A., Samama B., Angst M. J., et al. (2012). Intact neurobehavioral development and dramatic impairments of procedural like memory following neonatal ventral hippocampal lesion in rats. Neuroscience 207, 110–12310.1016/j.neuroscience.2012.01.040 PubMed DOI
Lee H., Dvorak D., Kao H. Y., Duffy ÁM., Scharfman H. E., Fenton A. A. (2012). Early cognitive experience prevents adult deficits in a neurodevelopmental schizophrenia model. Neuron 75, 714–72410.1016/j.neuron.2012.06.016 PubMed DOI PMC
Lenzlinger P. M., Shimizu S., Marklund N., Thompson H. J., Schwab M. E., Saatman K. E., et al. (2005). Delayed inhibition of Nogo-A does not alter injury-induced axonal sprouting but enhances recovery of cognitive function following experimental traumatic brain injury in rats. Neuroscience 134, 1047–105610.1016/j.neuroscience.2005.04.048 PubMed DOI
Lipska B. K., Weinberger D. R. (2000). To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23, 223–23910.1016/S0893-133X(00)00137-8 PubMed DOI
Liu A. C., Welsh D. K., Ko C. H., Tran H. G., Zhang E. E., Priest A. A., et al. (2007). Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129, 605–61610.1016/j.cell.2007.02.047 PubMed DOI PMC
Lobellova V., Entlerova M., Svojanovska B., Hatalova H., Prokopova I., Petrasek T., et al. (2013). Two learning tasks provide evidence for disrupted behavioural flexibility in an animal model of schizophrenia-like behaviour induced by acute MK-801: a dose-response study. Behav. Brain Res. 246, 55–6210.1016/j.bbr.2013.03.006 PubMed DOI
Marklund N., Bareyre F. M., Royo N. C., Thompson H. J., Mir A. K., Grady M. S., et al. (2007). Cognitive outcome following brain injury and treatment with an inhibitor of Nogo-A in association with an attenuated downregulation of hippocampal growth associated protein-43 expression. J. Neurosurg. 107, 844–85310.3171/JNS-07/10/0844 PubMed DOI PMC
Marklund N., Morales D., Clausen F., Hånell A., Kiwanuka O., Pitkänen A., et al. (2009). Functional outcome is impaired following traumatic brain injury in aging Nogo-A/B-deficient mice. Neuroscience 163, 540–55110.1016/j.neuroscience.2009.06.042 PubMed DOI PMC
Masliah E., Xie F., Dayan S., Rockenstein E., Mante M., Adame A., et al. (2010). Genetic deletion of Nogo/Rtn4 ameliorates behavioral and neuropathological outcomes in amyloid precursor protein transgenic mice. Neuroscience 169, 488–49410.1016/j.neuroscience.2010.04.045 PubMed DOI PMC
Meijer J. H., Schwartz W. J. (2003). In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J. Biol. Rhythms 18, 235–24910.1177/0748730403018003006 PubMed DOI
Mingorance A., Fontana X., Solé M., Burgaya F., Ureña J. M., Teng F. Y., et al. (2004). Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions. Mol. Cell. Neurosci. 26, 34–4910.1016/j.mcn.2004.01.001 PubMed DOI
Mingorance-Le Meur A., Zheng B., Soriano E., del Río J. A. (2007). Involvement of the myelin-associated inhibitor Nogo-A in early cortical development and neuronal maturation. Cereb. Cortex 17, 2375–238610.1093/cercor/bhl146 PubMed DOI
Novak G., Kim D., Seeman P., Tallerico T. (2002). Schizophrenia and Nogo: elevated mRNA in cortex, and high prevalence of a homozygous CAA insert. Brain Res. Mol. Brain Res. 107, 183–18910.1016/S0169-328X(02)00492-8 PubMed DOI
Pelizza L., Ferrari A. (2009). Anhedonia in schizophrenia and major depression: state or trait? Ann. Gen. Psychiatry 8, 22.10.1186/1744-859X-8-22 PubMed DOI PMC
Pernet V., Joly S., Christ F., Dimou L., Schwab M. E. (2008). Nogo-A and myelin-associated glycoprotein differently regulate oligodendrocyte maturation and myelin formation. J. Neurosci. 28, 7435–744410.1523/JNEUROSCI.0727-08.2008 PubMed DOI PMC
Pernet V., Schwab M. E. (2012). The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res. 349, 97–10410.1007/s00441-012-1432-6 PubMed DOI
Petrasek T., Prokopova I., Bahnik S., Schonig K., Berger S., Vales A., et al. (2014). Nogo-A downregulation impairs place avoidance in the Carousel maze but not spatial memory in the Morris water maze. Neurobiol. Learn. Mem. 107, 42–4910.1016/j.nlm.2013.10.015 PubMed DOI
Phillips W. A., Silverstein S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–8210.1017/S0140525X03000025 PubMed DOI
Prokopova I., Bahnik S., Doulames V., Vales K., Petrasek T., Svoboda J., et al. (2012). Synergistic effects of dopamine D2-like receptor antagonist sulpiride and beta-blocker propranolol on learning in the Carousel maze, a dry-land spatial navigation task. Pharmacol. Biochem. Behav. 102, 151–15610.1016/j.pbb.2012.04.003 PubMed DOI
R Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing
Rolando C., Parolisi R., Boda E., Schwab M. E., Rossi F., Buffo A. (2012). Distinct roles of Nogo-A and Nogo receptor 1 in the homeostatic regulation of adult neural stem cell function and neuroblast migration. J. Neurosci. 32, 17788–1779910.1523/JNEUROSCI.3142-12.2012 PubMed DOI PMC
Schwab M. E. (2004). Nogo and axon regeneration. Curr. Opin. Neurobiol. 14, 118–12410.1016/j.conb.2004.01.004 PubMed DOI
Schwab M. E. (2010). Functions of Nogo proteins and their receptors in the nervous system. Nat. Rev. Neurosci. 11, 799–81110.1038/nrn2936 PubMed DOI
Sinibaldi L., De Luca A., Bellacchio E., Conti E., Pasini A., Paloscia C., et al. (2004). Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Hum. Mutat. 24, 534–53510.1002/humu.9292 PubMed DOI
Sládek M., Jindráková Z., Bendová Z., Sumová A. (2007). Postnatal ontogenesis of the circadian clock within the rat liver. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1224–R122910.1152/ajpregu.00184.2006 PubMed DOI
Stephan F. K., Kovacevic N. S. (1978). Multiple retention deficit in passive avoidance in rats is eliminated by suprachiasmatic lesions. Behav. Biol. 22, 456–46210.1016/S0091-6773(78)92565-8 PubMed DOI
Stuchlik A. (2007). Further study of the effects of dopaminergic D1 drugs on place avoidance behavior using pretraining: some negative evidence. Behav. Brain Res. 178, 47–5210.1016/j.bbr.2006.11.046 PubMed DOI
Stuchlik A., Rezacova L., Vales K., Bubenikova V., Kubik S. (2004). Application of a novel Active Allothetic Place Avoidance task (AAPA) in testing a pharmacological model of psychosis in rats: comparison with the Morris Water Maze. Neurosci. Lett. 366, 162–16610.1016/j.neulet.2004.05.037 PubMed DOI
Swerdlow N. R., Light G. A., Breier M. R., Shoemaker J. M., Saint Marie R. L., Neary A. C., et al. (2012). Sensory and sensorimotor gating deficits after neonatal ventral hippocampal lesions in rats. Dev. Neurosci. 34, 240–24910.1159/000336841 PubMed DOI
Tan E. C., Chong S. A., Wang H., Chew-Ping Lim E., Teo Y. Y. (2005). Gender-specific association of insertion/deletion polymorphisms in the nogo gene and chronic schizophrenia. Brain Res. Mol. Brain Res. 139, 212–21610.1016/j.molbrainres.2005.05.010 PubMed DOI
Tapp W. N., Holloway F. A. (1981). Phase shifting circadian rhythms produces retrograde amnesia. Science 211, 1056–105810.1126/science.7193351 PubMed DOI
Tews B., Schönig K., Arzt M. E., Clementi S., Rioult-Pedotti M. S., Zemmar A., et al. (2013). Synthetic miRNA-mediated downregulation of Nogo-A in transgenic rats reveals its role as regulator of plasticity, learning and memory. Proc. Natl. Acad. Sci. U.S.A. 110, 6583–658810.1073/pnas.1217665110 PubMed DOI PMC
Vales K., Bubenikova-Valesova V., Klement D., Stuchlik A. (2006). Analysis of sensitivity to MK-801 treatment in a novel active allothetic place avoidance task and in the working memory version of the Morris water maze reveals differences between Long-Evans and Wistar rats. Neurosci. Res. 55, 383–38810.1016/j.neures.2006.04.007 PubMed DOI
VanGuilder H. D., Bixler G. V., Sonntag W. E., Freeman W. M. (2012). Hippocampal expression of myelin-associated inhibitors is induced with age-related cognitive decline and correlates with deficits of spatial learning and memory. J. Neurochem. 121, 77–9810.1111/j.1471-4159.2012.07671.x PubMed DOI PMC
VanGuilder H. D., Farley J. A., Yan H., Van Kirk C. A., Mitschelen M., Sonntag W. E., et al. (2011). Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol. Dis. 43, 201–21210.1016/j.nbd.2011.03.012 PubMed DOI PMC
Voineskos A. N. (2009). Converging evidence for the Nogo-66 receptor gene in schizophrenia. J. Neurosci. 29, 5045–504710.1523/JNEUROSCI.0477-09.2009 PubMed DOI PMC
Wang K. C., Koprivica V., Kim J. A., Sivasankaran R., Guo Y., Neve R. L., et al. (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–94410.1038/nature00867 PubMed DOI
Wesierska M., Dockery C., Fenton A. A. (2005). Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J. Neurosci. 25, 2413–241910.1523/JNEUROSCI.3962-04.2005 PubMed DOI PMC
Willi R., Aloy E. M., Yee B. K., Feldon J., Schwab M. E. (2009). Behavioral characterization of mice lacking the neurite outgrowth inhibitor Nogo-A. Genes Brain Behav. 8, 181–19210.1111/j.1601-183X.2008.00460.x PubMed DOI
Willi R., Schwab M. E. (2013). Nogo and Nogo receptor: relevance to schizophrenia? Neurobiol. Dis. 54, 150–15710.1016/j.nbd.2013.01.011 PubMed DOI
Willi R., Weinmann O., Winter C., Klein J., Sohr R., Schnell L., et al. (2010). Constitutive genetic deletion of the growth regulator Nogo-A induces schizophrenia-related endophenotypes. J. Neurosci. 30, 556–56710.1523/JNEUROSCI.4393-09.2010 PubMed DOI PMC